
Bull. Nov. Comp.Center, Comp. Science, 31 (2010), 123–138
c© 2010 NCC Publisher

Error-tracing axiomatic semantics for C-kernel∗

A.V. Promsky

Abstract. The classical Hoare logic links separate verification conditions (VCs)
to linear paths of a program. The real verification condition generators (VCG)
link VCs to line numbers at best. It can be insufficient, since VCs contain infor-
mation neither about the evaluation order nor about correspondence between their
fragments and specific operations. Verification of complex programs is inevitably
confronted by difficulties of VC interpretation and error localization. This paper
describes an extension of axiomatic semantics of the C-kernel language. The ex-
tended calculus will be able to derive VCs accompanied with formal derivation
protocols useful in VC understanding and error tracing.

1. Introduction

The C programming language still holds the top positions in the popular-
ity rating of programming languages1. Thus the formal verification of C
programs is an actual problem.

The C program verification project, which is being developed in the The-
oretical programming laboratory of IIS, has a long history. The details can
be found in [6, 7, 10, 8]. The input language, known as C-light, represents
a considerable subset of the standard C99. The formal definition of C-light
was developed by means of the structural operational semantics. We also
have chosen a restricted core of C-light, known as C-kernel, and proposed a
sound axiomatic semantics for it. So, the verification process in our project
consists of two stages. On the first step, an annotated C-light program is
translated into an equivalent C-kernel program by means of formal rewriting
rules. Then, the axiomatic semantics is used to derive the VCs which must
be proved to establish correctness of the original C-light program. Two main
advantages of our approach can be mentioned. First, the two-stage technique
allows us to overcome many obstacles originating in the C low-level nature.
Second, correctness of each stage is formally proved.

Since the theoretical part of our approach is well-developed, we can con-
centrate on some practical problems. One of them concerns the error lo-
calization and interpretation of VCs. Usually, the Hoare axiomatic method

∗Partially supported by Lavrentiev’s grant “C program verification with efficient error
localization” from SB RAS.

1According to http://www.tiobe.com/index.php/content/paperinfo/tpci/ it com-
petes with Java for the 1st place.

124 A.V. Promsky

compares VCs to linear paths in a program. The falsity of a condition gives
warning of an error on the corresponding path (or in its specification), but
does not reveal the exact position of a bug. In addition, when we deal with
a language like C, the complexity of verification conditions grows consider-
ably. The automatic theorem provers can smooth over this problem during
the condition proof, but if a user tries to analyze such a condition, he can
reach a deadlock.

In order to overcome this obstacle, we applied a method presented in
paper [2] by Denney and Fischer. The idea consists in a systematic extension
of the Hoare rules by labels so that the calculus itself can be used to build
up explanations and traces of VCs. The purpose of this paper is to give an
overview of the Hoare logic of C-kernel enriched by the labeling technique.
The algorithms which render the labels according to various aspects of VC
analysis will also be discussed.

The rest of the paper is organized as follows: Section 2 briefly describes
the C-kernel language. An overview of the extended Hoare logic of C-kernel
is given in Section 3 together with label rendering methods. An example in
Section 4 illustrates this technique. Section 5 presents an overview of related
projects. Section 6 is a conclusion of the paper.

2. The C-kernel language

The C-kernel language imposes a set of severe restrictions on C-light. So,
let us briefly remind what is the C-light language2. Ultimately, the restric-
tions imposed by C-light on the standard C99 are divided into two groups.
First, we avoid the constructions whose semantics significantly relies on low-
level implementation information. For example, those include bit-fields and
unions. Second, we deliberately fix some undefined aspects of the C lan-
guage. For example, expressions are evaluated in the “right-to-left” order
and side effects take place immediately. We also restrict the use of some le-
gal C-light constructions avoiding programmers’ tricks, such as flexible array
members or gotos into blocks.

Declarations. The declarator lists in C-kernel are allowed in function dec-
larations only. Every other declaration introduces a single object.

The initializers of composite objects must be in a fully bracketed form.
The storage specifiers static and auto are mandatory.

Expressions. Every C-kernel expression different from a function call im-
plies at most one memory modification, i.e. only the function calls contain
multiple side effects.

The legal C-kernel operations are the following:
2Details can be found in [6, 9]

Error-tracing axiomatic semantics for C-kernel 125

1) primary: () [] . ->
2) unary: & * - sizeof
3) binary: * / % + - < > <= >= == !=
4) assignment: =
5) memory handling: new delete
7) type casts.

