
Bull. Nov. Comp.Center, Comp. Science, 33 (2012), 59–68
c© 2012 NCC Publisher

Construction and simulation of Petri nets
in the WinALT∗

S.V. Piskunov , M. Ostapkevich

Introduction

Petri nets [1] are a research tool for systems consisting of interacting compo-
nents. Petri nets are the most interesting in that they allow representation
and studying the behavior of evolving parallel processes in a program or in a
discrete device. Petri nets are used to describe an asynchronous composition
of fine-grained algorithms [2, 3]. To this end a sample model of a Petri net
based on a parallel flowchart [2, 3] is created in the form of a parallel sub-
stitution algorithm (PSA) [4]. A set of cells associated with places within a
net is transformed by such an algorithm. Parallel substitutions are associ-
ated with transitions within a network. Each such substitution transforms
the states of the cells that are set in correspondence with input and output
places of the transition that is set. The resulting algorithm can be used to
build a network of automata, on which is a control device for the operators
included in the composition [2,4]. This transforms a Petri net into a working
system, for example, a control unit of a special-purpose processor.

The WinALT system [5–7] can be used for the construction and research
into the simulation models of such compositions on the computer. The
distributive of the system and a collection of simulation models are available
at the site [8]. The language of the system describes fine-grain structures
and algorithms. It is based on the PSA. A cellular array is the main data
object in the system. Its graphic image on the screen, for example, in a two-
dimensional case is a rectangle of any finite size, composed of colored cells
located along the vertical and horizontal axes. A color is a certain reflection
of the state of a cell.

The objective of this paper is to describe the information technology
for the representation of a Petri net in its conventional graphic form for
the user within a flat cellular array. This technology allows user to observe
transitions of markers between cells that correspond to places in a Petri
net. The transformation of the states of such cells is performed by a model
program that simulates the behavior of a Petri net.

∗Supported by RAS under Grant 14.6.



60 S.V. Piskunov, M. Ostapkevich

1. Overview of the WinALT simulating system

The WinALT system was built and is being developed as a free access soft-
ware suite. The software suite has an open architecture. New modules,
which are dll files in Windows, can be added. These modules form libraries
in the WinALT suite.

Another important feature of the system is that it is built as a system
of visual programming. This means that it has a graphic mode providing
developed tools of visual construction and debugging of simulation models.
A simulation model is represented by a project in the system. The system
main window contains sheets of the two kinds. The sheets of the first kind
(kept in files with .3do extension) contain graphical objects–– cellular arrays,
templates of parallel substitutions. The second kind (kept in files with .src
extension) is for simulation programs. Creating and editing graphic objects
are performed by using menus, toolbars and dialogs activated by them.
The dialogs have a recognizable appearance for the Windows users. Texts
of simulation programs are created and edited with a text editor, whose
functions are similar to those of a standard editor such as MS NotePad.

2. Constructing Petri nets in the WinALT

Let us describe two versions of constructing the Petri nets. The first one is
fully based on using only graphic tools of the system. The second one uses
external (as related to the WinALT) software tools as well.

2.1. The first version of constructing Petri nets. An example of a
Petri net for constructing a representation as a cellular array in the WinALT
is taken from [2]. The network is shown in Figure 1.

Figure 1. A source Petri net



Construction and simulation of Petri nets in the WinALT 61

Step 1. A flat cellular array with dimensions that according to the user’s
estimation are adequate to store graphic image of a Petri net is constructed.
The array is created using the dialog Create Object. The type and the
name of the cellular array, its size by the coordinate axes, its position on
the sheet are set in this dialog.

Remark 1. If in the process of designing a network it happens that the
size of the array is not sufficient for the user, one can always adjust it using
the dialogs Add layer(s), Remove layer(s) from menu Edit. These tools
let the user add or remove a specified number of rows, columns or layers of
cells of the array.

