
Bull. Nov. Comp.Center, Comp. Science, 29 (2009), 89–105
c© 2009 NCC Publisher

The problems of C program verification∗

A. V. Promsky

Abstract. The fully automatic verification of programs is a tempting and hardly
accessible goal of modern programming. The low-level nature of the most popular
programming languages, such as C and C+, has raised its difficulty to a new level.
New formal methods and specification languages are required, because the classical
Hoare approach and first-level logics are no more adequate for the task. This paper
has two aims. First, it gives an overview of the two-level approach to verification
of C-light programs and, second, it describes the successful application of this
method to verification of so called “verification challenges”. An interface with
the theorem provers Simplify and Z3 is presented when discussing the proof of
verification conditions.

1. Introduction

The project of C program verification is being developed in the IIS labo-
ratory of theoretical programming. The C programming language remains
one of the most widespread languages, so formalization of its semantics and
automatic verification are the objects of great interest.

The two-level approach is an attempt to reconcile two controversial goals.
First of all, a wide coverage of C is a requirement of practical interest. That
is why C-light [4] includes a large part of the C language. The formal
definition of C-light has the form of a structured operational semantics.
Secondly, regardless of its limitations, the axiomatic approach [2] is still
the best choice. As a result, we chose a compact core of C-light — the C-
kernel language — and developed its Hoare-like logic. The first level of our
approach consists in translation from C-light into C-kernel. The formally
defined set of translation rules admits the proof of equivalence. At the
second stage, the verification conditions are derived in C-kernel axiomatic
semantics. The truth of these conditions guarantees the correctness of the
source program w.r.t. its specifications.

In order to test our method, we verified some programs from the well-
known collection [3] illustrating the verification challenges. Originally writ-
ten in Java, they are represented in C with a simple rejection of object-
oriented wrapping.

∗This paper is supported by RFBR grant 09-01-00361-a “Automated program verifi-
cation using SAT solvers”.

90 A.V. Promsky

The strategy of our project consists in generation of verification con-
ditions in the representation independent of a prover. In case of simple
verification examples, the lightweight provers, such as Simplify and Z3, can
be used. However, to verify the “real” C programs, an interface to the
industrial strength tools like PVS or Promela must be provided.

The overview of existing approaches to C program verification can be
found in [9]. Among those works the CompCert project is worthy of a
special attention. It uses a compiler front-end that translates the Clight1

subset of the C language into the Cminor intermediate language and the
formal semantics of Clight is mechanized using the Coq proof assistant.

The rest of the paper is organized as follows: Section 2 briefly describes
the two-level verification method. Some strategies of verification condition
simplification are proposed in Section 3. Section 4 presents the examples
of verification challenges together with their verification. Section 5 is a
conclusion of the paper.

2. The two-level verification method

Let us briefly describe the C-light verification project and present informa-
tion required for reading the examples. The details can be found in [4, 5, 6].

2.1. Operational semantics of C-light

To formalize C-light, we use the method of “Structural Operational Seman-
tics” in the Plotkin style. All language constructs are defined by the axioms
and inference rules over the transition relation which binds the abstract
machine configurations. Instead of classical variants of the program state,
where a state simply maps the program variable names onto their possible
values, we define the state as a function over metavariables. In their turn,
the metavariables are higher level objects (functions and cartesian prod-
ucts) which model the addresses and types of program objects, the memory
dump and the interim storage for the calculated expression values. For-
mally, a state of the C-light abstract machine is a map over the following
metavariables:

1. the metavariable MeM (Memory Management) which maps the names
of usual program variables onto the addresses of the corresponding ob-
jects in the memory;

2. the metavariable MD (Memory Dump) which maps the program ob-
ject addresses onto their values;

3. the metavariable TP which retrieves the types of the program objects
from their addresses;

1Comparable to our C-light.

