Bull. Nov. Comp. Center, Comp. Science, 17 (2002), 89-103
(© 2002 NCC Publisher

Imitational simulation of fine-grain
algorithms and structures*

M.B. Ostapkevich, S.V. Piskunov

The WinALT system for imitational simulation of fine-grain structures and al-
gorithms is presented in the paper. Its architecture is substantiated; user’s interface
is described, possible applications are outlined. It is demonstrated that open archi-
tecture of the system allows to construct different versions of system for sequential
and parallel computers and supports models of nearly every kind of fine-grain par-
allelism with large data amount.

1. Introduction

One of main kinds of parallelism that lies in the foundation of parallel com-
putation technology is called fine-grain.

Its attractiveness can be easily justified. Many applications have ex-
treme (natural) parallelization only within this kind of parallelism. Among
such applications signal and image processing, mathematical physics mod-
els and graph problems, custom processor architecture design for massive
information processing can be mentioned.

Such stages of research as observation of physical phenomena evolution,
verification or complexity (time, hardware, connection topology) estimation
for parallel computation structures by their algorithmic descriptions cannot
be accomplished without computer aided simulation. This makes actual
the development of fine-grain algorithm simulating tool. Such tools were
developed in SSD ICM&MG for the last several years in the form of open
system of imitational simulation WinALT. In this article, which is a sort of
an overview, the development of system architecture is considered for both
sequential and parallel versions of the system. The user’s interface and the
area of its application are outlined.

2. The WinALT basic version [1, 2]

2.1. System design guidelines

The main requirement that is demanded from the system is universality
within fine-grain class of parallel algorithms.

*Supported by the Russian Foundation for Basic Research under Grant 99-07-90422.

90 M.B. Ostapkevich, S.V. Piskunov

Such universality makes this system unique in a certain sense among
known systems [3, 4]. Actually, all these systems support only one kind of
cellular architecture. The existence of only one system (with one fine-grain
model description language) for all researchers makes it possible 1) to com-
pare results of different developers; 2) to improve the system in cooperation
with numerous users; and 3) to create libraries of models and construct new
models as combinations of existing ones.

The decision of single tool construction predefined the following:

1. A formal ground must be selected, which would integrate in itself all
features of particular fine-grain computations.

2. An architectural principle of system construction ought to be chosen
so that a system would be easily adapted for growing number of simu-
lating phenomena and ever for increasing user demands for tools and
functions included into system and performance of hardware hosting
the system.

Fine-grain computational model named Parallel Substitution Algorithm
(PSA) [5] was chosen as a formal ground of the system. The PSA combines
substitutional character of Markov’s algorithm [6] with spatial parallelism
of cellular automata [7]. The PSA is based on common for these notations
associative mechanism of operation application. The PSA represents natural
parallelism of computations, which means that at each step all the allowed
actions are executed for all the available data. Such constitution of a model
allows to describe within it cellular automata, neural and cellular-neural
networks, systolic structures, homogenous structures with programmed logic
and so on.

From the architectural point of view, the WinALT is built as an open
system [8]. It was created quite universal, but in dynamic rather than static
way when all useful functions are embedded. A user has means to add new
modules with a certain unified interface. He can replace or exclude modules
and modify their relationships. These modules can be produced by a user
himself or be parts of standard libraries [9]. The openness of the WinALT
[9] is the main difference from its ancestor, ALT [10]. An open system
[11] is characterized by such features as extensibility, scalability, portability,
interoperability, and friendliness of user’s interface.

2.2. The WinALT user’s interface

The interface represents main PSA properties, which are concluded in the
three following statements:

e The processed information is presented as a cellular array, which is a
set of cells, entities of atomic type (bit, character, number et al.) with
certain location within array.

Imitational simulation of fine-grain algorithms and structures 91

e Algorithm is presented by set of parallel substitutions. A substitution
has left and right parts. Left part expression generates an associated
cellular array for each cell name. If this array exists in processed array,
then the substitution is executed. Execution means the replacement
of a certain basic part of found array by the right part of substitution
of the same cell name.

e The process of computation is iterative: all the applicable in a cellular
array substitutions are executed at each step. The execution is finished
when there are no more applicable substitutions in processed array. It
is this array that is the result of the PSA work.