Step 2. A graphic image of a Petri net is painted just the same way as
source data entering a cellular array. To assign a value into a cell of an
array, one has to select this array by the dashed frame by pressing Magic
Wand, and then using the mouse to move the input focus (denoted by a
contrasting frame around the cell within the focus) to the cell that has to
be edited. Then the dialog Set Cell is to be called and the cell name and
value have to be set in it. By selecting a value, one sets the color of a cell
on the screen. It is up to the user to decide which primitives are to be used
to compose a net. For example, let us consider the following case. The
gray rectangular areas with cells of size 2× 7 denote a transition in graphic
image of a net, while squares of size 3× 3 composed of gray, dark gray and
black cells (except for central white cell) correspond to a place in a net. The
places and transitions, connected by directed arcs, which are gray lines with
a one-cell thickness, arrows are denoted by dark gray cells. The cellular
array NET01 containing a Petri net image composed of color cells is depicted
in Figure 2. In order to avoid the ambiguity in the subsequent discussion,
let us assume that an image is located in the sheet NET1.3do of the project
PetriNetConv.wap.

Remark 2. Tools of the WinALT system allow to improve the visibility of
an image of a network. One can assign a name for a place or for a transition
into a cell or write a context comment associated with a cellular array.

After completion of the two above steps we have obtained only a picture
of a Petri net in a cellular array. And now we have to extract cells that set in
correspondence with places in a net in order to build an algorithm of the net
functioning. The structure of the WinALT called virtual array can be used
to accomplish this task. Any subarray of a cellular array can be declared as
a virtual array. Such an array can be used independent of its parent array in
the language operators in the WinALT. But the results of transformations
performed in a virtual array are always reflected in its parent array as well.



62 S.V. Piskunov, M. Ostapkevich

Figure 2. An image of a Petri net in the cellular array NET01

The construction of virtual arrays can be done via Virtual menu item. Its
subitems provide operations for its constructing within a specified parent
array, its deleting, showing and hiding its location in its parent array.

Step 3. Each cell with a place name is declared as a unicellular virtual
array. As the notion of a virtual array is the principal one when describing
the Petri net functioning, let us discuss the procedure of its construction in
greater detail. The tools for its construction are depicted in Figure 3.

Figure 3. The tools for constructing
virtual arrays

Clicking Extract item in
Virtual menu activates the dialog
Create Virtual Object. One has
to determine the coordinates of the
future virtual array in its parent
array before the actual use of this
dialog. For example, let the input
focus be in the cell named p1 (see
Figures 1, 2). The coordinates
of the cell in the focus are shown
on the status line of the WinALT

main window (Figure 4). The first coordinate corresponds to the horizontal
axis (X), the second one is for the vertical one (Y ), while the last one is for
the axis that goes to the screen (Z).

Figure 4. Showing coordinates (57, 6, 0) of the cell named p1 on the status line



Construction and simulation of Petri nets in the WinALT 63

Figure 5. A set of unicellular ar-
rays in correspondence with the po-
sitions in a Petri net

These coordinates are introduced into From Position fields of the dia-
log. As an array should to contain only one cell, all its dimensions are set
to one. A name is assigned to the array. Here it is selected so as to coincide
with that of a net place. The virtual array is extracted from its parent ar-
ray and placed in the sheet NET1.3do. The unicellular arrays presented in
Figure 5 are the result of the above procedure.

So, as a result of the procedure execution, we have obtained a cellular
array which represents a Petri net in a user-friendly form and is the parent
array containing virtual arrays that is set in correspondence with places
in the Petri nets. These are only the states of these unicellular arrays,
representing the presence or absence of markers, that are changed by the
modeling program simulating the behavior of Petri nets. Simultaneously, all
these changes are visible in the parent array.

2.2. The second version of the Petri net construction procedure.
This version is interesting because it allows the user exploiting an external
graphic editor for constructing a graphic image of a Petri net in the WinALT.
Such external editors provide considerably more tools for image editing in
comparison with what the WinALT does. Using them in combination with
the WinALT extends its potential and attractiveness for the user. Let us
select MS Paint as image editor.

The library of data formats [6, 7] was created by the developers of the
system and is available in it. It includes a set of external modules that
support certain subformats of bmp format. Images in these subformats can
be used as ordinary cellular arrays in the WinALT. For example, the external
module bmp256u.od provides the support for the subformat of images with
256 colors. With its help, image pixels turn into cells and their color codes
become values of these cells. These cell values can be retrieved, modified.
The cells can be used in parallel substitutions, i.e. using of bmp format does
not essentially differ from using other formats available in the WinALT.
The resulting cellular array has image:: prefix in a sheet with graphical
objects. However, the nature of a raster image imposes certain limitations
on corresponding cellular arrays. First, one cannot create a cellular array
with more than one layer (the size by Z axis is 1). Second, the cells can
only have integer values in the range from 0 to 255 and cannot have names.
Of course, all these limitations can be overcome if needed, as the image cells
can be copied into an object of another kind that permits multiple layers



64 S.V. Piskunov, M. Ostapkevich

and cell naming. All the modules of the data format support are written
in C and are available in the source texts. The sources are quite small and
well commented, thus permitting the user to implement a support for own
formats on their basis and to include them into the library of data formats.