The problems of C program verification 91

4. the metavariable STD which establishes the connection between type
synonyms2 and maps the tags onto the corresponding structure types3;

5. the metavariable GLF (Global/Local Flag) which contains the current
nesting level;

6. the metavariable Val which contains the value of the last evaluated
expression.

The abstract machine also uses the set of abstract functions which per-
form some kinds of static analysis (such as expression type derivation) and
encapsulate the low-level aspects of program behavior (for example, the al-
location of new addresses).

Explicit use of addresses to access memory objects allows us to work
with pointers as well as to handle the problem of aliasing which are always
the challenges for verification. A typical rule of C-light semantics can be
represented by the example of a simple assignment:

σ0 |= e1 : lv[τ1] τ1 is not an array
〈e2, σ0〉 →∗

e 〈ε, σ1〉 〈&e1, σ1〉 →∗
e 〈ε, σ2〉 Valσ1 = (v, τ2) IC(τ1, τ2)

〈e1 = e2, σ0〉 →e 〈ε, σ′′2〉
,

where σ′′2 = σ2(MD(Valσ2 ← γτ2,τ1(v)))(Val := (γτ2,τ1(v), τ1)). So, the eval-
uation of the assignment expression is divided into the following steps: 1) by
means of the type system, we make certain that e1 is a modifiable l-value; 2)
the right-hand part of the assignment is evaluated and the result, together
with its type, is stored in the metavariable Val; 3) the left-hand side is eval-
uated, simultaneously evaluating the address of the object located by e1; 4)
the relation of implicit type coercion of both parts should be established; 5)
the value of e2 is the object of typecast γτ2,τ1 ; 6) this final value is the value
of the whole assignment expression and is stored in memory location found
during the step 3) (modification of the metavariable MD).

2.2. Translation from C-light into C-kernel

The idea of such a rewriting is to represent some undesirable C-light con-
structs by sequences of constructs from the smaller subset of C-light. The
translation rules are divided into groups according to their purpose: the dec-
laration rewriting, statement rewriting and expression rewriting. In some
groups, the rules in their turn are divided into normalization rules, decom-
position rules and elimination rules. In accordance with the notation, a
normalization rule brings a construction to some canonical form, a decom-
position rule breaks a complex sequence of constructions, and an elimination
rule removes a “bad” construction.

2Thus, it handles the typedef declarations.
3We need it to resolve possible recursion in structure type definitions.

92 A.V. Promsky

As an illustration, we can consider the elimination rule for the increment
operator. According to it, an expression of the form e++ should be replaced
by the expression (q = &e, y = *q, *q = *q + 1, y), where q and y are
new variables declared to have the types of &e and e, respectively. This
guarantees that the possible side-effects in e will take place only once. In
its turn, the resulting sequence will be the object of an appropriate decom-
position rule.

The main advantage is that C-kernel is still a part of C-light, so the same
operational semantics can be involved to prove correctness of the translation
rules.

2.3. Axiomatic semantics of C-kernel

Reasonable restrictions on C-light and its translation into C-kernel allow
us to avoid many of problematic features of C which result in unsoundness
and incompleteness of axiomatic semantics. We also use the higher-order
assertion language instead of the classical predicate logic to specify the pro-
grams. That is why our C-kernel axiomatic semantics is simple enough. For
example, the inference rule for the while loop looks like

{I ∧ cast(val(e,MD), type(e), int) 6= 0}S{I}
{I}while(e) S{I ∧ cast(val(e, MD), type(e), int) = 0} .

The only difference with Hoare’s classical rule is the involvement of metavari-
ables and abstract functions for e which reflects the nature of the C language.

The resulting simplicity of C-kernel axiomatization makes the theoretical
justification of soundness straightforward.

3. Verification condition simplification

The two-level access model resolves the problems of composite objects and
aliasing but leads to explosion in the size of verification conditions (VC).
Let us consider a simple example:

int x, y, z;
x = 1;
y = 2;
z = 3;
z = 4;

Indeed, the original C-light program is so simple that it could be veri-
fied in the classical Hoare logic [2]. However, in our approach we use the
metavariables instead of program variables. Let us compare the VCs ob-
tained in each approach.