We traditionally use C++ memory operations in order to avoid references
to the standard library when semantics is discussed.

The base C-kernel expressions are normalized ones. They are built by
usual C rules involving only primary, unary, binary and type cast operations.
Thus, no memory change can take place in a normalized expression.

Let CV stand for constants and variable identifiers. Then, the syntax of
an arbitrary C-kernel expression looks like:

Expr ::= f(CV ,..., CV) | NExpr = f(CV ,..., CV) |
NExpr = new Type | NExpr = new Type [NExpr] |
delete NExpr | delete [] NExpr |
NExpr = NExpr

Statements. The legal C-kernel statements are as follows:

Stat ::= Expr; |
l: Stat | goto l; | return; | return NExpr; |
if (NExpr) Stat else Stat | while (NExpr) Stat |
{Stat . . .Stat}

As it was said above, the C-kernel language is an intermediate one, and
the user does not write in it explicitly. Instead, an input C-light program
is automatically translated into C-kernel. Let us consider an example which
will also be used in Section 4. The annotated C-light program looks like

void NegateFirst(int ia[], int Length) {
//@ pre ...
int i;
for (i = 0; i < Length; i++) {

//@ inv ...
if (ia[i] < 0) {

ia[i] = -ia[i];
break;

}
}
//@ post ...

}

126 A.V. Promsky

The annotations are irrelevant here, so we use abbreviations. The corre-
sponding C-kernel program is as follows:

1 void NegateFirst(int ia[], int Length) {
2 //@ pre ...
3 auto int i;
4 i=0;
5 while(i < Length){
6 //@ inv ...
7 if (ia[i]<0){
8 ia[i] = -ia[i];
9 goto L;
10 }
11 else {}
12 auto int* q1;
13 q1 = &i;
14 *q1 = *q1 + 1;
15 }
16 L:;
17 //@ post ...
18 }

In fact, the translation process does not add line numbers. Nevertheless,
we will need them later. Note that the for statement is replaced by the
while statement, the break statement is replaced by goto, and the postfix
increment i++ requires an additional pointer q1.

3. An extended Hoare logic for C-kernel

In theory, program verification is quite an easy process: a verification con-
dition generator (VCG) takes a program that is “marked-up” with logical
annotations and produces a number of VCs that are simplified, augmented
with a domain theory, and finally discharged by a theorem prover. In prac-
tice, however, many things can go wrong: the program may be incorrect or
unsafe, the annotations may be incorrect or incomplete, the simplifier may
be too weak, the domain theory may be incomplete, and the prover may run
out of resources. In each of these cases, users are typically confronted only
with failed VCs (i.e., the failure to prove them automatically) but receive
no additional information about the causes of the failure. They must thus
analyze the VCs, interpret their constituent parts, and relate them through
the applied Hoare rules and simplifications to the corresponding source code
locations. This is often difficult to achieve.

Using the idea from [2], we will extend the Hoare rules for the C-kernel
language [7, 9] by “semantic mark-up” so that we can use the calculus itself to

Error-tracing axiomatic semantics for C-kernel 127

build up explanations of the VCs. This mark-up takes the form of structured
labels that are attached to the formulas in the Hoare rules. The labels are
maintained through different processing steps, in particular simplification,
and are then extracted from the final VCs and rendered as natural language
explanations.

3.1. Preliminaries

Here we should remind important information about the underlying abstract
machine of C-light and general structure of Hoare rules.

Instead of the classical program state, which maps the program variable
names onto their possible values, we define a state as a map over meta-
variables. In turn, the meta-variables are higher level objects (functions and
Cartesian products) which model the abstract memory. Formally a state of
C-light abstract machine is a map over the following meta-variables: (1) the
metavariable MeM which maps the names of usual program variables onto
their memory addresses; (2) the metavariable MD which maps the program
object addresses onto their values; (3) the mapping Γ which retrieves the
types of program objects from their addresses; (4) the metavariable STD
which handles the typedefs and structure tags; (5) the metavariable Val
which contains the value of the last evaluated expression.

Such a complex state is a for low-level nature of the C language. It allows
us to handle local variable redefinitions or aliasing.

