
Bull. Nov. Comp.Center, Comp. Science, 23 (2005), 101–111
c© 2005 NCC Publisher

Constraint-based analysis of composite solvers

E. Petrov, É. Monfroy

Abstract. Cooperative constraint solving is an area of constraint programming
that studies the interaction between constraint solvers with the aim of discovering
the interaction patterns that amplify the positive qualities of individual solvers. Au-
tomatisation and formalisation of such studies is an important issue of cooperative
constraint solving.

In this paper, we present a constraint-based analysis of composite solvers that
integrates reasoning about the individual solvers and the processed data. The idea
is to approximate this reasoning by resolution of set constraints on the finite sets
representing the predicates that express all the necessary properties. We illustrate
application of our analysis to two important cooperation patterns: loop and deter-
ministic choice.

1. Introduction

Cooperative constraint solving is an area of constraint programming that
studies interaction between constraint solvers with the aim of discovering the
interaction patterns that amplify the positive qualities of individual solvers.
Papers [2, 7, 9, 10, 14] describe some examples of successful cooperative
constraint solving systems.

At present, successful patterns of cooperation are detected with the sole
help of intuition, feelings, experience, and experiments with software engi-
neering tools supporting cooperative constraint solving such as [8, 11, 12, 13].
One cannot make such experiments systematic without a mathematical
framework for analysis of cooperative constraint solving systems (“compos-
ite solvers”).

An important practical application for such a framework is integration
and development of domain-specific software. The expected applications for
this analysis are detection of inconsistencies in specifications of individual
software packages and construction of the specifications for the packages
needed in order to meet the requirements on the overall functionality. The
COCONUT [3] project is an example of such a software development project
in the domain of numerical optimization and constraint programming.

The authors of [5] illustrate practical importance of analysis of composite
solvers with examples from interval constraint programming. They point out
two aspects of this analysis: (a) detection of good cooperation strategies
subject to expectations from the composite solver and the individual solvers
in hand; (b) reasoning about the properties of individual solvers subject to



102

the expectations from the composite solver. In this paper, we focus on the
latter aspect.

Certain properties of composite solvers are expressible in terms of the
properties of the processed data. One can study the properties of this sort
using the frameworks of software verification, programming logics, model
checking program analysis. In order to reason about the properties of indi-
vidual solvers, one needs a new kind of analysis.

In this paper, we present a constraint-based analysis of composite solvers
that integrates reasoning about the individual solvers and the processed
data. The idea is to approximate this reasoning by resolution of set con-
straints on the finite sets representing the predicates that express all the
necessary properties. We illustrate application of our analysis to two impor-
tant cooperation patterns: deterministic choice and loop.

Before going further we give a quick motivational example.

Example 1. Motivation.
Suppose that we, rather “engineers” than experts in global optimization,

have in hand a library of numerical algorithms that includes the standard
methods for local and global optimization, different tests, etc. and develop a
software for minimization of quadratic functions (quadratic programming).
Algorithm 1 specifies the composite solver that we have built with the in-
tention to avoid the costly exhaustive search in the case of convex objective
functions.

if f is convex then
solve x = arg minx≥0 f by the method of steepest descent

else
solve x = arg minx≥0 f by the exhaustive search

end if
A naive composite solver for quadratic programming.

Our logic is as follows: if the graph of the objective is like a tea-cup
(“convex”), then we use the steepest descent to go to its lowest point; other-
wise we do the exhaustive search. Will this work? Well, sometimes: we have
not thought of the objectives that are convex and unbounded from below in
the orthant x ≥ 0, e.g. f(x1, x2) = (x1− x2)2− x1. The method of steepest
descent may fail to terminate in this case.

How can we detect similar situations automatically? How do we change
a composite solver in order that it work correctly? In this paper, we propose
a formalism suitable for this kind of analysis.

The paper is structured as follows. In Section 2, we introduce the basic
notions of the paper and describe the operation of composite solvers. In



103

Section 3, we describe a technique for reasoning about composite solvers
in terms of constraints on finite sets. In Section 4, we explain how to ex-
press certain properties of the composite solvers in terms of set constraints.
Section 5 concludes the paper.