The writing of correct parallel algorithm is not an easy task. To facilitate
it, the local information transformations are used in the PSA in graphical
form of certain cellular object discrete space of cellular arrays, left and right
parts of substitutions. Left and right parts are represented by cellular arrays
that called templates. It is this approach that is the principle of the interface
construction. Its property is tight integration of textual and graphical forms
of model description. The interface is divided into graphical and language
parts. The language part of model is called simulating program.

2.2.1. Graphical interface. When conducting simulating process that
consists of multitude of data parallel transformations, it is very important
to present the results in an easily readable form for a user, so that he at
least could understand the qualitative picture of processes in model. Thus
the friendliness is the key feature of a GUI.

Multiwindow interface is well known to a Windows user. The tools and
functions of the system are gathered into the GUI elements, such as panels
and menues [12].

The representation of cellular object: the array or the template is the
main part of graphical interface. A 3D object is visualized as a deck of
rectangular layers, one of which is visible at the screen. Also, an object can
be shown as evolvent of layers in a plane. A layer is a matrix of the colored
cells. The colour denotes the cell value.

A model forms a project, which includes a set of cellular objects, all the
simulating program sources, and all the used external libraries. All the parts
of a project and its tree can be shown in their respective windows.

The system tools and services gives a user a comfortable environment
for the construction and the modification of cellular arrays and simulating
programs. The environment includes means for data transformations obser-
vations. In debug mode, it is possible to trace all substitution applications.

The model window, given in the next section sample, gives an impression
on graphical interface.

92 M.B. Ostapkevich, S.V. Piskunov

Figure 1. Sample the OVE screenshot

Of course, the list of implemented functions given above is by no way
complete. As the WinALT is an open system, it can be enriched by subsys-
tems with new functions for graphical representation of objects in models.
One of such subsystems that were included in the system is OVE [13]. It
enables the inclusion of custom visualization modes in the system. These
modes are implemented by external libraries written by a user. They are
called object visualization drivers. The samples of their screenshots are
shown in Figure 1 for square and hexagonal grids, value visualization by
color, arrows and numbers.

2.2.2. Language interface. The language is used for the model textual
form writing. It is discussed and substantiated in details in [14, 15]. Extensi-
bility is one of distinctive properties of the language. The language consists
of three parts. The first one contains operators for compact representation
of parallel computations spread in space and based upon the PSA. Another
part unites statements of general purpose sequential language for structured
programming. The last part is presented by means of library construction in
the system language and function import from libraries included into widely
spread general purpose languages, C or C++ in the current version.

The first part of the language is central. A lot of its operators is similar
to the ALT operators. A parallel substitution is set by a compound parallel
operator that includes in, at, do operators. The compound operator defines
a ubiquitous execution of local information transformations within a cellular
array.

The in operator with a cellular array name defines the space of substitu-
tion application. The substitution itself is set by at-do tuple of operators.
The at contains the name of left-hand template, while the do contains the
name of right-hand template. Just as in the ALT system, a vector form of

Imitational simulation of fine-grain algorithms and structures 93

substitution exists. Such substitution makes a transformation in a group of
objects at once. In this case, each tuple operator is followed by the list of
cellular object names in round brackets. Placing templates into lists means
that their movement in cellular arrays is performed in coordination. The
information transformations are also performed in coordination.

The iterative procedure of the PSA application is implemented by ex-end
synchroblock. For the sake of convenience, there are two more types of
synchroblocks: clock-end, change-end. The clock executes a specified
number of iterations. The change is executed once. The number of iterations
in clock can be set by a constant or expression. Also, expressions can be
used instead of constants in on operator, that limits the area of substitution
applicability in cellular array by its certain part.