A typical Hoare triple for C-kernel looks like

Env ° {P} S {Q} ,

where P and Q are (labeled) pre- and postcondition, respectively, S is a legal
C-kernel program, and environment Env is a triple 〈cf, nl, IAx〉. Here, cf
is the name of a current function (it will be used in semantics of return).
A nonnegative integer nl corresponds to a current nesting level. Finally, a
set of Hoare triples IAx denotes the inductive hypotheses (the semantics of
goto and function calls relies greatly on it). We will use the superscripts
Envi to access the environment components.

Note. Usually, a program S is represented as source strings, not a syntax
tree. The line numbers are retrieved by a VCG that implements the Hoare
logic. For clarity, we also use a traditional notation. As a result, it may
seem that the line numbers appear magically in the semantic labels.

3.2. Concepts and labels

Here we focus on error localization and VC understanding. While the er-
ror tracing idea is obvious (file names, line numbers and, ideally, source
columns), the explanation of a VC requires understanding of the role it can

128 A.V. Promsky

play. The first approximation appears if we recall that, after simplification,
VCs usually look like Horn clauses, i.e. H1 ∧ . . . ∧ Hn ⇒ C. Here, the
unique conclusion C of the VC can be considered as its purpose. However,
for a meaningful explanation of the VC structure, we need a more detailed
characterization of the sub-formulas.

Concepts. The basic information for explanation generation is a set of
underlying concepts, which depends on the particular aspect of the VCs to
be explained.

Hypotheses consist of assertions and control flow predicates. Assertions
include pre- and post-conditions (labels asm_pre and asm_post), function
pre- and post-conditions (asm_fpre and asm_fpost), and loop invariants.
Since a loop invariant serves as a hypothesis in two different positions, we
distinguish asm_inv and ass_inv_exit. Control flow predicates reflect the
program control flow. For both if statement and while loop, the controlling
expressions occurring in a program are required in both their original and
negated forms, so that we get four different concepts: then, else, while_t,
and while_f.

Conclusions capture the primary purpose of a VC, which includes ensur-
ing that different types of assertions hold at given locations. As in the case
of hypotheses, invariants are used in two different forms, the entry form (or
base case) ens_inv and the step form ens_inv_iter.

Qualifiers further characterize hypotheses and conclusions by recording
how a sub-formula was produced. Different substitution concepts reflect
substitutions of the underlying Hoare calculus. The assignment concept sub
captures the origin and the effect of assignments and array updates on the
form of the resulting VCs.

Contributors capture the secondary purpose of a VC; this arises when a
recursive call of VCG (applied to a nested program structure) produces VCs
that are conceptually connected to the purpose of the larger structure. For
example, all VCs emerging from the premise {I ∧ e} S {I} of the classical
while-rule contribute to the proof of preservation of the invariant I over the
loop body S independent of their primary purpose.

Note. In our project, we have chosen ACSL as a specification language.
That is why, comparing with [2], we use the words “assumes” and “ensures”
in the concepts instead of “asserts” and “establishes”.

Labels. We will use notation from [2] to derive labeled terms dtel , where
each term t can be marked with a label l. Labels will have the form c(o, n).
Here the concept c describes the role the labeled term plays and thus deter-
mines how it is rendered. The location o records where it originates; it refers
either to an individual line number or to a range. The optional list of labels
n nested inside contains further qualifying information which applies either

Error-tracing axiomatic semantics for C-kernel 129

directly to the top-level term, or has been extracted from sub-terms during
normalization and extraction.

Note. This notion of a label can be confusing when a usual C label
arises. It was not a problem in [2], where a language without labels was
examined. We hope that a reader can distinguish between these semantic
labelings and program labels depending on the context.

3.3. Extended Hoare rules

When the deductive verification is studied, an interesting question arises.
Most Hoare systems presented in papers do not contain any rule for a pro-
gram as a whole (which is called a compilation unit in C). In rare cases,
simple programs à la Pascal were examined. The reason is obvious: if we do
not model an operating system, it is not clear what should be a Hoare triple
for the entire program. In fact, such rules are hidden in VCGs implementing
the corresponding Hoare systems.

However, in the context of VCs explanation such a semi-formal rule de-
serves our attention. Let F denote a function definition. Let D stand for
an arbitrary external nonfunctional declaration. A C-kernel program is a
sequence of such Fi and Dj accompanied by the function main:

P(D1, ..., Dn, F1, ..., Fm, main) .