2. Solvers, contexts, operation model

In this section, we introduce the basic notions of the paper and describe the
operation of composite solvers.

A set of individual solvers that interact and exchange some data through
a shared data store is called a composite solver. We number the individual
solvers by integers from 1 to n. The content of the data store, called context,
is divided into the set of the individual solvers that “are called” and applica-
tion specific data. In the constraint programming framework, the application
specific data are usually specifications in some declarative language. The set
of all contexts is denoted by C.

The operation of the composite solver is divided into ticks. At the be-
ginning of a tick, every solver s checks if it is called. If yes, it may change
some part of the context. Otherwise, it does nothing. The initial context
is provided by the user of the composite solver. Thus our composite solvers
are either sequential or synchronous bulk parallel systems.

A solver s determines a transformation Fs : C → C of the contexts
at the beginning of the ticks into the contexts at the end of the ticks.
The synchronous modifications of the data store must be coherent, that
is, Fs(c) = Fs′(c) for any context c indicating that solvers s and s′ are
called.

A context is feasible if it is generated from the initial context by some
sequence of transformations Fs’s where s’s are some solvers.

Now we proceed to the description of our constraint-based formalism.

3. From composite solvers to finite sets

In this section, we describe a technique for reasoning about composite solvers
in terms of constraints on finite sets. We axiomatize the operation model
from Section 2 in the first order logic and view the axioms as set constraints
on interpretation of the symbols involved therein. Since the exact solutions
to these constraints may be (non-constructible explicitly) infinite sets, we
solve our set constraints approximately modulo a finite set of clusters of the
contexts C. We assume that the reader is familiar with the generic concepts
of a constraint and constraint satisfaction.

The axioms in question are written in terms of a constant symbol c0

denoting the initial context, a unary predicate symbol p denoting the set
of feasible contexts and unary function symbols fs’s denoting the transfor-



104

mations Fs. The axioms are plain and open (n is the number of individual
solvers):

p(c0); (1)
∀c p(c) ∧ fs(c) = c′ =⇒ p(c′) s = 1, . . . , n; (2)

∀c′∃c p(c′) ∧ c′ 6= c0 =⇒ (
c′ = f1(c) ∨ . . . ∨ c′ = fn(c)

) ∧ p(c). (3)

The axiom (1) states that the initial context is feasible. The n axioms
(2) say that the transformations Fs’s map feasible contexts onto themselves.
The axiom (3) states that every feasible context except the initial one has
a feasible pre-image under some transformation Fs.

The axioms (1)–(3) are nothing else but constraints on the interpreta-
tions ċ0, ṗ and ḟs’s, in the model-theoretical sense, of the symbols c0, p and
fs’s. One can write down these constraints as follows:

fun
(
ḟ1

)
, . . . , fun

(
ḟn

)
; (4)

ṗ = {ċ0} ∪ img
(
ḟ1, ṗ

)
∪ · · · ∪ img

(
ḟn, ṗ

)
. (5)

The domains of ċ0, ṗ and ḟs’s consist of the contexts C, of all the subsets of C

and, respectively, of all binary relations on C. The symbols = and ∪ denote
equality and union of subsets of C. The symbol fun denotes the constraint
“is a function from C to C”. The symbol img denotes the image of a subset
of C under a binary relation on C.

Since many exact solutions to the constraints (4)–(5) involve infinite sets,
we sacrifice precision for tractability and group the individual contexts from
C into finitely many clusters called context properties. The set of all clusters
is denoted by C?. A binary relation on C? whose domain is C? is called an
abstract solver. We assume that binary relations are collections of ordered
pairs.

A context property c? approximates a context c, iff c ∈ c?. A set P ?

of context properties approximates a set P ⊆ C, iff every context from P
is approximated by some context property from P ?. An abstract solver
R? approximates a binary relation R ⊆ C2, iff every element from R is
componentisely approximated by some element from R?.

Example 2. Hull Consistency in sharpness analysis.
Consider the Hull Consistency (HC) algorithm [1] from interval con-

straint programming. Given a set i of interval constraints, this algorithm
computes a box b that bounds the set sol(i) of the solutions to i. Let the
context specify the constraints i and the box b.