The same situation is with step operator that sets applicability step.
The let operator, which implements synchronous assignment, is among new
operators. Included into a synchroblock, it changes the value of its param-
eter, a variable, only at the end of synchroblock iteration. This operator
allows to imitate substitutions with any naming functions [5] and not just
template description functions.

The existence of the second part in the language is justified by several
reasons. First, many parallel algorithms have at least a small part of se-
quential computations [16]. Second, there is a need to describe complex
data transformations by the functional substitutions. Such transformations
are formed as procedures and functions. Their names are used as a param-
eter in do operator. Third, it is required to describe auxiliary procedures,
such as data input/output.

The unification of parallel and sequential parts of the language is reached
by the ability of synchroblocks to contain both types of operators. Never-
theless, the semantics of sequential operators is not altered in synchroblocks,
the results of their execution are assigned immediately.

The third part of the language is responsible for extensibility. It contains
import and use operators. These operators import external libraries.

Pascal was chosen as syntactic prototype of the WinALT language. This
choice means that the structurization of model program, procedure and
function syntax and most of keywords are borrowed from Pascal.

The ALT and the WinALT systems are used for the design and the re-
search of computing devices models [5, 17]. The use of the WinALT for
cellular-neural networks is presented in [18]. The technology of model con-
struction is considered in [19]. Here we shall introduce the model of physical
process.

Ezample of model description (Figure 2). The model implements circum-
fluence of obstacle by fluid stream. It is based upon [20, 21] and is called
the FHP model on hexagonal grid.

There are six types of particles with six directions of motion. The angle

94 M.B. Ostapkevich, S.V. Piskunov

O
S E
= E end (i1
| d {(FHP_is t]
& iz et ve v PUVRUNUNVIIUIIIN
{5 i {04/17/THE BODY OF FHP_gas MODELING PROGRAN////
S E begin
CaiE ex {Synchroblock 0}
@ llg
il i ch {Synchroblock 1}
B in FHP_gas
1 at H_sim,
#A do FHP_source (x)
] in FHP_gas
{Cal at H_simp_A
] do FHP_jmpact (x)
E end {Synchroblock 1)
i ch {Synchroblock 2}
s in FHP_gas
~| Impact_table_1 at H_odd
E do FHP_shift (x)
E r in FHP_gas
3 i L at H_even
| Impact_table 2 do FHP_shift (x)
15 in (FHP_gas, FHP_gas)
E at (H_odd, H_border)
E do FHP_wall_shift (x)
- in (FHP_gas, FHP_gas)
- Probably_table at (H_even, H_border)
= do FHP wall_shift (x)
| x84 %4 end {Synchroblock 2}
=Ry Y X
314 s)
ERRAD N ¥ ch {Synchroblock 3}
E xﬁ/?ﬁ x2 - iyl in (FHP_gas, FHP_gas_union)
s ARV LA X at (H_simp_A, H_simp_U)
Sjasty 2N S S do FHP_union ()
2 /:ix N x3 x5 y4 s end {Synchroblock3}
3 H even H odd H border H_simp U show {Auxiliary operatar of screen redravh
4 - - - end {Synchroblock 0}
. ~il end. (FHP_gas_model) >
lgg < ol | ¥,
Ln 183, Cof 44 ﬂ =

EBStart| SO 2STRBOBLED@ 4, | grMicr. | Srpics... [#Win.. EH506.. ﬁmyn.,.iiE 1332

Figure 2. Sample model screenshot

between neighbor directions is 60 degrees. There is also a motionless particle.
The grid is represented by two layer FHP_gas cellular array. The layer zero
is a working field for moving particles. Digits from 0 to 6 of cell state in this
layer correspond to seven kinds of particles. The seventh digit corresponds
to the obstacle. The first layer is used for hexagonal grid imitation. This
imitation is done by separation of layer into even and odd rows and by two
two-layer templates H_even, H_odd. In even rows of FHP_gas, the cells are
set to 1, while in odd rows — to 0. The central cell in the first layer of H_even
is set to 1, while the same cell in H_odd is reset to 0. The proposed way
of cell state setting enables associative mechanism of template alternation
in the simulating process. The variables written into cells of the layer zero
in H_even, H_odd templates sets the direction of particle motion: x1 (goes
right), x2 (goes left), x3 (goes up right), x4 (goes down left), x5 (goes up
left), x6 (goes down right). The x variable is introduced for the case of
motionless particle. The cells of the first layer (left most column) represents
a line of particle sources. FHP_gas_union is entirely auxiliary. It serves for
the convenience of circumfluence observation by a user.