In each case, we can use true as a precondition.

The problems of C program verification 93




c1 = naddr(MD1) ∧
MeM2 = upd(MeM1, x, c1) ∧
TP2 = upd(TP1, c1, int) ∧
MD2 = upd(MD1, c1, ω) ∧
c2 = naddr(MD2) ∧
MeM3 = upd(MeM2, y, c2) ∧
TP3 = upd(TP2, c2, int) ∧
MD3 = upd(MD2, c2, ω) ∧
c3 = naddr(MD3) ∧
MeM = upd(MeM3, z, c3) ∧
TP = upd(TP3, c3, int) ∧
MD4 = upd(MD3, c3, ω) ∧
MD = upd(MD4, MeM(x), 1) ∧
V2 = upd(V1, L(x), 1) ∧
V3 = upd(V2, L(y), 2) ∧
V4 = upd(V3, L(z), 3) ∧
V = upd(V4, L(z), 4)




=⇒



V (L(x)) = 1 ∧
V (L(y)) = 2 ∧
V (L(z)) = 4




Figure 1. The verification condition

The postcondition for the classical logic is x = 1∧y = 2∧z = 4. Applying
the Hoare assignment rule 4 times, we obtain the true assertion:

true =⇒ (1 = 1 ∧ 2 = 2 ∧ 3 = 3). (1)

The two-level access in the C-kernel logic immediately complicates the
precondition: MD(MeM(x)) = 1 ∧MD(MeM(y)) = 2 ∧MD(MeM(z)) = 4.

It should be noted that the only difference between the equivalent C-
kernel program and the source file concerns the first string. According to
the C-kernel restrictions, the joint declaration should be split into three
separate declarations.

The verification condition is presented in Fig. 1. Its size surprises.
Obviously, verification of real programs can lead to immense assertions which
can easily overcome the capacity of theorem provers. That is the price of the
detailed memory model of C-light/kernel. Thus, we need some simplification
strategies which must precede the proof stage.

Strategy 1. In the consequent of VC, the variables are matched against the
constants. So, we can split VC into three formulas in accordance with the
number of conjuncts in the consequent. Let us consider one of these new
formulas (strategy 1 is supposed to be already applied):

94 A.V. Promsky




newp(d3, L3, V1, L2) ∧
newp(d2, L2, V1, L2) ∧
newp(d1, L1, V1, L2) ∧
L2 = upd(L1, x, d1) ∧
L3 = upd(L2, y, d2) ∧
L = upd(L3, z, d3) ∧
V2 = upd(V1, L(x), 1) ∧
V3 = upd(V2, L(y), 2) ∧
V4 = upd(V3, L(z), 3) ∧
V = upd(V4, L(z), 4)




=⇒ V (L(z)) = 4. (2)

Strategy 2. The type int is not a reference type. This guarantees that the
object z does not have aliases, i.e. the assignments to x and y affect z only
if the expressions over x and y are assigned to z. Let us begin to unfold
the antecedent from the rightmost conjunct. If a term upd binds z with a
value which is independent of x and y, then this upd can be substituted into
the consequent. Otherwise, the upd is ignored. This unfolding takes into
account the fact that the lower (righter) conjunct corresponds to the later
assignment in the source program.

newp(d3, L3, V1, L2) ∧ newp(d2, L2, V1, L2) ∧ newp(d1, L1, V1, L2) =⇒
upd(V4, upd(L3, z, d3)(z), 4)(upd(L3, z, d3)(z)) = 4. (3)

The standard semantics of upd provides the truth of this assertion. Though
(3) is still bigger than (1), it is significantly simpler than VC from Figure 1.
Moreover, the proof does not depend on the fact that d1, d2 and d3 are new
addresses, so the whole antecedent can be discarded.