We assume that subscripts of the declarations Di correspond to their relative
positions within the program. Let Hyp stand for the following set:

{
{pre(Fi)} name(Fi)(vi) {post(Fi)}

∣∣∣ i = 1, ...,m
}

,

where vi is the parameter list of Fi. Then the starting rule looks like

(name(F1), 1,Hyp) ° {dpre(F1)easm_pre} body(F1) {dpost(F1)eens_post}
. . .

(name(Fm), 1,Hyp) ° {dpre(Fm)easm_pre} body(Fm) {dpost(Fm)eens_post}
(main, 1,Hyp) ° {dpre(main)} body(main) {dpost(main)eens_post}

(∅, 0, ∅) ° {true} D1 ... Dn {dpre(main)eens_pre}
P(D1, ..., Dn, F1, ..., Fm, main)

Thus, this rule reduces verification of the entire program to verification of its
separate functions and forms the set of inductive hypotheses Hyp to handle
the function calls. Note that verification of each function starts with the
nesting level equal to one. The last Hoare triple in the premise guarantees
that execution of external declarations Di precedes the execution of main.

It is the first time when semantic labeling appears in a rule. The labels
reflect the purpose of each sub-formula: pre-conditions are assumed to hold
at the beginning and post-condition must be ensured.

130 A.V. Promsky

Consequence rule. The extended version of this standard rule looks like:

dP easm_pre ⇒ P1 Env ° {P1} S {dQ1
eens_post} dQ1

easm_post ⇒ Q

Env ° {dP eens_pre} S {Q} .

As you can see, we must ensure that Q1 is an intermediate post-condition
and also serves as an assumption for Q.

Declaration statement. In order to avoid unnecessary multiplication of
rules, we use a generic Hoare rule, where a special function HDec performs
the case analysis:

Env ° {HDec(Q,Decl)} Decl {Q} .

The volume of the paper does not allow us to show HDec for every legal C-
kernel declaration (see [7, 9] for details). Let us consider the declaration of a
global integer variable and the declaration of a local array with initialization:

HDec(Q, static int v;) =
Q (MeM ← dupd(MeM, (v, Env2), nc)ealloc)

(MD ← dupd(MD, nc, 0)einit)
(Γ ← upd(Γ, nc, int))

HDec(Q, T a[n] = { l0, ..., lk}) =
Q (MeM ← dupd(MeM, Env2, a, nc)ealloc)
. . . (MD ← dupd(MD, (nc, i), li)einit) . . .
. . . (MD ← dupd(MD, (nc, j), ω)einit) . . .
(Γ ← upd(Γ, (nc, l), T))

where 0 ≤ i ≤ k, k + 1 ≤ j ≤ n− 1.

So, when the control flow reaches a static variable declaration, the meta-
variable MeM allocates a new address nc for the variable v. The meta-
variable MD assigns the default zero to this new object and meta-variable Γ
sets its type to int. In the case of an array, in addition to nc we have a set
of offset locations (nc,∆). Depending on initializer, some elements obtain
the initial values li and some elements remain undefined (ω).

Expression statement. By analogy with declarations, we use a universal
function (here, Upd) to combine all legal expressions (except for function
calls) in a single rule:

Env ° {Upd(Q,Expn)} Expr {Q} .

A fragment of Upd definition is as follows:

Error-tracing axiomatic semantics for C-kernel 131

Upd(Q, a[i] = rval;) =
Q (MD ← dupd(MD, (MeM(a, Env2), i), rval)eupd);

Upd(Q, lval = rval;) =
Q (MD ← dupd(MD, (MeM(lval, Env2), 0), rval)easgn);

Upd(Q, lval = new T;) =
Q (MD ← dupd(MD, (MeM(lval, Env2)), nc)ealloc)(Γ ← upd(Γ, nc, T));

Upd(Q, delete ptr;) = Q(MD ← dupd(MD, MeM(ptr, Env2), ω)efree).

Note that the label upd signals about the array update, not about the meta-
variable MD modification.

We use a separate rule, when the result of a function call is assigned to
a variable. Let x stand for the formal parameter list of f and e denote an
actual argument list. Given that z is a fresh name (i.e., not occurring in the
program and specifications), the rule looks like3

dP easm_pre ⇒ d
(dP ′α ∧ (Q′γ(Val← z))eens_specs ⇒ Qγβδ)

ecall

Env ° {P} lval = f(e); {Q} ,

provided that for some P ′ and Q′ {P ′} f(x) {Q′} ∈ Env3. The substitutions
α, β, γ, δ are as follows:
α = (MeM← SI(MeM,MD, Env2, x));
β = (MeMγ ← MeM);
δ = (MD← upd(MD,MeM(lval, Env2), z));
γ changes all logical variables from P ′ and Q′ with fresh names.

