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Comparison between combinations of the splitting
and the variational data assimilation schemes for

atmospheric chemistry transport models∗

A.V. Penenko

Abstract. The atmospheric chemistry dynamics with a convection-diffusion model
is studied. The numerical Data Assimilation (DA) algorithm presented is based
on the additive-averaged splitting schemes. It carries out “fine-grained” variational
data assimilation at separate splitting stages with respect to the spatial dimensions,
i.e., the same measurement data are assimilated with different parts of a split model.
This design has an efficient implementation due to the direct data assimilation
algorithms of the transport process along the coordinate lines.

The objective of this paper is to compare the performance of the algorithm
proposed with the one that does the variational data assimilation the splitting
model as a whole and requires iterations at every time step.

1. Introduction

The data assimilation algorithms improve the “chemical weather” forecast
with the joint use of a mathematical model and available measurement data.
Here we present a data assimilation algorithm for the convection-diffusion
part of an atmospheric chemistry model. To construct a data assimilation
algorithm, the following properties should be taken into account:

• High dimensionality (≈ 107) of modern atmospheric chemistry models
due to a large number of spatial variables and different substances,
impose requirements on the computational performance.

• Measurement data are not sufficient to find all the unknowns (usually,
a measurement operator inversion result is non-unique).

• Current (and future) state of the system is of interest.

• A “real time” solution should be obtained.

• Data assimilation algorithms should be embedded into existing models.

A review of chemical data assimilation algorithms can be found in [1].
Summarizing [1] we would like to emphasize that unlike the data assimi-
lation in meteorology, in the chemical data assimilation the initial states
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are to be “forgotten” due to the diffusion process. Meanwhile, the emission
rates and model coefficients play a significant role as sources of uncertainty
in the chemical data assimilation. In this paper, we use the source-term
uncertainty to carry out the data assimilation.

Consider a spatial-temporal domain ΩT := Ω× [0, T ] ∈ R4,

~x = (x1, x2, x3) ∈ Ω = [0, l1]× [0, l2]× [0, l3], t ∈ [0, T ],

bounded by δΩT = δΩ× [0, T ]. In this domain, we consider the convection–
diffusion–reaction model. It describes the atmospheric transport and trans-
formation processes for different substances (contaminants, heat, moisture,
radiation, etc.):

Lφ ≡ ∂φ(~x, t)

∂t
+ div(~uφ(~x, t)− µ(~x, t) gradφ(~x, t))

= S(φ(~x, t)) + fa(~x, t) + r(~x, t), (~x, t) ∈ ΩT , (1)

µ(~x, t)
∂φ(~x, t)

∂~n
+ β(~x, t)φ(~x, t) = ga(~x, t), (~x, t) ∈ ∂ΩT , (2)

φ(~x, 0) = φ0
a(~x), ~x ∈ Ω. (3)

Here φ(~x, t) is the function of state, ~u(~x, t) = (u1(~x, t), u2(~x, t), u3(~x, t)) are
“wind speed” vector, µ(~x, t) = diag(µ1(~x, t), µ2(~x, t), µ3(~x, t)) is the diffu-
sion tensor, S is the transformation operator (in this paper, we focus on
convection-diffusion processes setting S = 0 but keeping in mind the atmo-
spheric substances multiplicity), ~n is the boundary outer normal direction,
fa(~x, t), ga(~x, t), φ

0
a(~x) are a priori data for sources and initial data, r(~x, t)

is the control function (uncertainty), that is introduced into a perfect model
structure to assimilate data.

Direct problem: Given fa, ga, φ
0
a, and r, determine φ from (1)–(3). The

exact solution φ∗ is that of direct problem corresponding to “unknown”
emissions r∗.

Let us define the measurement operator H, that connects the function
of state of the model with measurement data

I(t) = H(t, φ(·, t)) + ~η(t), t ∈ [0, T ], (4)

where I(t), ~η(t) ∈ RM are the measurement data, M(t) is the number of
measurements at a time instant t, M(t) is nonzero at NM time instants

{tjM}
NM
j=1 ⊂ [0, T ]. Here, we consider in situ measurements, thus the oper-

ator H is defined by a number of spatial locations and the measurement

dispersion that are characteristic of a measurement device θ(t) = {xm}M(t)
m=1,

Σ(t) = {σ2
m}

M(t)
m=1:
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H : φ 7→ {φ(t, xm)}xm∈θ(t).
The function ~η(t) is from a set of admissible values that describes the error
estimate for measurement data. The error ~η is considered to be bounded in
the Euclidean (weighted) norm in the measurements space

‖~η(t)‖σ ≤ δ~η, ‖~η(t)‖σ =

√√√√M(t)∑
m=1

(
ηm
σm

)2

.