In the next Section, we will demonstrate the VCs after the application
of simplification strategies.

4. Verification examples

Our examples are borrowed from [3]. Naturally, the Java-source programs
have been translated in their semantic equivalents in the C language. Despite
their small size, they represent a problem for verification in the classical
Hoare logic.

4.1. Aliasing

This example shows the concept of multiple access to a memory object. In
principle, in Java the problem is more acute because the syntax of a refer-
ence is not different from a conventional identifier syntax. In C references
are implemented through pointers and the dereferencing operation should
signal potential problems. In any case, references and pointers make the

The problems of C program verification 95

classic method of expression interpretation inconsistent. Instead of a classi-
cal model name → value, we have to use name → address → value model.

#include "stdio.h"

struct C {
struct C *a;
int i;

};

int m(void) {
struct C c;
c.a = &c;
c.i = 2;
return c.i + (c.a)->i;

};

int main(void){
printf("%d", m());
return 0;

}

The return expression of the function m references the value of the field i of
the structure c value via an aliased reference to itself in the field a.
Note. The standard library stdio is used here only for illustrative purpose.
In practice, verification of the console output is beyond the scope of our
interests. Indeed, how often do the programmers take into account the fact
that printf is a function returning an integer value which can be matched
against the program specification?

Specifications for the function m4 have the form5:

Pre(m) : true
Post(m) : Val = 4

The source program is simple enough to satisfy the definition of C-kernel,
so, the intermediate program is not different.

The body of m forms the single linear area. The axiomatic semantics
produces the following verification condition:

4Verification of the function main is not of much interest.
5As a rule, we use the adaptations of corresponding annotations from [3].

96 A.V. Promsky




c1 = naddr(MD0)∧
MD1 = upd(MD0, c1, ω)∧
MD2 = upd(MD1, c1, c1)∧
MD3 = upd(MD2, c, c1)∧
MD4 = upd(MD3, mb(c1, a), null)∧
MD5 = upd(MD4, mb(c1, i), 0)∧
MD6 = upd(MD5, mb(c1, a), val(&c, MD6))∧
MD7 = upd(MD6, mb(c1, i), 2)∧
Val = BinOpSem(+,MD7(mb(c1, i)), int, val((c.a)->i), int)




⇒ Val = 4.

To prove this assertion, the automatic theorem prover Simplify was used.
First, it required the axioms for some logical functions such as upd, array
access get, left-values handling, etc.

(BG_PUSH (FORALL (a i x)
(EQ (get (upd a i x) i) x)

))

(BG_PUSH (FORALL (a i x)
(EQ (upd a i (get a i)) a)

))
(BG_PUSH (FORALL (a i x j)
(OR

(EQ i j)
(EQ
(get (upd a i x) j)
(get a j)

)
)

))
(BG_PUSH (FORALL (v c)
(EQ

(val (lv v c))
v

)
))
(BG_PUSH (FORALL (v c)
(EQ

(loc (lv v c))
c

)
))
...

The problems of C program verification 97

Second, the verification condition was presented in the form acceptable
for the provers Simplify and Z3. Because of lack of a space, let us consider
only its part:

(IMPLIES
(AND

(DISTINCT i a)
(DISTINCT c_1 c_2)
(EQ
MD
(upd MD1_5 (get MeM i)
(+ (get MD1_5 (get MeM i)) 2)

)
)
(EQ
MD1_5
(upd
MD1_4
(get MD1_4 (get MeM a))
(+ (get MD1_4 (get MD1_4 (get MeM a))) 2)

)
)
(EQ MD1_4 (upd MD1_3 (get MeM a) (get MeM i)))
(EQ (get MD1_2 c_2) |@undef|)
(EQ MD2_2 MD1_3)
(EQ MeM (upd MeM1_3 a c_2))
(EQ MeM1_3 (upd MeM1_2 i c_1))
(EQ MD1_3 (upd MD1_2 c_2 0))
(EQ (get MD1_1 c_1) |@undef|)
(EQ MD2_1 MD1_2)
(EQ MD1_2 (upd MD2_1 c_1 0))
(EQ
MeM1_2
(upd (upd MeM1_1 i |@undef|) a |@undef|)

)
)
(EQ val 4)

)

Here the member access function mb is already rewritten using the address
function MeM. The condition was automatically proven.