The well-known fact about the HC algorithm is that it bounds the set
sol(i) sharply, i.e., b cannot be improved without losing a solution to i, if i



105

has an acyclic constraint graph (see [6]). We can express this fact in terms
of the context properties “i has an acyclic constraint graph” (abbreviated
tree) and “b is the convex hull of sol(i)” (abbreviated ok) by the abstract
solver HC? = {(tree, ok) (C,C) (ok, ok)}. For example, (tree, ok) ∈ HC?

means that the HC algorithm bounds sol(i) sharply, if i has an acyclic
constraint graph.

Proposition 1. Correctness If ċ0 ∈ C?, ṗ ⊆ C? and abstract solvers ḟs’s
approximate some solution to the constraints (4)–(5), then they satisfy these
same constraints with respect to the following definition of =, ∪, fun, img:

fun(R?) ⇐⇒ R? is an abstract solver;
img(R?, P ?) = the image of P ? under R?;

P ? ∪Q? = the standard union of subsets of C?;
P ? = Q? ⇐⇒ the standard equality of subsets of C?.

In practice the constraints (4)–(5) are joined to (some of) the constraints

ḟ1 = F ?
1 , . . . , ḟn = F ?

n (6)

specifying the abstract solvers. We build these F ?
s ’s using two databases

that contain patterns of the individual solvers and the relation of logical
equivalence on the set of properties of the processed data.

A pattern of an individual solver is a collection of rules of the form
“pre-condition → post-condition” that have, as common formal parameters,
the processed data and the called solvers. The pre- and post-condition are
conjunctions of atomic formulas containing the formal parameters of the
pattern. The formal parameters corresponding to the data not modified by
the solver can be marked as “read-only”.

The fact that a solver is called is expressed by the unary predicate symbol
do; the interpretation of other predicate symbols is arbitrary. The pre- and
post-conditions in the pattern of a solver s are of the form do(s) ∧ C and
the symbol do does not occur in the conjunction C. Thus parallelism is not
actually allowed.

Let π1, . . . , πn be the patterns of the individual solvers with instantiated
formal parameters. The context properties are conjunctions do(s) ∧ C, —
where s = 1, . . . , n and C is a conjunction of the atomic formulas from π1,
. . . , πn,— that are not equivalent to the false conjunction. We assume that
two equivalent conjunctions are the same object.

The image of a context property c? under the abstract solver F ?
s corre-

sponding to a pattern πs is built as follows. Let c? = do(s′)∧Cro∧Crw such
that every conjunct in Crw contains a value taken by some non read-only
formal parameter of πs and Cro contains all the other conjuncts from c?

except do(s′).
If s 6= s′ then img (F ?

s , {c?}) = {c?}. Otherwise



106

img (F ?
s , {c?}) =

∧
{{Cro}} ∪ {rhs(c?

1, πs)|c?
1 is implied by c?} ,

where each set of conjunctions is interpreted as the disjunction of its ele-
ments, e.g. {a, b}∧{x, y} = {a∧x, a∧y, b∧x, b∧y}, and rhs(c?

1, πs) denotes
the set of post-conditions following the pre-condition c?

1 in the pattern πs.
Finally, c?

1 “is implied by” c? iff c?
1 ∧ c? is equivalent to c?.

The next section illustrates our approach by several examples.

4. Examples

The examples in this section illustrate application of our approach to two
important cooperation patterns: deterministic choice and loop. Our ulti-
mate goal (out of the scope of this paper) is to couple the analysis with the
language for specification of composite solvers in the framework of the CO-
CONUT [3] project. In order that the reader can feel our approach better,
we provide in Appendix A a complete specification of the set constraints
from Section 4.2.

4.1. The naive solver from Section 1

The patterns of the individual solvers from the example in Section 1 are as
follows:

cnvx?(ro(F ); S1, S2) = {do(1) ∧ cnvx(F ) → do(S1), do(1) → do(S2)};
dscnt(ro(F ), X;S) = {do(2) ∧ stCnvx(F ) → do(S) ∧ min(F, X), do(2) → do(S)};
glblSrch(ro(F ), X; S) = {do(3) → do(S) ∧ min(F,X)};
done() = {do(4) → do(4)}.