The function SI (Stack Initialization, see [9]) creates a new scope for the
function parameters temporarily forbidding access to other local objects.
The variable renaming allows us to avoid universal quantification on the
local level.

The C language does not distinguish between functions and procedures.
The procedures are functions returning void. Thus, the only difference in
the following rule is that no substitution into Val takes place:

dP easm_pre ⇒ d
(dP ′α ∧Q′γeens_specs ⇒ Qγβ)

ecall

Env ° {P} f(e); {Q} ,

provided that for some P ′ and Q′ {P ′} f(x) {Q′} ∈ Env3.

3Let us restrict the presentation with a simple assignment case.

132 A.V. Promsky

Composition. The classical Hoare rule for composition turns unsound in
the presence of jumps. To avoid this, the composing parts should be re-
stricted. Thus, in the following rule, we explicitly assume that neither S1

nor S2 contains labeled statements on the uppermost nesting level:

Env ° {P} S1 {dReens_post} Env ° {dReasm_pre} S2 {Q}
Env ° {P} S1 S2 {Q} . (∗)

Considering that jumps into blocks are forbidden in C-light, this requirement
guarantees that no jump from S1 into S2 or from S2 into S1 can take place.
Of course, even a single label in the C-kernel program will make this rule
useless. As we will see later, the Hoare rule for labeled statements will
provide its successful applicability.

Compound statement. The rule for blocks should accurately model the
corresponding stack manipulations:

Env(nl ← nl + 1) ° {P} Statements {Q′}
Env ° {P} {Statements} {Q} , (∗∗)

where Q′ = Q(MeM ← Reduce(MeM, n))(Γ ← Reduce(Γ, n)). The function
Reduce guarantees that all local objects become inaccessible when we leave
a block [9]. Except for forming a nesting scope, the compound statement
does not change the control flow at all. Neither does it involve any exterior
logical assertions. Thus, no semantic labeling is required.

Labels. As we already mentioned, the restrictions in the rule (∗) guarantee
the absence of interference between S1 and S2. On the other hand, it also
means that we cannot prove a Hoare triple unless all labels are found and
excluded. Fortunately, since jumps into blocks are banned in C-light, we do
not need to look for all program labels. Given a statement sequence, it is
sufficient to handle all labels on the uppermost nesting level of this sequence.
The following rule performs this task:

Env1 ° {P} S0 {dI1
eens_inv} Env1 ° {dI1

easm_inv} S1 {dI2
eens_inv}

. . .

Env1 ° {dIn
easm_inv} Sn {R} Env1 ° {R} Sn+1 {Q}

Env ° {P} S0 l1: S1 . . . ln: Sn Sn+1 {Q} ,

where Env3
1 = Env3 ∪

{({Ii} goto li; {false}, Env2
) ∣∣∣ i = 1, . . . , n

}
and

the nesting level of every li is equal to Env2. Thus, we assume that for every
label li there exists an assertion Ii which holds whenever control reaches li.
The set of inductive hypotheses of the form {Ii} goto li; {false} is used to
handle the corresponding gotos.

Error-tracing axiomatic semantics for C-kernel 133

Conditional statement. Among other things, the rule should reflect that,
in C, the if statement forms a scope, so the nesting level is incremented:

Env(nl ← nl + 1) ° {P ∧ dEval(e)ethen} S1 {Q}
Env(nl ← nl + 1) ° {P ∧ d¬Eval(e)eelse} S2 {Q}

Env ° {P} if (e) S1 else S2 {Q} .

The evaluating function Eval is defined in [7] by induction over the structure
of the expression e. For example, if e is a variable name x and the declaration
of x belongs to the nesting level m, then Eval(e) = MD(MeM(x, m)).

Loops. The semantics of while is defined using an intermediate form:

Env ° {P} { loop(e, S) } {Q}
Env ° {P} while (e) { S } {Q} .

