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The pulse action on saturated porous media∗

Yuri Perepechko, Vitaly Dorovsky,
Kholmatzhon Imomnazarov

Abstract. The pulsed action on fluid-saturated nonlinearly deformed porous me-
dia is considered. A mathematical model of a nonlinear two-velocity medium was
obtained on the basis of the method of conservation laws. The model is thermody-
namically consistent and hyperbolic in the reversible approximation. The numerical
model is based on Godunov’s explicit scheme with the use of a parallel computa-
tional algorithm. Numerical modeling of non-equilibrium nonstationary processes
in heterophase deformable media for various modes of the pulsed action was made
for various values of thermodynamic and kinetic parameters. Dilatancy areas are
correlated with a partial density distribution of the saturating fluid. The approach
proposed can be used to simulate the operation of oil collectors and in geophysical
prospecting.

1. Introduction

Applications of seismic methods for studying the geological structure of the
Earth become more complicated, and mathematical modeling of seismic
fields is gaining in importance. Mathematical modeling in seismology and
seismic prospecting is carried out on the basis of analytical, numerically-
analytical, and numerical methods. Analytical methods have limited ap-
plication areas for solving relatively simple problems. Complex nonlinear
problems, arising in the adjacent branches, which need to be solved to de-
velop hi-tech technologies, make it necessary to create and solve combined
mathematical models. An effective approach in the theoretical study of
wave processes in the upper Earth’s layers, is to use the numerical modeling
methods based on well-posed physical models. The basic models for solving
problems of geophysical prospecting and describing seismic wave processes in
layered media consisting of porous oil- and water-saturated rocks are those
by Frenkel and Biot [1–3]. On the basis of the Frenkel–Biot model, the basic
characteristics of seismic wave propagation in such media have been investi-
gated. Precise and approximate methods have been developed, for instance:
numerically-analytical approaches for solving the Biot equations of the dy-
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namics of layered porous media were developed by Philippacopoulos [4] and
by Miroshnikov, Fatyanov [5]; finite difference methods for solving the Biot
equations were used in papers [6–8]. However, the calculation results using
the linear Biot model do not meet the modern practical requirements. Note
the ill-posedness of the Cauchy problem for the Biot equations with dissipa-
tion of energy [9]. In real processes in a fluid and in an elastically deformed
body, there occur complex wave effects accompanied by the manifestation
of physically and geometrically nonlinear properties of interacting media.
Only the allowance for nonlinear phenomena can give a description of the
processes observed in practice.

In this paper, the pulsed action of the point or the spatially distributed
type on the fluid-saturated nonlinearly deformed porous media is consid-
ered on the basis of the mathematical dynamical model of dynamics of a
nonlinear two-velocity medium [10, 11]. This model of the dynamics of
saturated deformable porous media earlier obtained within the method of
conservation laws is thermodynamically consistent and hyperbolic in the
reversible approximation. The thermodynamically consistent two-velocity
model, in contrast to the Frenkel–Biot models, is nonlinear, does not con-
tain additional material parameters, and can be considered as a well-posed
generalization of the Darcy law. The model yields results that agree with
the experimental data and shows the existence of three types of acoustic os-
cillations. The hyperbolicity of the reversible equations of the model allows
us to use, for the numerical modeling, Godunov’s difference scheme. This
makes it easier to use a parallel computational algorithm. The numerical
modeling of non-equilibrium nonstationary processes for various modes of a
pulsed action with fluid pumping was carried out for various values of ther-
modynamic and kinetic parameters. The influence of nonlinear dynamics
on the electric phenomena in a heterophase medium can be considered with
the Helmholtz–Smolukhovsky approach.

2. Mathematical model

We consider nonstationary phenomena taking place at the pulsed action on
an elastically deformed matrix into which the Newtonian fluid is injected. A
distinctive feature of the phenomenological theory is the assumption about
the local non-additivity of entropy, which ensures the hyperbolicity of the
reversible equations of two-velocity hydrodynamics and makes it possible
to use for numerical analysis the algorithms based on the hyperbolicity of
governing equations.

As independent variables, it is convenient to choose the density ρ, the
energy per unit volume of the medium E, the momentum j, the velocity of
the saturated fluid v, and the metric tensor gik. The system of governing
equations is as follows [11]:
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∂ρ

∂t
+ div j = 0,

∂gik

∂t
+ (u,∇)gik + gkn∂iun + gin∂kun = 0,

∂ji

∂t
+ ∂kΠik = 0,

∂vi

∂t
+ (v,∇)vi = −1

ρ
∂ip +

ρs

2ρ
∂iw

2 −
hkj

2ρ
∂igjk + χρlwi,

∂E

∂t
+ div Q = 0.

(1)

In system of equations (1), ρs and ρl are partial densities of the porous
matrix and the saturating fluid; u and v are velocities of the porous matrix
and fluid, respectively; w = u− v is a relative velocity of the components;
p is pressure. The partial densities and the deformation tensor are related
as follows:

ρs = const
√

det(gik), ρl = ρ− ρs.