The simulating program is made as follows: three synchroblocks 1, 2,
3 (ch-end couple) are included into synchroblock 0 (ex-end couple). Such

Imitational simulation of fine-grain algorithms and structures 95

program structure means that the update of cell values is done within a loop
consisting of three steps. An essential part of the program is depicted in the
right window in Figure 2. The use of functions in do operators is typical
for this program. These functions transform values of local variables that
correspond to template cells.

The update of grid nodes states is done within two steps of iteration.
The first step (synchroblock 1) performs the impact of particles. Impacts are
taken from [21] and described in Impact_table_1, Impact_table_2 arrays.
They are executed by FHP_impact_table function and H_simp_A template.
Unlike [20], this model as in [21] has a possibility of particle deviation from
its direction. Deviations are set in Probably_table array and performed by
the same function and template as in impact. The generation of particles
is also done at the first step by the FHP_source function and the H_simp
template. The second step (synchroblock 2), each particle is moved along
its direction from its current position to adjacent. This motion is performed
by the FHP_shift function H_even, the H_odd templates for even and odd
FHP_gas array rows, respectively. At the same step, the bouncing from wall
is done by the FHP_wall_shift function. This action is done by the vector
operators in-at-do. The vector components are listed in round braces after
each of operators. For even and odd strings of the FHP_gas array the same
H_even, H_odd templates with addition of H_border are used. The latter
allows to recognize an obstacle.

At the third step (synchroblock 3), also, a vector command of sub-
stitution moves the FHP_gas cell states to FHP_gas_union. The function
FHP_union and the H_simp_A, H_simp_U templates serve for that.

To give an impression about functions used in the model, one of them is
shown below. It is defined for all cells of layer zero in FHP_gas and it operates
x, z variables of the two layer template H_simp_A. The source constant is
used to locate source cells in layer zero. Mask_xO is for separation of the
motionless particles. The wall constant serves for the wall detection. The
rand() is a library function for the pseudo-random value generation. The
rand_tran is a constant that sets the probability of single particle mutation.
r is a stack variable. The first if operator cuts source cells. The second
locates single cells, while the third changes the particle directions. The else
operator marks cell states, which are different from single cell states. The
fourth if with probability 0.5 changes cell state to new, in this case, the old
cell value is used as address in the Impact_table_1, Impact_table_2 arrays.
These arrays code a transition table of a certain stochastic automaton. First
128 positions code configurations of cell impact. Last 128 entries serve for
coding of cell bouncing from an obstacle.

function FHP_impact;
T
begin

96 M.B. Ostapkevich, S.V. Piskunov

if z <>source then
if (x=mask_x0) or ((x<>0) and ((x)mod 2=0) and (x<wall)) then
r := (rand ())mod rand_tran;
if r < 7 then
x := Probably_table(r);
end {if}
else
if (rand()) mod 2=0 then x := Impact_table_1(x);
else
x := Impact_table_2(x);
end {if}
end {if}
end {if}
end {FHP_impact}

The sample explicitly demonstrates the compactness and intuitive un-
derstandability of graphical model representation and readability and con-
ciseness of language means. The main block of model program is entirely
presented at screenshot. The part of program that is not depicted at the
screen and contains library function calls, variable and template declara-
tions, procedures and functions, which are used in the main block, is written
in a standard Pascal-like form.

2.3. Architecture of basic version of system

2.3.1. General description. The architecture is described in [1, 9]. There
are three distinctively discernible parts of the system: kernel, graphical, and
language subsystems. The system extensibility and scalability is obtained
through modular design, which permits the implementation of most func-
tions in external libraries. Operations for the support of such libraries are
inside the kernel. The main means of intermodular interactions is event.
This allows to minimize the number of interfaces and ease porting to dis-
tributed environments.