We consider all the functions and model parameters to be smooth enough
for the solutions to exist and the further transformations to make sense.

Data assimilation problem: Determine φ(·, t) for t > t∗ with (1)–(4) and
the functions fa, ga, φ

0
a, I defined on 0 < t ≤ t∗.

For the sake of brevity in what follows we will consider a 2D case.

2. Fine-grained and conventional variational data
assimilation for split models

Let us introduce uniform spatial grids with Nx and Ny grid points on

Ω and the temporal grid {tj}Nt
j=1 on [0, T ] with the step-size τ and Nt

points. Suppose that the instants of measurements are also on its grid points
{tjM}

NM
j=1 ⊂ {tj}

Nt
j=1. Consider a convection-diffusion model in the implicit

approximate matrix form with respect to time:

φj − φj−1

τ
= Lxφ

j + Lyφ
j + rj , (5)

φ0 = φ0
a. (6)

Here φj stands for the solution on the jth temporal layer, rj is the uncer-
tainty on the jth temporal layer and Lx, Ly are parts of the approximated
operator in (1) corresponding to the spatial dimensions. Given the system
of state at a previous time step φj−1, the data assimilation problem solution
is sought for as the solution to unconstrained minimization problem for the
functional

J(rj) = ‖Hjφj(rj)− Ij‖2σ + α‖rj‖2,
or to the constrained minimization of the functional

J(φj , rj) = ‖Hjφj − Ij‖2σ + α‖rj‖2,

on constraints (5). Here φj(rj) is the solution of the direct problem cor-
responding to rj . Assume rj is from a Hilbert space, ‖.‖ is its norm and
〈·, ·〉 is corresponding to the inner product. Using the Lagrange multipliers
method to solve the minimization problem with equality constraints, we can
construct the augmented functional
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J̄(φj , rj ,ψj) = J(φj , rj) +
〈φj−φj−1

τ
− Lxφj−Lyφj − rj , ψj

〉
,

and seek for a local minimum as the solution of the following stationarity
system

∇φj J̄(φj , rj ,ψj) =
φj − φj−1

τ
− Lxφj − Lyφj − rj = 0, (7)

∇ψj J̄(φj , rj , ψj) = 2H∗(H(φj)− Ij) +
ψj

τ
− L∗xψj − L∗yψj = 0, (8)

∇rj J̄(φj , rj , ψj) = 2αrj − ψj = 0. (9)

Here H∗ is adjoint to the operator H.
This system is solvable with iterations, e.g., with the gradient descent

algorithm:

1. Set rj0 = 0.

2. Start rjk iterations with respect to k:

(a) solve direct problem (7) to find φj(rjk),

(b) solve adjoint problem (8) to find ψj(φj(rjk)),

(c) evaluate the gradient ∇rj J̄(φj(rj), rj , ψj(φj(rj))) from (9),

(d) find the next approximation for rjk:

rjk+1 = rjk − βk+1∇rj J̄
(
φj(rj), rj , ψj(φj(rj))

)
, (10)

βk+1 = arg min
β
J
(
rjk − β∇rj J̄

(
φj(rj), rj , ψj(φj(rj))

))
. (11)

This algorithm spends most of the time on evaluating the direct model
solution. Hence, improvement of this algorithm is to use efficient numer-
ical schemes to solve direct and adjoint problems. Consider the additive-
averaged splitting scheme [2] on the time interval tj−1 ≤ t ≤ tj . Convection–
diffusion processes in each dimension (β = {x, y}) are evaluated indepen-
dently (in parallel):

γβ
∂~φβ
∂t

+ Lβ~φβ = ~fβ + ~rβ, ~φβ(tj−1) = ~φ(tj−1), tj−1 ≤ t ≤ tj . (12)

After that, the results obtained are coupled by taking the mean value:

~φ(tj) = γx~φx(tj) + γy~φy(t
j), γx, γy > 0, γx + γy = 1.

The 1D non-stationary convection-diffusion model (12) is approximated on
a spatial-temporal grid with a finite difference scheme:
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γl
(φil)

j − (φil)
j−1

τ
+
(
(Lx)l(φ∗l)

j
)
l

= rjil. (13)

The same improvement can be done with the adjoint problem. These ap-
proximations of the direct and the adjoint problems made inconsistently can
result in the fact that the relations (9) fail to be gradient to the functional
(i.e. it is inconsistent). This issue can be resolved by assimilating data to a
split model as a whole [6, 7], thus minimizing the same functional J(φj , rj)
on a different set of constraints:

γx
φjx − φj−1

τ
= Lxφ

j + γxr
j , γy

φjy − φj−1

τ
= Lyφ

j + γyr
j ,

φj = γxφ
j
x + γyφ

j
y.