The reversible flows are determined in a standard way:

j = ρsu + ρlv,

Πik = ρsuiuk + ρlvivk + hingnk + p δik,

Qi = (E + p)
ji

ρ
+

1
ρ

uk(jk − ρvk)(ji − ρui) + ukhijgjk.

Since the energy dissipation results in entropy production, the equation
of entropy takes the following non-divergent form:

∂(ρs)
∂t

+ div(js) =
R

T
.

In the model, it is assumed that the energy dissipation takes place only due
to the intercomponent friction. Here R = χ(j − ρu)2 is a dissipative func-
tion, χ is the kinetic coefficient, which takes into account the permeability
of the medium and the intercomponent friction, s is the entropy per unit
mass of the medium, and T is temperature.

The total energy of the system E can be related to the internal energy
ε with the help of the Galilei transform:

E = ρε +
1
2
ρv2 + (v, j − ρv).

The equation of state ε = ε(ρ, s, gik, w
2) obtained by the work of Dorovsky,

Perepechko, and Romensky [12], allows us to express p, T , and hik in terms
of independent thermodynamic parameters
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K
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2

2
,
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T

Cv
δs +

(
Cp

ρ3
0Cvα

+
K

ρ3
0

)
δρ,

hik =
λ

2
δikδgll + µδgik −

K

ρ0
δikδρ− gik ρsw

2

2
.

Continual thermodynamic parameters (heat capacities Cp and Cv, coefficient
of isothermal compression α, and coefficient of volume expansion β) are
associated with respective physical parameters by the expressions

ρCp = ρf
s (1− x0)Cf

p,s + ρf
l x0C

f
p,l, ρCv = ρf

s (1− x0)Cf
v,s + ρf

l x0C
f
v,l,

ρα = ρf
s (1− x0)αf

s + ρf
l x0α

f
l , ρβ = ρf

s (1− x0) βf
s + ρf

l x0β
f
l .

The need to satisfy the Darcy relation in one of the limits of equation
(1) allows us to relate the parameter χ to the permeability of the medium
k and the viscosity of the fluid η being filtered: χ = η/(ρρlk). It makes
it possible to determine the dimensionless number Rep, an analog to the
Reynolds number Re for porous media:

ρ0χb

c‖,1
=

ηb

c‖,1ρ0k
= Re

b2

k
= Rep,

which determines the type of motion of the two-velocity medium.

3. Difference scheme

Godunov’s explicit scheme successfully applied into elasto-plastic calcula-
tions was used to numerically solve the problem. A standard method to
construct difference equations is well known [13]. Its application allows us
to obtain a difference approximation of system of equations (1) [12]. Follow-
ing [14], a modified version of Godunov’s scheme, which allows us to carry
out a simple generalization for mobile grids, was used.

The problem of breakdown of a discontinuity, necessary for the deter-
mination of flows of independent variables (j, Πij , Q, etc.), because of
complexity of the system, was numerically solved in the acoustic approxi-
mation. The Courant stability condition for the given difference scheme has
the following form:

1
∆t

≥ λx

∆x
+

λy

∆y
,

and allows us to determine the time step ∆t. Here, λx and λy are maximum
eigenvalues for the corresponding one-dimensional problems, which are taken



The pulse action on saturated porous media 71

for all the points, at which the breakdown of discontinuity is calculated; ∆x
and ∆y are the spatial steps for a given time layer.

The dissipative term in equations (1), since it is a nonlinear function,
was taken from the upper time layer. This ensures stability of the scheme
with arbitrary values of the product ∆t ρχ.

The computational domain of the problem on the plane {x, y} is a finite
rectangle: Ω = {x, y | x ∈ [0, a], y ∈ [0, b]}. Since the computational domain
does not depend on time, a fixed rectangular non-uniform computational
grid is used. On the left boundary (x = 0) of the computational domain,
the pulsed action and the conditions of pumping a fluid with velocity V0 are
given:

σxx = f(t, y), σxy = 0, v = (V0, 0), ux = 0, T = T0.

The pulse has the following form:

f(t, y) =
(
1 + cos(ω(t− t0))

)
exp

(
−(ω(t− t0)/γ)2

)
exp

(
−ζ(y − b/2)2

)
.

Here σij = −p δij − hikgkj is a stress tensor.
On the right boundary of the computational domain (x = a), “non-

reflecting” boundary conditions imitating an infinite half-space are given.
This means that the invariants transferred by the characteristics going into
the computational domain are equal to zero. On the upper and the lower
boundaries, a porous matrix is considered to be non-deformed, and the zero
normal velocity condition is

ux = uy = vy = 0.

At the boundary points of the computational domain, the problem of bound-
ary breakdown of a discontinuity is numerically solved as well.

Parallelization of the program on the basis of an algorithm that realizes
the virtual topology “line” was carried out. The algorithm realized the one-
dimensional distribution of data between computers in two columns with
further realization of the scheme of exchanges between the parallel program
branches.