Step 1. It substitutes Steps 1 and 2 of the previous procedure. A graphic
image of a Petri net is created using MS Paint and saved into the directory
of the Petri net model as a bmp file with 256 colors.

Step 2. This step coincides with the third step of the previous procedure.

Let us mention a possibility of using an external editor, which is often
useful. In the case when an image of Petri net is available as a figure in

Figure 6. A graphic image of the
Petri net built in WinALT using

external tools

an ebook, it can be captured from
the screen (e.g. by PrtScn key),
pasted into MS Paint and further
transformed to a cellular array ac-
cording to the above procedure. A
sample of such a transformation is
presented in Figure 6.

This cellular array is built on the
basis of a picture of the Petri net [1]
stored in djvu format. Virtual uni-
cellular arrays that are set in corre-
spondence with places of a net are
located right in these very places.
Their sizes are selected so that the
user could conveniently observe the
transitions of markers.

3. Constructing a simulation program imitating the Petri
net behavior in WinALT

Data objects in the simulation program are the virtual cellular arrays that
correspond to the Petri net transitions, so that the process of building a
simulation program does not depend on the procedure invoked to build
a cellular representation of the Petri net. Let us construct a simulation
program for the Petri net with image presented in Figure 2. Let us note that
this net is built on the basis of the correct parallel flowchart [3] and therefore
is alive and safe. Being safe means that none of its places can hold more
than one marker. This feature considerably simplifies writing a substitution
command describing the transition activation. For example, activation of
transition t1 is described by the following substitution command:



Construction and simulation of Petri nets in the WinALT 65

{(1, p1)(0, p2)(0, p3)(0, p4)(0, p5)} → {(0, p1)(1, p2)(1, p3)(1, p4)(1, p5)}. (1)

The semantics of the command is as follows: if there is a marker in
place p1 and no markers in places p2, p3, p4, p5, then the marker in place
p1 is erased and inserted in places p2, p3, p4, p5. The commands for the
rest of transitions in the net are written in a similar way. A set of such
commands forms a PSA. A bunch of operators in-at-do corresponds to
one substitution command in a program written in the WinALT simulation
language [7]. Operator in from this bunch takes, in general, a list of the
names of processed cellular arrays as its parameter. The parameter list of
operator at defines the left part of
the substitution, while that of op-
erator do sets its right part. Sub-
stitution (1) transforms to a bunch
of operators of the simulation pro-
gram in Figure 7.

Figure 7

In this figure, marker is a unicellular pattern whose color (black, the
value is 1) denotes the presence of the marker in the place, empty is a uni-
cellular pattern whose color (white, the value is 0) denotes the absence of
the marker in the place. The simulation program is composed of the block
containing the list of bunches written for all transitions in the net. This
block is placed in operator brackets ex-end. According to the syntax of
the simulating language this construction denotes that all the substitution
commands are iteratively applied to the processed information. The ter-
mination occurs when none of the substitutions is applicable. The window
of the project PetriNetConv.wap is presented in Figure 8. It contains a
simulation model of a pipelined device. The device contains four stages.
Operator F1 is executed at the first one. Operators F2 and F3 are executed
simultaneously at the second one, while operator F4 is executed at the third
stage. At the fourth stage, the counter functions in the operator fc, which
stops the pipeline reaches a preassigned value.

The interaction of stages is described by a Petri net, whose image is
represented in the cellular array NET01. The main unit of the simulation
program contains a procedure call init() and block ex-end, which in ad-
dition to the simulation program of the Petri net includes the procedure
calls F1(), F2(), F3(), F4(), Fc(), Fch(). The procedure init() prepares
the input data for the simulation model. In particular, it sets the marker
into the cell named p1, which corresponds to the place p1. The procedures
F1(), F2(), F3(), F4() imitate the execution of operators F1, F2, F3, F4 of
the pipeline. The procedures Fc(), Fch() imitate the work of counter fc.
Along with the virtual single cell arrays, which correspond to the places of
the Petri nets, the procedure uses cell objects on the sheet NET1.3do below
the cell array NET01.