The symbols cnvx, stCnvx, min denote the properties “is convex”, “is
strictly convex”, “is the global minimizer in the positive orthant”. The only
non-trivial equivalence is cnvx(F )∧stCnvx(F ) ≡ stCnvx(F ). The read-only
parameters are marked by ro.

The instantiated patterns are cnvx?(f ; 2, 3), dscnt(f, x; 4),
glblSrch(f, x; 4), done(). The set of context properties is (we use the
notation for disjunctions from Section 3): {do(1), do(2), do(3), do(4)} ∧
{cnvx(f), stCnvx(f), min(f, x), true} ∧ {min(f, x), true}. In practice
these 24 context properties are numbered and the set constraints involve
only their numbers.

From the specifications for F ?
1 , F ?

2 , F ?
3 , F ?

4 generated by the procedure
from Section 3, we provide the first one:

img(F ?
1 , {do(1) ∧ cnvx(f)}) = {do(2) ∧ cnvx(f)},

img(F ?
1 , {do(1) ∧ stCnvx(f)}) = {do(2) ∧ stCnvx(f)},

img(F ?
1 , {do(1) ∧ min(f, x) ∧ cnvx(f)}) = {do(2) ∧ min(f, x) ∧ cnvx(f)},



107

img(F ?
1 , {do(1) ∧ min(f, x) ∧ stCnvx(f)}) = {do(2) ∧ min(f, x) ∧ stCnvx(f)},

img(F ?
1 , {do(1) ∧ min(f, x)}) = {do(2) ∧ min(f, x) ∧ cnvx(f), do(3) ∧ min(f, x)},

img(F ?
1 , {do(1)}) = {do(2) ∧ cnvx(f), do(3)},

and img(F ?
1 , {c?}) = {c?} for the other context properties c?.

Solving the constraints (4)–(6) and ċ0 = do(1), we obtain the following
approximation for the set of feasible contexts: ṗ = {do(1), do(2) ∧ cnvx(f),
do(3), do(4), do(4) ∧ min(f, x)}. Since this ṗ contains do(4), we are not
sure that our composite solver always finds the minimizer of f(x) subject to
x ≥ 0.

The question “When does our composite solver find the minimizer?”
is translated into constraints (4)–(6), “the convexity test is called first”
and“the situation after termination is not uncertain” (do(1) “is implied by”
ċ0, do(4) 6∈ ṗ). Solving these constraints for the initial context ċ0, we obtain
the following solutions: ċ0 = do(1) ∧ stCnvx(f), ċ0 = do(1) ∧ min(f, x) ∧
stCnvx(f). This means that the objective has to be strictly convex in order
that our solver can find its global minimizer.

4.2. The Simplex method and Hull Consistency

Consider a composite solver that makes cooperate the Simplex method from
linear programming and the HC algorithm [1] (a similar composite solver
is described, e.g., in [2]). The context specifies some linear, interval and
bound constraints, denoted by `, i and, respectively, b. The Simplex method
updates b by bounding the solution set sol(`∪b) and calls the HC algorithm,
which in its turn updates b by bounding the solution set sol(i∪ b) and calls
the Simplex method, and so on until stabilization of b. An important quality
of this strategy is that it bounds the solution set sol(l∪ i∪ b) more sharply
than the HC algorithm.

The patterns of the individual solvers are as follows:

cplex(ro(L), B;S) = {do(1) → do(S) ∧ ok(L)} ;
hc(ro(I), B; S) = {do(2) → do(S), do(2) ∧ tree(I) → do(S) ∧ ok(I)} ;
same?(ro(B); S1, S2) = {do(3) → do(S1), do(3) → do(S2)} ;
done() = {do(4) → do(4)} .

The symbols ok and tree denote the properties “has the solution set that we
can bound sharply”, “has an acyclic constraint graph”. All the equivalences
are trivial.