4. Results

The purpose of the numerical experiment was to investigate the character
of nonstationary processes in porous elastically deformed bodies under the
pulsed action with various values of the medium parameters. As a model
system, a medium with the initial physical densities ρf

s = 2.7 · 103 kg/m3,
ρf

l = 0.9·103 kg/m3 and the volume fraction of the fluid component x0 = 0.2
was considered. The physical heat capacities were Cf

s = 0.48 kJ/(kg·K)
and Cf

l = 0.21 kJ/(kg·K). The volume expansion coefficients were βs =
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−3 · 10−6 K−1 and βl = −6 · 10−4 K−1. The compressibility coefficients
were αs = 6 · 10−11 Pa−1 and αl = 6 · 10−10 Pa−1. The Lamé coefficients
were λ = 2.5 · 109 J/m3 and µ = 9.3 · 109 J/m3. The dynamic viscosity was
taken as η = 0.1 kg/(m·s). The geometrical dimensions of the domain were
a = 3 · 103 m and b = 1 · 103 m. At the initial time, the temperature of a
fluid-saturated porous medium was T0 = 293 K.

The calculation results are represented in Figures 1–14. In Figures 2–9,
examples of distribution of the measured parameters of the model for the
dimensionless times, corresponding to (a) 0.8 · 105, (b) 1.6 · 105, (c) 2.4 · 105,
and (d) 3.2 · 105 steps, are given. All the figures, except for Figure 1, were
obtained for the same amplitude of the pulse f .

Figure 1 demonstrates the dependence of the pulsed action propagation
on its amplitude. The distribution of components of the stress tensor σij is
shown in Figures 2–4.

Figure 1. Distribution of {xx} component of the stress tensor hij of the porous
matrix versus the power pulse f . The dimensionless amplitudes of pulse are 0.01
(to the left) and 0.03 (to the right)

Figure 2. Distribution of stresses in the porous matrix for σxx component
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Figure 3. Distribution of stresses in the porous matrix for σxy component

Figure 4. Distribution of stresses in the porous matrix for σyy component
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Figure 5. Distribution of deformations in the porous matrix for gxx component

Figure 6. Distribution of deformations in the porous matrix for gxy component
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Figure 7. Distribution of deformations in the porous matrix for gyy component

The dilatancy zones were estimated using the following standard formula:

Dτ = τ − αps − Y,

where ps = −
∑

i σii/3 is the hydrodynamic pressure, α = 0.5 is the internal
friction coefficient, Y = 3 · 106 Pa is the adhesive capacity of rocks, and τ is
intensity of shearing stresses. The dilatancy field is represented in Figure 8,
in which one can see its correlation with distribution of the partial density
of the fluid component (Figure 9).

The distribution of the velocity field of the saturating fluid is presented
in Figure 10.

To calculate the electrokinetic effect associated with propagation of lon-
gitudinal waves, one can use the Helmholtz–Smolukhovsky relation for the
longitudinal electric field strength E at a stationary flow of the fluid through
the pores of the fixed solid matrix

E = − ες

µσ
∇P.

Here ε = 7.1 · 10−10 C2/(N·m2) is the dielectric permeability, µ = 10−3 Pa·s
is the dynamic viscosity of the fluid, σ = 0.022 S/m is the conductivity of
the fluid, and ς = −60 mV is the electrokinetic potential. It is assumed
that the time of formation of the gradient of the electrokinetic potential
is small enough in comparison with the period of oscillations, that is, the
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Figure 8. Distribution of dilatancy field

Figure 9. Distribution of the fluid component density
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Figure 10. Velocity fields of the saturating fluid v for the dimensionless times
(a) 300 and (b) 8000

Figure 11. Electric field strength using the Helmholtz–Smolukhovsky formula

value E corresponds to an instantaneous value of the pressure gradient. The
corresponding profiles are represented in Figure 11.

The plots of the temperature-time dependence also illustrate the dissi-
pative effects (Figure 12) when a heat conduction is neglected. A high level
of stresses and energy dissipation due to the intercomponent friction leads
to a noticeable warming of a medium, which increases temperature by 10 K.

The effectiveness of using the multiprocessor cluster is demonstrated in
Figure 14, in which one can see a high efficiency of using the “line” topology
for Godunov’s explicit scheme.

Analysis of the dynamics of pulsed action on saturated porous oil col-
lectors reveals an essentially nonlinear behavior of this system. The depen-
dence on the dissipative parameter χ shows that it is necessary to take into
account the visco-plastic phenomena in this medium and use the Maxwell
rheology for an adequate description of the propagation of wave processes
in real media.
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Figure 12. Temperature field. The dimensionless times are
(a) 80000 and (b) 300000

a b

Figure 13. Time distribution of stresses for hxx component at the center of
(a) longitudinal and (b) transverse cross-section of computational domain

Figure 14. Calculation time and effectiveness versus the number of processors
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Thus, the numerical modeling of non-equilibrium nonstationary pro-
cesses for various modes of the pulsed action of the distributed type at
pumping a fluid was carried out for various values of the thermodynamic
and the kinetic parameters. An essentially nonlinear behavior of such sys-
tems is shown. The dilatancy areas reveal a correlation with distribution of
the partial density of the saturated fluid.
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