2.3.2. Kernel. Main kernel modules are the following: object manager and
external library manager. The destination of modules and their interaction
with other modules will be described below in the overview of main subsys-
tems. Object manager implements operations for cellular object creation,
modification of object properties and cells. The manager supports cellular
objects in different formats. In fact, the real implementation of format sup-
port is made outside the manager, in external libraries that interact with
manager through its interfaces.

Library manager solves the problem of language extensibility by giving
a mechanism of language enriching with functions that are implemented in
external dynamically linked libraries.

Imitational simulation of fine-grain algorithms and structures 97

2.3.3. Graphical subsystem. Graphical subsystem is module built as
a Windows application. It was developed in Microsoft Visual C++ with
the MFC library. Basic and derived classes allow it to act as object editor
and set of tools. The separation of physical, logical and visual levels in
the WinALT system allows graphical subsystem to use cellular objects in a
uniform way not depending on which particular format they are created in.
The interaction between layers is done via kernel interface.

2.3.4. Language subsystem. It implements the interpreter of system
language. The preliminary translation into internal code is used because
the performance of interpretation is a critical parameter. The kernel inter-
faces for object and external library processing are used by a translator.
The subsystem exists in two forms: 1) coupled with graphical subsystem;
2) stand-alone console version. The console version does not have any tools
for object visualization and editing. It is capable only to compile and execute
programs.

2.3.5. The development of the WinALT architecture. In the pro-
cess of the WinALT development, the modification of its architecture was
planned and is under implementation now. It increases the degree of the sys-
tem structurization. The essence of modification is the introduction of new
layer in hierarchy and general purpose function concentration in a library,
which is external for the WinALT. The library is called Dynamically Con-
figurable Modular System (DCMS) [22]. This library can be considered as a
part of software platform upon which the system is implemented. It enriches
the platform with new interfaces that contain operations for a) associative
data access by a string key, b) the DCMS format typed value management,
c¢) event-driven intermodular interface.

Associative search by a unique key is used in language subsystem in
translation block and in object manager for object descriptor retrieval by
identifier. It is also required for storage of substitution set indexed by names
and coordinates in substitution storage manager. Associative search is used
for sparse array representation as well. The data structures for associative
search [23] were developed. Their efficiency in comparison with binary and
bitcoded trees was shown for the data search in fine-grain algorithms simu-
lating system. The DCMS from a virtual machine point of view has opera-
tions for value processing. These values always have certain type. They are
represented in single format in the RAM and their operations are contained
in the so called value manager. The DCMS values are used as unified form
of intermodular data exchange. For example, interaction between topol-
ogy manager and console or graphical environment entirely relies upon the
DCMS values. The DCMS event-driven intermodular communication is also
widely used because it simplifies modifications in system even at interface

98 M.B. Ostapkevich, S.V. Piskunov

level.
In the conclusion of Section 2 it should be mentioned that the size of
system source texts is 3MB.

3. Description of cluster version

Sufficiently detailed simulation of cellular algorithms for non-linear dynam-
ics, image reconstruction, imitation of parallel computation structures re-
quire a huge amount of computational resources. For example, the experi-
ments of such types were held on cellular arrays with sizes from 1024 x1024
up to 5000x5000 on Connection Machine [20]. The fields of even greater
sizes are required in the 3D case. That requires porting of the system to par-
allel computer. Further the architecture of cluster version and construction
of models in it shall be considered.

3.1. Architecture of cluster version

Cluster version is an extension of the basic WinALT version. It consists of
three parts: client, daemon, and server.

Client part is represented either by graphical or console version of the
WinALT. Server is a modified console version. Daemon is utility, which is
currently implemented only under Win32. The user interface for its set up
consists of icon in Explorer task bar and a menu associated with it. Both
server and daemon are installed on each cluster node.