The instantiated patterns are cplex(`, b; 2), hc(i, b; 3), same?(b; 1, 4),
done(). There are 32 context properties built as follows: {do(1), do(2),
do(3), do(4)} ∧ {ok(`), ok(i), tree(i), true} ∧ {ok(i), tree(i), true} ∧
{tree(i), true}.



108

The specifications for the abstract solvers F ?
1 , F ?

2 , F ?
3 , F ?

4 generated by
the procedure from Section 3 are provided in Appendix A.

Solving the constraints (4)–(6) and ċ0 = do(1), we obtain the follow-
ing approximation for the set of feasible contexts: ṗ = {do(1), do(1) ∧
ok(`), do(2) ∧ ok(`), do(3) ∧ ok(`), do(4) ∧ ok(`)}. Since this ṗ contains only
do(4) ∧ ok(`), the solution set of the linear constraints is always bounded
sharply after termination of the composite solver.

We can find out when the composite solver bounds the solution set
sol(` ∪ i ∪ b) sharply, solving the constraints (4)–(6), “the Simplex method
is called first” and “the solution set is bounded sharply after termina-
tion” (do(1) “is implied by” ċ0, the context after termination ċ∞ ∈ ṗ,
do(4) ∧ ok(i) ∧ ok(`) “is implied by” ċ∞). These constraints have 6 so-
lutions. The first two assign do(4) ∧ ok(`) ∧ ok(i) to ċ∞ and either do(1)
∧ ok(i), or do(1) ∧ ok(i) ∧ ok(`) to ċ0. The other four assign do(4) ∧ ok(`)
∧ tree(i) ∧ ok(i) to ċ∞ and one of the 4 context properties that “imply”
do(1) ∧ tree(i) to ċ0. This means that the composite solver bounds the
solution set sol(`∪ i∪b) sharply, if the interval constraints i have an acyclic
constraint graph.

5. Conclusion

We have presented a formalism for automatic analysis of composite solvers.
This formalism provides a structure for expressing properties of the data
store (context properties), a structure for specifying the behaviour of solvers
(abstract solvers), a method for approximation of composite solvers by set
constraints that can be efficiently solved by conventional set constraint
solvers like [4, 15]. The ultimate goal (out of the scope of this paper) is to
couple our analysis with the language for specification of composite solvers
in the framework of the COCONUT project [3].

References

[1] Benhamou F., Goualard F., Granvilliers L., Puget J.-F. Revising hull and box
consistency // Proc. 16th Int. Conf. Logic Programming. — The MIT Press,
1999. — P. 230–244.

[2] Beringer H., De Backer B. Combinatorial problem solving in constraint logic
programming with cooperating solvers // Logic Programming: formal me-
thods and practical applications. — Elsevier Science Publishers, 1994.

[3] Bliek C. et al. Algorithms for solving nonlinear constrained and optimization
problems: The state of the art // A progress report of the COCONUT project,
2001. —
http://www.mat.univie.ac.at/~neum/glopt/coconut/StArt.html



109

[4] Gervet C. Interval propagation to reason about sets: definition and implemen-
tation of a practical language // Constraints. — Kluwer Academic Publishers,
1997. — Vol. 3. — P. 191–244.

[5] Granvilliers L., Monfroy E., Benhamou F. Symbolic-interval cooperation in
constraint programming // Proc. ISSAC 2001. — ACM, 2001.

[6] Hansen E. R. Sharpness in interval computations // Reliable Computing. —
1997. — Vol. 3, N 1. — P. 17–19.

[7] Hickey P. CLIP: a CLP(Intervals) dialect for metalevel constraint solving //
Proc. Int. Workshop on Practical Aspects of Declarative Languages. — Lect.
Notes in Comput. Sci. — 2000. — Vol. 1753. — P. 200–214.

[8] International Computers Limited & Imperial College of London. — ECLiPSe

User Manual (release 5.3), 1996–2000.

[9] Jaffar J., Michaylov S., Stuckey P., Yap R. The CLP(<) language and system
// ACM Trans. on Programming Languages and Systems. — 1992. — Vol.
14, N 3. — P. 339–395.

[10] Marti P., Rueher M. Distributed cooperating constraint solving systems //
Intern. J. of Artificial Intelligence Tools. — 1995. — Vol. 4, N 1&2. — P. 95–
113.