In this case the augmented functional is

J̄(φjx, φ
j
y, r

j , ψjx, ψ
j
y) = J(γxφ

j
x + γyφ

j
y, r

j) +〈
γx
φjx−φj−1

τ
− Lxφj − γxrj , ψjx

〉
+
〈
γy
φjy − φj−1

τ
− Lyφj − γyrj , ψjy

〉
.

The corresponding stationarity conditions are

2γxH
∗(H(φj)− Ij) + γx

ψjx
τ
− L∗xψjx = 0,

2γyH
∗(H(φj)− Ij) + γy

ψjy
τ
− L∗yψjy = 0,

∇rjJ(φj , rj) = 2αrj − γxψjx − γyψjy = 0,

γx
φjx − φj−1

τ
− Lxφj − γxrj = 0,

γy
φjy − φj−1

τ
− Lyφj − γyrj = 0.

In this case, all the aggregates needed for the variational data assimilation
problem are consistent. This consistency does not affect the iterative nature
of the algorithm.

The more radical approach presented in [3–5] is to modify the target
functional for the sake of computational efficiency. In the fine grained data
assimilation approach, the following target functional is considered:

Jf (φjx, φ
j
y, r

j
x, r

j
y) = J(φjx, r

j
x) + J(φjy, r

j
x).

As the constraints we use the splitting stages with independent terms of the
emission rate
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γx
φjx − φj−1

τ
= Lxφ

j
x + rjx, γy

φjy − φj−1

τ
= Lyφ

j
y + rjy. (14)

The corresponding augmented functional has the form

J̄f (φjx, φ
j
y, r

j
x, r

j
y) = Jf (φjx, φ

j
y, r

j
x, r

j
y) +〈

γx
φjx − φj−1

τ
− Lxφj − rjx, ψjx

〉
+
〈
γy
φjy − φj−1

τ
− Lyφj − rjy, ψjy

〉
.

In this case the stationarity conditions are
2H∗(Hφjx − Ij) + γx

ψjx
τ
− L∗xψjx = 0,

2αrjx − ψjx = 0,

γx
φjx − φj−1

τ
− Lxφj − rjx,= 0,

(15)


2H∗(Hφjy − Ij) + γy

ψjy
τ
− L∗yψjy = 0,

2αrjy − ψjy = 0,

γy
φjy − φj−1

τ
− Lyφj − rjy = 0.

(16)

As can be seen, these systems are independent. In the general case, their
solution still needs iterations. However, in the next section we present an
algorithm that allow one solve such systems without iterations. To make
the next step approximation consistent with the model, the corresponding
emission rate rj and the next step φj is estimated by

rj := rjx + rjy, φj := φj(rjx + rjy).

Roughly speaking, in the fine-grained approach to the data assimilation
we assimilate the same data to different parts of the model and couple them
afterwards.

3. A 1D convection-diffusion implicit data assimilation
algorithm

In order to present an algorithm, we need further detalization of the op-
erator L. As a result of splitting we can consider equations (14) to be
independent for each coordinate line in both dimensions. The algorithm is
the same for any coordinate line and here we will describe the algorithm ap-
plied to the lth line along the axis y: for a given 1 ≤ l ≤ Ny let φji = (φx)jil,
1 ≤ i ≤ Nx =: N . For the sake of computational efficiency, we use approxi-
mations of (14) that bring about the tridiagonal matrix problems:
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−aiφji+1 + biφ
j
i = φj−1

i + τrji , i = 0, (17)

−aiφji+1 + biφ
j
i − ciφ

j
i−1 = φj−1

i + τrji , i = 1, . . . , N − 1, (18)

biφ
j
i − ciφ

j
i−1 = φj−1

i + τrji , i = N. (19)

In these terms, the assimilated state is the solution of the minimization
problem

J(φj , rj)τ =

(
N∑
i=0

(
φji − I

j
i

σi

)2

M j
i + α

N∑
i=0

(rji )
2

)
τ,

WRT (17)–(19) where M j
i is the spatial-temporal measurement mask (i.e.