The interaction of components goes as follows. Daemon is activated at
startup on cluster nodes and is waiting for commands. A user launches
client part. It requests daemon to start server parts on each node.

The parts of cluster version have some cluster specific modules. The
main ones are:

e network communication module, which allows to make connections
between machines, perform synchronization and data transfers; there
are two versions of this module: one for client and daemon and the
other for server;

e modification of object manager for client version; it enables object
division for spread on cluster hosts;

e server’s modified module of syntax analyzer and code generation in-
cluding generation of communication code;

e server’s modified interpreter of internal code including cluster data
transfer and synchronization procedures.

The separation of network communication module allows to utilize net-
work communications from different libraries (e.g., PVM [24], MPI [25],

Imitational simulation of fine-grain algorithms and structures 99

sockets [26]). That can be accomplished by creation of specific versions of
this module.

The choice between low and high level communication tools is resolved
by balance of efficiency and flexibility on one hand and ease of implementa-
tion on the other. In the WinALT, as a simulating system, the important
of the two former factors is high. That has leaded to refusal in usage of the
PVM and the MPI at least at this stage of development. Current version
relies upon sockets library as a means of interaction between part of the dis-
tributed application both at initialization and computation phases. Sockets
is currently a de facto standard interface of TCP/IP [27].

The source code size of cluster specific modules is 243KB.

3.2. Model construction and execution on cluster

3.2.1. Porting model to cluster. Model that was built in the basic
version of system is automatically ported to cluster if it meets certain limi-
tations:

e data is represented by one or several cellular arrays that have equal
sizes at least for dimension, which is used for division of these arrays
into parts that are to be spread among cluster machines;

e only local data transformations set by templates with sizes indepen-
dent from processed data array sizes and at least one degree less than
the latter are used;

e only fully defined local data transformations are used;

e local transformations with associative search are used.

Such limitations are by no means burdensome as they are actually the
properties of most fine-grain algorithms and structures from classes (see
Section 2.1) which are targets of designed system. Typical sample from
Section 2.2.2 proves this thesis.

Automatic porting of model from one version of system to another means
that a user is relieved from explicit coding of communications. The execution
of a model is initiated by a user on the host where the client is running.
Data preparation and their transmission to cluster nodes is performed by
interacting client and daemons without user participation.

The phase of user construction in the basic WinALT version can be
considered as debugging one, when a user has a possibility to use all the
available model construction and debugger functions. Later the results of
single machine simulations can be used as reference ones in first (test) launch
on the cluster.

It is more complicated when a model in basic version uses some types
of operators for simulation acceleration on single machine. Among these

100 M.B. Ostapkevich, S.V. Piskunov

operators are those Pascal-like from the second part of the WinALT language
if they are used for control constructions in the main block of simulating
program.

In this case before porting, a program has to be manually modified.
Otherwise the parallel simulation might loose its gain in performance over
sequential. First, remaining within limitations of the WinALT language,
“undesirable” operators should be eliminated if that is possible. Additional
layers in templates or extra templates can be used for this. Usually such
modification made with the help of visualization tools is not difficult.

Nevertheless, if a model is radically changed and data amount increases
considerably, a user has to program communications manually. The minimal
set of functions exists in cluster version for this purpose. In this case, the
results of simulation in sequential mode should be used for comparison and
verification.

3.2.2. Model execution on cluster. To execute a model on cluster,
a user either runs a) console version from command line, e.g., from Far
Commander being in model project directory, or b) graphical version from
explorer menu start/Programs/WinALT/WinALT. In either case, he specifies
the obligatory topology parameters, name of main source program to simu-
late, arrays to split, arrays to send back to a client as results of simulation.
The templates are always sent identical to all cluster nodes.