[11] Monfroy E. The constraint solver collaboration language of BALI // Frontiers
of Combining Systems 2 / Ed. by D. M. Gabbay and M. de Rijke. — Research
Studies Press / Wiley, 2000.

[12] Mozart consortium. — The Mozart programming system, 1999.

[13] PROLOGIA. — Prolog IV: constraints inside (reference manual), 1996.

[14] Van Hentenryck P., Michel L., Deville Y. Numerica: a Modelling Language
for Global Optimization. — Cambridge: The MIT Press, 1997.

[15] Yakhno T., Petrov E. Extensional set library for ECLiPSe // Lect. Notes in
Comput. Sci. — 1999. — Vol. 1755. — P. 434–444.

A. Specification of the example from Section 4.2

The constraints from the sharpness example are provided in Figure 1 in the
LogiCalc language [15]. We recall its syntax/semantics. The LogiCalc lan-
guage allows the user to specify constraints on integer numbers, tuples and
finite sets. Tuples of sets, sets of tuples, sets of sets, etc. are allowed. The
constraints are specified in terms of set inclusion subset, membership in,
equality =, and inequality <=. The left and right hand sides of the con-
straints are expressions built from variables, arithmetic and set operations,
and specifications of finite set.



110

% Notation for the data properties: %
treeI = 0; okL = 1; okI = 2; treeIokL = 3;
okIokL = 4; true = 5; treeIokI = 6; treeIokLokI = 7;
Cdata = { treeI, okL, okI, treeIokL,

okIokL, true, treeIokI, treeIokLokI };
% cplex %
F1star = {

((1, treeI), (2, treeIokL)),
((1, okL), (2, okL)),
((1, okI), (2, okIokL)),
((1, treeIokL), (2, treeIokL)),
((1, okIokL), (2, okIokL)),
((1, true), (2, okL)),
((1, treeIokI), (2, treeIokLokI))
((1, treeIokLokI), (2, treeIokLokI)) } \/

{ ((i1, z1), (i1, z1)) | i1 in { 2, 3, 4 }, z1 in Cdata };
% hc %
F2star = {

((2, treeI), (3, treeIokI)),
((2, okL), (3, okL)),
((2, okI), (3, okI)),
((2, treeIokL), (3, treeIokLokI)),
((2, okIokL), (3, okIokL)),
((2, true), (3, true)),
((2, treeIokI), (3, treeIokI))
((2, treeIokLokI), (3, treeIokLokI)) } \/

{ ((i2, z2), (i2, z2)) | i2 in { 1, 3, 4 }, z2 in Cdata };
% same? %
F3star = { ((3, z3), (i3, z3)) | z3 in Cdata, i3 in { 1, 4 } };
% done %
F4star = { ((4, z4), (4, z4)) | z4 in Cdata };
% constraints (4)--(5): %
img1 = { c11 | (c1, c11) in F1star; c1 in p };
img2 = { c22 | (c2, c22) in F2star; c2 in p };
img3 = { c33 | (c3, c33) in F3star; c3 in p };
img4 = { c44 | (c4, c44) in F4star; c4 in p };
p = { c0 } \/ img1 \/ img2 \/ img3 \/ img4;

Figure 1. Specification of the sharpness example in the LogiCalc language; {}
denotes the empty set, \/ denotes set union, F1star specifies the abstract CPLEX,
F2star specifies the abstract Hull consistency, c0 denotes the initial context that
we search for, img1, img2 denote the images of the set of feasible contexts under
the abstract CPLEX and Hull consistency



111

Finite sets are specified by either enumeration of the elements, or by
their common property. For example,

x subset { 2, 3, 5, 7 };
y = { i * j | i in x; j in x; i + 1 <= j };
y = { 6, 10, 15 }

specify the set y = {i · j|i ∈ x, j ∈ x, i < j} = {6, 10, 15} and the set
x = {2, 3, 5} of their prime factors. Note implicit existential quantification
of the variables i and j that do not occur outside the specification of y. Note
that the equation y = {i · j| . . .} is, in fact, a constraint on x and y.



112