M j
i equals 1 if xil ∈ θ(tj) and equals 0 otherwise) and σi are device standard

deviations of the measurements at the point xi. Introducing the Lagrange
multipliers, we obtain the augmented functional:

J̄f (φj , rj , ψj)τ = J(φj , rj)τ +
N∑
i=0

(
−aiφji+1 + biφ

j
i − ciφ

j
i−1 − φ

j−1
i − τrji

)
ψji .

Taking the first variations of the augmented functional equal to zero, we
obtain the following equations:

∇
ψj
i
J̄f (φj , rj , ψj) = 0

is equivalent to (17)–(19),

∇
φji
J̄f (φj , rj , ψj) = 0

is equivalent to

−ci+1ψ
j
i+1 + biψ

j
i = −2Mi

σ2
i

(φji − I
j
i )τ, i = 0,

−ci+1ψ
j
i+1 + biψ

j
i − ai−1ψ

j
i−1 = −2Mi

σ2
i

(φji − I
j
i )τ, i = 1, . . . , N − 1,

biψ
j
i − ai−1ψ

j
i−1 = −2Mi

σ2
i

(φji − I
j
i )τ, i = N.

and
∇
rji
J̄f (φj , rj , ψj) = 0

is equivalent to
2αrji − ψ

j
i = 0, i = 0, . . . , N.

The systems obtained can be merged into the tridiagonal matrix equation
[3–5]



50 A.V. Penenko

−AiΦj
i+1 +BiΦ

j
i = F ji , i = 0,

−AiΦj
i+1 +BiΦ

j
i − CiΦ

j
i−1 = F ji , i = 1, . . . , N − 1,

BiΦ
j
i − CiΦ

j
i−1 = F ji , i = N,

Ai =

(
ai 0
0 ci+1

)
, Bi =

 bi − τ

2α
2Miτ

σ2
i

bi

 , Ci =

(
ci 0
0 ai−1

)
,

Φj
i =

(
φji
ψji

)
, F ji =

 φj−1
i

2Miτ

σ2
i

Iji

 ,

which is solved by the direct matrix sweep method.

4. Numerical comparison between fine-grained and
conventional data assimilation

To compare the approaches in question, let us consider the following sce-
nario: T = 1000 · 43.2 s = 12 hr, Lx = Ly = 50 · 600 m = 30 km,
µ = 2000 m/s2. The wind speed vector of magnitude of 10 m/s rotates
with the period of 6 hours. In the “exact” direct model that is used to gen-
erate artificial measurement data there is an emission source in the middle
of the domain. Let us denote the exact solution as ϕ∗. The data assimilation
algorithms have no a priori information about sources (i.e. r = 0), but they
have measurement data of the “exact” solution from 12 points at each time
instant. We have compared the following configurations:

• direct model forecast without data assimilation (No DA),

• fine-grained data assimilation algorithm (Fine-Grained DA, Figure 1),

Figure 1. Comparison of the Fine-Grained DA solution with the exact one
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Figure 2. The absolute error of different solution configurations with respect to
the time step. The Fine-Grained DA and Total Opt DA algorithms have identical
measurement datasets

• conventional data assimilation algorithm. As a gradient minimization
procedure we have used conjugate gradient method (Total Opt DA).

In Figure 2 and in the table we can see that the error of the algorithms is
comparable and is less than that without data assimilation. A considerable
difference with respect to time is revealed in the table. The fine-grained
assimilation algorithm takes one solution of stationarity systems (15), (16)
and one direct problem solution to evaluate the next step. This takes only
twice as long as the evaluation of the direct problem solution. In the case of
the iterative algorithm, the time consumed is much greater. A simple esti-
mation of the computer costs suggests that each iteration requires solutions
of the direct and the adjoint problems to evaluate the gradient. If one uses
the steepest descent type method, then it takes additional direct solutions
to 1D minimization problems (11). If someone is able to skip this expenses,
then the algorithm will still need solving the direct and the adjoint problems
which is equivalent to the double solution of the direct problem. Further-
more, if one then tries to choose the data assimilation parameter α with the
discrepancy principle, the algorithm becomes hardly affordable and takes
supercomputer facilities to operate in real time.

Comparison of results for different configurations

Configuration
Mean time-step

time, s
log10 ‖ϕ− ϕ∗‖

No DA 0.001 10.235
Fine-Grained DA 0.002 10.193
Total Opt DA 7.745 10.192
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5. Conclusion

Combining the splitting schemes and the data assimilation schemes allows
us to construct computationally effective algorithms without iterations for
data assimilation of in situ measurements of convection–diffusion–reaction
models. In numerical experiments, a fine-grained data assimilation scheme
for the split model has shown almost the same precision as the conventional
scheme being more computationally effective.
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