To make a transition of model from 2.2.1. to a model running on two
hosts, it is enough to issue a command line:

m:\winalt\bin\xaltcon.exe -tFHP1 -x2 -yl -z1 -h(0,0,0)192.168.76.1
-h(1,0,0)192.168.76.3 -rFHP_gas -rFHP_gas_union FHP_gas_imi.src

The meaning of parameters is explained in the following list:

winalt — root directory of the system;
-tFHP1 — sets topology name;

-x2 — sets size by x to two;

-y1 — sets size by y to one;

-z1 — sets size by z to one;

-h(0,0,0)192.168.76.1 — sets IP for host in grid position (0,0,0) to
192.168.76.1;

-h(1,0,0)192.168.76.3 — sets IP for host in grid position (1,0,0) to
192.168.76.3;

-rFHP_gas — declares object FHP_gas as divided and sent back as result;

-rFHP gas_union - declares FHP_gas_union as divided and sent back as
result;

FHP_gas_imi.src — sets simulating source name.

Imitational simulation of fine-grain algorithms and structures 101

After initialization the client part compiles simulating program for two
purposes: a) verifies syntax correctness; b) builds list of used cellular objects
and included files. If the program contains errors, the execution is termi-
nated. Otherwise, the client part prepares data for each node by making
copies of some files and splitting some of objects. Then it gets daemons of
cluster hosts into exclusive usage and sends prepared data to them. They
keep it in their local file systems.

After completion of these steps, the client initiates simulating program
execution on cluster nodes through a command send to each server. Server
parts simulate the model program and at the end of each synchroblock the
synchronize data in divided arrays. Client polls the status of server processes
and retrieves the console output. After termination of server parts, the
arrays declared as results are sent back from daemons to client. Client part
pastes them back into single objects.

3.3. Results of the WinALT parallel version testing

The testing of cluster version was done for cellular automata models with
local neighborhood of five or nine cells and two types of source data initial-
ization: data spread over all array or concentrated in central part of array.
The number of machines with equal performance varied from two to nine.
Cluster version has shown good speedup rate [28] which is proximate to the
number of hosts for models with steady data distribution (changes from 2.92
for three hosts to 8.21 for nine) in the case of main array size 201x201. In
the case of initial data concentrated in center, it is 2.61, 3.51, 3.77 for 3, 4, 5
machines, respectively. The degradation of speedup rate is explained by the
fact that the amount of data along the axis of object division is diminished
in a single host while template size, which determines the size of data sent
between hosts, remain constant. That means that the communication time
augments while computation time decreases.

4. Conclusion

The system gives comfortable environment for accomplishing of all simu-
lation steps: from model construction to simulating with particular source
data sets on single or multiple processors. The means of system allow to
create concise and rather self-documented model description of models for
all known fine-grain kinds.

Further system development is planned in two directions.

The first direction is related to increasing of its portability. Currently
only console edition can work both in Win32 and Linux. It is planned to
create portable graphical subsystem (its prototype is described in [13]) and
then porting parallel version to Linux.

102 M.B. Ostapkevich, S.V. Piskunov

The second direction is dedicated to increasing of system efficiency for
fine-grain models with features, such as concentration of data at a certain
part of array. In parallel version, it is planned to implement dynamic load
balancing for host load.

References

[1] Beletkov D.T., Ostapkevich M.B., Piskunov S.V., Zhileev I.V. WinALT, a soft-
ware tool for fine-grain algorithms and structures synthesis and simulation //
Lect. Notes in Comput. Sci. — 1999. — Vol. 1662. — P. 491-496.

[2] Beletkov D.T., Ostapkevich M.B., Piskunov S.V., Zhileev I.V. The tools of
language and graphical interface of a simulating system for computations with
spatial parallelism // Proc. of the VI-th Intern. Workshop DDP. — Novosibirsk,
1998. — P. 228-232 (in Russian).

[3] Cellular Automata Simulation System. —
http://www.cs.runet.edu/"dana/ca/cellular.html.

[4] CellLab. — http://mathcs.sjsu.edu/faculty/rucker/cellab.htm.

[5] Achasova S.M., Bandman O.L., Markova V.P., Piskunov S.V. Parallel Sub-
stitution Algorithm. Theory and Application. — Singapore: World Scientific,
1994.

[6] Markov A.A. Theory of Algorithms // Proc. of Mathematical Institute of
Academy of Science of USSR. — 1954. — Vol. 42 (in Russian).