Conceptually, loop means the same: “do something while a condition is
true”. However, it does not form a scope, whereas the while statement does.
Thus, we avoid unnecessary complication in the rule4. In turn, the semantic
of loop is based on a classical Hoare rule:

Env ° d{dIeasm_inv ∧d Eval(e)ewhile_t} S {dIeens_inv_iter}epres_inv

Env ° {dIeens_inv} loop(e, S) {dIeasm_inv_exit ∧ d¬Eval(e)ewhile_f} .

The labeling reflects the rule meaning. The invariant should be ensured at
the loop entry and is thus labeled with ens_inv. Individual sub-formulas of
both the exit-condition I ∧ ¬Eval(e) and the step-condition I ∧ Eval(e) are
labeled appropriately. In the triple of the premise, the incoming postcondi-
tion I is labeled with its purpose (i.e., the invariant is reinsured to hold after
one loop iteration). Finally, the purpose of all VCs emerging from the loop
body is to contribute to invariant preservation. That is why we labeled the
entire triple with pres_inv.

Jumps. As long as the inductive hypotheses for program labels are gathered
by the rule above, the Hoare rule for the goto statement is straightforward:

Env ° {dBR(I, m, Env2)eens_inv} goto l; {false} ,

provided that for some assertion I and nesting level m
({I} goto l; {false},m) ∈ Env3 .

Function BR (BigReduce) is a generalized form of Reduce mentioned in
(∗∗). Obviously, performing a jump, we can leave several nesting blocks.
The successive application of Reduce is implemented by definition:

4Note the explicit braces in the premise.

134 A.V. Promsky

BE(Φ,m, n) ={
Φ, if m = n,

BR(Φ(Reduce(MeM, n)/MeM, Reduce(Γ, n)/Γ),m, n− 1), if m < n.

By analogy, we can formalize the return statement:

Env ° {dBR(Q(Val ← Eval(e)), 1, Env2)eens_post} return e; {false} ,

provided that for some assertion Q {Q} return; {false} ∈ Env3. When
nothing is returned, the substitution into Val is empty.

3.4. Rewriting and rendering

VCs (labeled or unlabeled) become complex and need to be simplified ag-
gressively before they can be proven. The purpose of the rewriting stage is
to remove redundant labels, to minimize the scope of the remaining labels,
and to keep enough labels to explain any unexpected failures, based on the
assumption that the majority of VCs can be rewritten to true.

We use the auxiliary functions | · | to remove labels from terms, and [[·]]
to extract the labels of a term. [[·]] is defined by

[[df(t1, ..., tn)el]] = l ⊗ ([[t1]]⊕ ...⊕ [[tn]])
[[f(t1, ..., tn)]] = [[t1]]⊕ ...⊕ [[tn]]

where ⊕ is list concatenation and the label composition operator ⊗ appends
the inner labels to the list of labels nested in the outer label, i.e., c(o, n)⊗l =
c(o, n⊕ l).

As in [2], the rewriting rules fall into several different groups. The first
group contains rules such as dtrueel → true that remove labels from the
trivially true sub-formulas, because these require no explanations. The next
group consists of rules such as dfalseel ∨ P → P that selectively remove
the trivially false labeled sub-formulas. The rules dP ∧ Qel → dP el ∧d Qel

and P ⇒ dQ ⇒ Rel → P ∧ dQel ⇒ dRel comprise the third group; they
distribute labels over conjunction and (nested) implication, respectively, so
that the label scopes are minimized in the final simplified VCs. The last
group encodes knowledge about how the labels will be interpreted in the
underlying domain. This group also contains an unnesting rule

ddtem
en →

dten⊗m that lifts nested labels to the top term, and so enables other rules
to be applied, but keeps the nesting structure on the labels. This ensures
that qualifiers remain nested properly and applied to the originally qualified
term.

Error-tracing axiomatic semantics for C-kernel 135

Rendering. We define the underlying structure and actual textual repre-
sentation of explanations via a set of rules, where the right-hand side of each
rule is an explanation template. These templates provide easy customization
and fine-grained control of textual explanations.

The final generation of actual explanations, i.e., turning the (labeled)
VCs into a human-readable text, is called rendering. It is independent of
the actual aspect that is explained and can thus be reused. It relies on the
building blocks described so far and comprises four steps: (1) VC normal-
ization using the labeled rewrite system; (2) label extraction using [[·]]; (3)
label normalization to fit the labels to the explanation templates; (4) text
generation using the explanation templates.

The renderer contains code to interpret the templates and some glue code
(e.g., sorting label lists by line numbers) that is spliced in to support the
text generation.