In the following sections, we omit the detailed presentation of verification
conditions focusing mainly on the challenges themselves.

98 A.V. Promsky

4.2. Breaking out of a loop

The exit from a loop without a loop condition check is usually performed
via a break statement (rarely, via goto). This complicates the underlying
control flow semantics.

As you know, the programming theorists consider the goto statement
harmful. However, for the Hoare logic, this statement is far better than
the statements break, continue or return. The treatment of goto in the
Hoare logic is based on the notion of the label invariant. The classical axiom
for goto is

{Inv(l)} goto l {false} ,

where Inv(l) is an assertion which is supposed to be true every time the
control reaches label l. The false postcondition means that the statement
directly after goto l is unreachable as long as the control is transferred to
another point.

However, there is no label for the break statement, so we cannot propose
an assertion as a precondition. Obviously, the semantics of break cannot
be defined without semantics of the enveloping loop statement (or switch).
This will complicate the semantics of both statements6.

Instead, we replace break by a jump to a new label just after the loop
body, so the reliable goto semantics can be applied.

The source C-light program looks like

int ia[] = {2, 3, 4, 5, -2, 4, 7};

void NegateFirst(int ia[], int Length) {
int i;
for (i = 0; i < Length; i++) {

if (ia[i] < 0) {
ia[i] = -ia[i];
break;

}
}

}

int main(void){
int Length = sizeof(ia)/sizeof(ia[0]), i;
NegateFirst(ia, Length);
return 0;

}

When the first negative element is reached, its sign changes and the loop
aborts.

6The situation with continue and return is the same.

The problems of C program verification 99

In [3] the authors vaguely described the reason why the corresponding
Java program was not verified in ESC/Java. In fact, the unconditional exit
from the loop together with a possible array modification leads to complex
specifications:

Pre(NF()) : ∃old : int[]. MD(ia) 6= null ∧MD(ia) = MD(old)

Post(NF()) : ∀i. (0 ≤ i ≤ MD(Length) =⇒
((MD(mb(old, i)) < 0 ∧ (∀j. 0 ≤ j < i ⇒

MD(mb(old, j)) ≥ 0)) ⇒
MD(mb(ia, i)) = −MD(mb(old, i))∧

old[i] ≥ 0 ⇒ MD(mb(ia, i)) = MD(mb(old, i)))

Inv(for) : 0 ≤ MD(i) ≤ MD(Length)∧
(∀j. 0 ≤ j < MD(i) ⇒

(MD(mb(ia, j)) ≥ 0∧
MD(mb(ia, j)) = MD(mb(old, j))) .

The original array content is stored in an auxiliary variable old.
The intermediate C-kernel program is as follows7:

static int ia[] = {2, 3, 4, 5, -2, 4, -7};

void NegateFirst(int ia[], int Length) {

auto int i;
i=0;
while(i < Length)
{

if (ia[i]<0)
{

ia[i] = -ia[i];
goto L;

}
auto int* q1;
q1 = &i;
*q1 = *q1 + 1;

}
L:;

}

int main(void){

7From here we omit the console output.

100 A.V. Promsky

auto int Length = sizeof(ia)/sizeof(ia[0]);
auto int i;
NegateFirst(ia, Length);
return 0;

}

Pay your attention to the replacement of i++ by manipulations over the new
pointer q1. Though such a translation seems redundant, when the increment
operation forms the complete expression statement, it is absolutely required,
when the value of i++ is used8. Moreover, this program is slightly optimized.
In a general case, the value of i++ should be kept in an additional variable.