66 S.V. Piskunov, M. Ostapkevich

Figure 8. Project window of a model of a pipeline device

Let us demonstrate how the interaction between the control Petri net
and the operators under its control is performed in a simulation model. In
this model, the task of the simulator is to set a random number of steps of
operator execution. The number of steps is in the range from 1 to k (k is
a constant defined by the user). All simulators of operators have the same
structure, so the interaction with only one of them, procedure F1(), will
be described in detail. The procedure is presented in Figure 9. Let the
marker be in the cell p2 (its state is black). Then a bunch of in-at-do that
corresponds to the transition t11
removes the marker from the cell
(casts it into the white state) and
put markers in the cells of f1 and
r1. A bunch of operators in-at-do
in the first ch-end block removes
the marker from the cell r1 of Petri
nets and prepares to launch the sim-
ulator operator F1 in its cell array
byte::F1, setting the cell with co-
ordinate 1 in the red state. Then
the operator if-end using the con-
dition F1(1)=black sets a randomly Figure 9

chosen cell in the cellular object byte::F1 of simulator operator F1 to the
red state. The first bunch of operators in-at-do in the second block ch-end
performs the motion of the red state in the working field till it coincides with
the ending cell of the array byte::F1. The second bunch of operators places



Construction and simulation of Petri nets in the WinALT 67

a marker in cell a1 signaling the completion of the simulator. The bunch
of in-at-do corresponding to the transition t12 receives an opportunity to
fire. It removes the markers from the cell a1, f1, and puts a marker to the
cell p6.

Remark 3. As can be seen in Figure 8, the pipeline model imitates func-
tioning of operators F2 and F3. A cell in red state in cellular arrays byte::F2
and byte::F3 is visible as light gray in Figure 8.

Remark 4. The model is presented in section Other models of the model
library at the site [8] and is available for download.

Conclusion

The technology of construction and simulation of the Petri nets in the
WinALT system has been developed. It is assumed that it will be tested on
nets of quite different types, and not just built on the parallel flowcharts, as it
is shown in this paper. This means that in the general case, functional substi-
tutions [4,7] will be used to describe transitions. Currently, only two modes
of simulation are available for the user: synchronous and asynchronous. In
the synchronous mode all the applicable bunches of in-at-do are executed.
In the asynchronous mode, only one applicable bunch is randomly selected.
It is planned to provide a capability for the user to construct own modes
of simulation and to include them into the library. A collection of simula-
tion models of the Petri nets from a very wide range of applications should
become the result of this study.

References

[1] Petersen J.L. Petri Net Theory and the Modeling of Systems. –– Prentice-Hall,
1981.

[2] Custom Processor for High Performance Data Processing / V.E. Kotov,
N.N. Mirenkov, eds. –– Novosibirsk: Nauka, 1988 (In Russian).

[3] Achasova S.M., Bandman O.L. Correctness of Parallel Computation Pro-
cesses. –– Novosibirsk: Nauka, 1990 (In Russian).

[4] Achasova S.M., et al. Parallel Substitution Algorithm. Theory and Applica-
tion. –– Singapore: World Scientific, 1994.

[5] Piskunov S.V., Umrikhina E.V. Computer simulation of asynchronous compo-
sition of algorithms with fine-grain parallelism // Nauchny Vestnik NGTU. ––
2007.–– Iss. 3 (28). –– P. 51–54 (In Russian).

[6] Piskunov S.V., Ostapkevich M.B. The simulating system of fine-grain algo-
rithms and structures WinALT // Repository of Algorithms and Programs



68 S.V. Piskunov, M. Ostapkevich

SB RAS, Registration number PR11053, 2011-11-02. –– http://fap.sbras.ru/
node/2455.

[7] Ostapkevich M., Piskunov S.V. The construction of imitational models of algo-
rithms and structures with fine-grain parallelism in WinALT // Lect. Notes in
Comput. Sci. –– Berlin; Heidelberg: Springer, 2011. –– Vol. 6873. –– P. 192–203.

[8] WinAlt Home Page. –– http://winalt.sscc.ru/.