At the moment, the collection of explanation templates is being imple-
mented using the ML language.

In the conclusion of this section, we should note that the variety of ex-
planatory concepts is not restricted to those presented here. Various aspects
of VCs can be examined and various analysis methods are used in practical
verification. For example, in [2] a safety property was also considered, thus
introducing appropriate labels.

4. Case study

Let us consider the C-kernel variant of the function NegateFirst on page
126. Its annotations look like

pre : ∃old : int[]. MD(MeM(ia)) 6= null ∧MD(MeM(ia)) = MD(MeM(old))

post: ∀i. (0 ≤ i ≤ MD(Length) =⇒
((MD(MeM(old, i)) < 0 ∧ (∀j. 0 ≤ j < i ⇒ MD(MeM(old, j)) ≥ 0)) ⇒

MD(MeM(ia, i)) = −MD(MeM(old, i))∧
old[i] ≥ 0 ⇒ MD(MeM(ia, i)) = MD(MeM(old, i)))

inv : 0 ≤ MD(i) ≤ MD(Length)∧
(∀j. 0 ≤ j < MD(i) ⇒

(MD(MeM(ia, j)) ≥ 0 ∧MD(MeM(ia, j)) = MD(MeM(old, j))) .

Obviously, they reflect the fact that NegateFirst searches for the first neg-
ative element in an array, changes its sign and exits. The original array
content is stored in the auxiliary variable old.

The VCG produces five VCs and one trivially true Hoare triple. The
comments about their successful proof in Simplify and Z3 can be found in

136 A.V. Promsky

[10]. Here we focus on explanations. Even the shortest VC can be hard to
comprehend. This VC corresponds to the path from the function entry point
up to the loop entry point. Its labeled form is



dpre(MeM ← MeM1)(MD ← MD1)easm_pre(2) ∧
dMeM = upd(MeM1, (i, 1), nc)ealloc(3) ∧
dMD2 = upd(MD1, nc, ω)einit(3) ∧
dMD = upd(MD2,MeM(i, 1), 0)easgn(4)


 ⇒ dinveens_inv(6) .

For clarity, we kept the pre-condition and loop invariant in their symbolic
form. The reader can substitute them with real formulas to estimate the
volume of the final VC. What does this formula mean? What role does it
play in the verification process? To answer these questions, we use our label
rendering methods which produce the following explanation:

This VC corresponds to lines 2–6 in the function NegateFirst.
Its purpose is to ensure that the loop invariant at line 6 holds
at the loop entry point. Hence, given

- assumption that function precondition holds at line 2,
- substitution for MeM originating in object allocation
at line 3,

- substitution for MD originating in object initialization
at line 3,

- substitution for MD originating in assignment at line 4,
show that the loop invariant at line 6 holds at the loop entry
point at line 5.

We hope that this explanation (written in a natural language) can actually
help in VC understanding or error localization if something goes wrong.

5. Related work

Let us note here two C program verification projects which are ideologically
similar to ours. First, a promising approach is proposed within the frame-
work of INRIA project WHY [3]. In fact, WHY is a platform appropriate
to verification of many imperative languages. An intermediate language of
the same name WHY is defined, and the input programs are translated into
it. This translation is aimed at generation of VCs independent of theorem
provers. The WHY platform serves as a base for the toolset Frama-C that
provides static analysis and deductive verification. Unsupported C features
include arbitrary gotos, function pointers, arbitrary casts, unions, variadic
functions, floating point computations. The verified program list includes
rather simple programs (mainly in the field of search and sorting).

Second, the VCC (A Verifier for Concurrent C) project is being developed
in Microsoft Research [1]. Programs are translated into logical formulas using
a tool Boogie which combines an intermediate language Boogie PL and VC

Error-tracing axiomatic semantics for C-kernel 137

generator. VCs are validated in SMT solver Z3. Boogie PL is not limited to
the C language support only. For example, it is used in the Spec# project.
However, translation into a different language could be a disadvantage since
no correctness proof was presented5. At the moment, the VCC developers
are focused on verification of the Hyper-V hypervisor, so the information
about other case studies is poor.

Besides these two projects, there are many other researches dedicated to
C program verification. A more extensive review can be found in [9, 10].
On the contrary, the works concerning VC understanding and formal error
tracing are not numerous. Here we can mention the following three. First,
the INRIA project Centaur [4]. The generated VCs were analyzed in search
of the initial conditional expressions which were used in the if statements
and loops. This search involves some algorithms from the program debugging
field. The language under study was quite simple.