Let us consider the verification conditions. The first condition corre-
sponds to the linear area from the beginning of NegateFirst to the entry
point of the loop, i.e. it establishes connection between the precondition
and the loop invariant:

Pre(MD)(MD ← MD1) ∧MD = upd(MD1, i, 0) ⇒ INV (MD)

As long as the Simplify prover natively supports arithmetics and arrays, the
proof of the verification conditions is straightforward.

4.3. The side-effects and logical operators

The main feature of the logical AND/OR operators in C is that evaluation
of the rightmost argument can be omitted depending on the value of the
first subexpression. This phenomenon must be accurately modeled in the
semantics. Such a modeling is simple in operational semantics but it is a
real challenge for the Hoare logic. The problem is intensified by possible
side-effects in the arguments. Thus, a complete rewriting of those operators
is inevitable. Consider the following program:

#include "stdbool.h"

_Bool b = true;
_Bool result1, result2;

_Bool f() {
b = !b;
return b;

}

int main(void){
result1 = f() || !f();

8For example, i++ as the controlling expression of a loop.

The problems of C program verification 101

result2 = !f() && f();
return 0;

}

The result is surprising for the logician: f()∨¬f() = false and ¬f()∧ f() =
true.

To get rid of logical operators, we use an ordinary if statement. The
C-kernel program looks like

static _Bool b = 1;
static _Bool result1;
static _Bool result2;

_Bool f() {
auto _Bool x1;
x1 = b;
if(x1) { b = 0; } else { b = 1; }
return b;

}

int main(void){
auto _Bool x1;
x1 = f();
if(x1) { result1 = 1; }
else
{

auto _Bool x2;
x2 = f();
if(x2) { result1 = 0; } else { result1 = 1; }

}
auto _Bool x3;
auto _Bool x4;
x4 = f();
if(x4) { x3 = 0; } else { x3 = 1; }
if(x3) { result2 = f(); } else { result2 = 0; }
return 0;

}

Note that we actively use auxiliary variables xi to store the intermediate
values. Our method includes an implicit preprocessing stage, so the integer
value 1 is used instead of the logical constant true.

Every occurrence of the conditional statement doubles the number of
verification conditions. The declarations of variables increase their length.
Let us omit them. It is sufficient to note that all of them proved true. The
details can be found in [8, 9].

102 A.V. Promsky

4.4. The function pointers

The problem with function pointers in the C language does not differ from
the challenge of virtual functions in Java [3] or delegates in C#. And again,
the reason is the limited power of Hoare logic. Since the axiomatic seman-
tics in fact represents the symbolic execution, it works well with the static
information but cannot handle all aspects of dynamic behavior. A function
pointer (virtual function/delegate) represents an interface to the set of func-
tions. In a general case, the Hoare logic cannot recognize which function is
actually invoked. So the quantifier over all appropriate functions should be
used to specify the generic functions.

It should be noted that the program below was not a part of the Java
program collection.

#include "stdio.h"

typedef _Bool (* Order)(int e1, int e2);

int Find(int arr[], int Length, Order ord){
int min = arr[0];
int xx = 0;
while(xx < Length){

if(ord(arr[xx], min)) min = arr[xx];
xx++;

}
return min;

}

_Bool LessThan(int e1, int e2) { return e1 < e2; }

int main(void){
int arr[] = {3, 5, 1, 7, 4}, found;
found = Find(arr, sizeof(arr)/sizeof(arr[0]), LessThan);
printf("%d\n", found);
return 0;

}

After the translation, we have the following:

typedef _Bool (* Order)(int e1, int e2);

int Find(int arr[], int Length, Order ord){
auto int min = arr[0];
auto int xx = 0;