A more recent study [2] has inspired greatly this paper. Denney and
Fischer extended the Hoare rules by labels to build up explanations of VCs.
The labels are maintained through different processing steps and rendered as
natural language explanations. The explanations can easily be customized
and can capture different aspects of VCs; the authors focused on labelings
that explain their structure and purpose. The approach is fully declarative
and the generated explanations are based only on analysis of labels rather
than directly on the logical meaning of the underlying VCs or their proofs.
The research was focused on simple languages, appropriate for automatic
code generation.

Finally, Leino et al. [5] also extend an underlying logic with labels to rep-
resent explanatory semantic information, but their use of labels is different.
Labels are introduced when the language is “desugared” into a lower-level
form. This labeled language is then processed by a standard “label-blind”
VCG. The authors use explanations for traces to safety conditions. This is
sufficient for program debugging, which is their main motivation.

6. Conclusions and future work

Most verification systems based on the Hoare logic offer some basic tracing
support by emitting the current line number whenever a VC is constructed.
However, this does not provide any information as to which other parts of
the program have contributed to the VC, how it has been constructed, or
what is its purpose, and is therefore insufficient as a basis for informative
explanations.

This paper is a first attempt to combine the tracing and explanatory
techniques in our C program verification project. The Hoare logic of the C-
kernel language has already displayed its theoretic soundness and practical

5The same is true for the WHY project.

138 A.V. Promsky

reliability. Some programs with challenging features of C, such as aliasing,
side effects and control transfer were successfully verified. Now it is being
extended by labeling techniques in a formal way. The extended calculus will
provide a user with information necessary to understand VCs and to find
potential errors.

Obviously, this method concerns only the intermediate C-kernel stage of
our two-level approach. Since the initial C-light programs are translated
into C-kernel, the opposite translation of traces and explanations should be
implemented. A uniform modeling approach proposed recently in [8] looks
promising in this future work.

References

[1] Cohen E., Dahlweid M., Hillebrand M.A., Leinenbach D., Moskal M., Santen
T., Schulte W., Tobies S. VCC: A Practical System for Verifying Concurrent
C // Proc. TPHOLs 2009. – Lect. Notes Comput. Sci. – 2009. – Vol. 5674. –
P. 23–42.

[2] Denney E., Fischer B. Explaining Verification Conditions // Proc. AMAST
2008. – Lect. Notes Comput. Sci. – 2008. – Vol. 5140. – P. 145–159.

[3] Filliâtre J.C., Marché C. Multi-prover verification of C programs // Proc.
ICFEM 2004. – Lect. Notes Comput. Sci. – 2004. – Vol. 3308. – P. 15–29.

[4] Fraer R. Tracing the origins of verification conditions. – Rocquencourt, 1996.
– 17 p. – (Rapp. / INRIA; No. 2840).

[5] Leino K.R.M., Millstein T., Saxe J.B. Generating error traces from verification
condition counterexamples // Science of Computer Programming. – 2005. –
Vol. 55, No. 1–3. – P. 209–226.

[6] Nepomniaschy V.A., Anureev I.S., Mikhailov I.N., Promsky A.V. Towards
verification of C programs. C-Light language and its formal semantics // Pro-
gramming and Computer Software. – 2002. – Vol. 28(6). – P. 314–323.

[7] Nepomniaschy V.A., Anureev I.S., Promsky A.V. Towards verification of C
programs: Axiomatic semantics of the C-kernel language // Programming
and Computer Software. – 2003. – Vol. 29(6). – P. 338–350.

[8] Nepomniaschy V.A., Anureev I.S., Atuchin M.M., Maryasov I.V., Petrov A.A.,
Promsky A.V. SPECTRUM-2: C program analysis and verificaion system //
Proc. PSSV-2010, 14-15 June, Kazan, Russia, 2010. – P. 76–81. (In Russian)

[9] Promsky A.V. Formal semantics of C-light programs and their verification in
Hoare logic / Ph.D thesis. – Novosibirsk, 2004. – 175 p. (In Russian)

[10] Promsky A.V. Towards C-light program verification: Overcoming the obstacles
// Proc. PU-2009, 19–23 June, Altai Mountains, Russia, 2009. – P. 53–63.