The problems of C program verification 103

while(1){
auto int x1;
x1 = xx < Length;
if(x1){} else { break; }
auto int x2;
auto int x3;
x3 = arr[xx];
x2 = ord(x3, min);
if(x2) { min = arr[xx]; } else {};
auto int* q1;
auto int y1;
q1 = &xx;
y1 = *q1;
*q1 = *q1 + 1;
y1;

}
return min;

}

_Bool LessThan(int e1, int e2) {
auto int x1;
x1 = e1 < e2;
return x1;

}

int main(void){
auto int arr[] = {3, 5, 1, 7, 4};
auto int found;
auto int x1;
x1 = sizeof(arr)/sizeof(arr[0]);
found = Find(arr, x1, LessThan);
return 0;

}

The verification process for this example involves quantification over the
functions possibly pointed at by Order. Let us omit those cumbersome
verification conditions which were inferred by the Hoare logic. The details
of their proof can be found in [8, 9].

5. Conclusion

In this paper, we have described the two-level method of C-light program
verification and how it can handle some problematic features of procedural

104 A.V. Promsky

programming languages. The advantages of C-light and of the approach are
as follows:

• The C-light language covers the major part of C99.

• It has a complete formal semantics in the Plotkin style.

• The verification process is based on a simple Hoare-like logic. The
simplicity results from translation of semantically difficult C-light con-
structs into C-kernel.

• The formal operational semantics of C-light was used to guarantee the
soundness of axiomatic semantics and the correctness of translation
rules.

The two-level method seems to be promising for applications. The de-
velopment of an automatic verification tool will form the framework of fu-
ture activity. Possible applicability of our approach to verification of C
descendants (such as C++, Java, C#) also is worth mentioning. Another
interesting research is modification of the Hoare logic to simplify verification
conditions at the generation stage [7].

References

[1] Blazy S., Dargaye Z., Leroy X. Formal verification of a C compiler front-end //
Proc. FM 2006: 14th Int. Symp. on FormalMethods. — Lect. Notes Comput.
Sci. — 2006. — Vol. 4085. — P. 460-475.

[2] Hoare C.A.R. An axiomatic basis for computer programming // Communs.
ACM. — 1969. — Vol. 12, N 1. — P. 576–580.

[3] Jacobs B., Kiniry J.L., Warnier M. Java program verification challenges //
Proc. FMCO 2002. — Lect. Notes Comput. Sci. — 2003. — Vol. 2852. — P.
202–219.

[4] Nepomniaschy V.A., Anureev I.S., Mihailov I.N., Promsky A.V.Towards ver-
ification of C programs. C-Light language and its formal semantics // Pro-
gramming and Computer Software. — 2002. — Vol. 28(6). — P. 314–323.

[5] Nepomniaschy V.A., Anureev I.S., Promsky A.V. Towards verification of C
programs: Axiomatic semantics of the C-kernel language // Programming
and Computer Software. — 2003. — Vol. 29(6). — P. 338–350.

[6] Nepomniaschy V.A., Anureev I.S., Promsky A.V. Verification-oriented lan-
guage C-light and its structural operational semantics // Proc. of Conf. “Per-
spectives of System Informatics”. — Lect. Notes Comput. Sci. — 2003. — Vol.
2890. — P.1–5.

[7] Maryasov I.V. towards automatic verification of C-light programs. Mixed ax-
iomatic semantics of C-kernel language // Proc. Internat. Workshop on Pro-
gram Understanding, 19–23 June, Altai Mountains, Russia, 2009. — P. 44–52.

The problems of C program verification 105

[8] Promsky A.V. The C#-light project: solution of some verification challenges
// Bull. Novosibirsk Comp. Center. Ser.: Comput. Sci. — 2007. — Iss. 26. —
P. 111–132.

[9] Promsky A.V.Towards C-light program verification: Overcoming the obstacles
// Proc. Internat. Workshop on Program Understanding, 19–23 June, Altai
Mountains, Russia, 2009. — P. 53–63.

106