[7] Codd E.F. Cellular Automata. — New York, London: Academic Press, 1968.

[8] Wirth N. A plea for lean software // IEEE Computer. — 1995. — Vol. 28, Iss. 2. —
P. 64-68.

[9] Ostapkevich M. The open architecture of WinALT // NCC Bulletin, Se-
ries Comp. Comp. Science. — Novosibirsk: NCC Publisher, 1998. — Iss. 9. —
P. 93-106.

[10] Markova V.P., Piskunov S.V., Pogudin Y.M. Formal methods, language and
instrumental tools of cellular algorithms and structures synthesis // Program-
mirovanie. — 1996. — Ne 4. — P. 24-36.

[11] Filinov E. The selection and development of the open system environment
conceptual model // Open Systems. — 1995. — Vol. 6, Ne 4. — P. 32-46.

[12] Beletkov D.T. Graphical construction of computer models of 3D cellular al-
gorithms and structures // Proc. of Young Scientists Conf. — Novosibirsk:
ICMMG, 1998. — P. 3-13.

[13] Ostapkevich M., Shashkov D. The construction of graphical interfaces // NCC
Bulletin, Series Comp. Comp. Science. — Novosibirsk: NCC Publisher, 2001. -
Iss. 14. — P. 59-64.

[14]

[15]

[16]

[17]

18]

Imitational simulation of fine-grain algorithms and structures 103

Ostapkevich M. Language tools of WinALT system // Proc. of Young Scientist
Conf. — Novosibirsk: ICMMG, 1998. — P. 182-194.

Piskunov S.V. WinALT — a simulation system for computations with spatial
parallelism // NCC Bulletin, Series Comp. Comp. Science. - Novosibirsk: NCC
Publisher, 1997. — Iss. 6. — P. 71-85.

Denisov V.M., Matveev U.N., Ochin E.F. The principles of system organization
for image processing on the basis of cellular logic // Foreign radioelectronics. —
1984. — Ne 1. — P. 3-25.

Kostsov E.G., Piskunov S.V. Computer-aided design of two-layer computa-
tional matrix with optical interconnections // Avtometriya. — 2000. — Vol. 3. —
P. 3-16.

Pudov S. A method for learning of first-order cellular networks // NCC Bul-
letin, Series Comp. Comp. Science. — Novosibirsk: NCC Publisher, 2001. —
Iss. 14. — P. 65-77.

Ostapkevich M., Piskunov S.V. Basic constructions of models in WinALT //
NCC Bulletin, Series Comp. Comp. Science. — Novosibirsk: NCC Publisher,
2001. — Iss. 14. — P. 43-58.

Toffoli T., Margolus N. Cellular Automata Mechanics. — Massachusetts Insti-
tute of Technology, 1987; Russian Translation. — Moscow: Mir, 1991.

Medvedev Yu. Cellular-automata models of fluid dynamics // NCC Bulletin.
Special issue. — Novosibirsk: NCC Publisher, 1999. — P. 97-102.

Ostapkevich M. Event-driven tools for open system design // NCC Bulletin.
Special issue. — Novosibirsk: NCC Publisher, 1999. — P. 15-22.

Ostapkevich M. Expulsive tree data structures for fast data search by a key //
NCC Bulletin, Series Comp. Comp. Science. — Novosibirsk: NCC Publisher,
1999. — Iss. 10. — P. 73-82.

Geist A., Beguelin A., Dongarra J., Jiang W., Manchek R., Sunderum V. PVM:
Parallel Virtual Machine a User’s Guide and Tutorial for Networked Parallel
Computing. — Cambridge, Massachusetts, London, England: The MIT Press,
1994.

Snir M., Otto S.M., Huss-Lederman S., Walker D., Dongarra J. MPI: the
Complete Reference. — Boston: MIT Press, 1996.

Network Interface Guide. — Sun Microsystems, Inc, Palo Alto, 2000.

Technology of Electronic Communications: Multinetworks, Internetwork Com-
munications, TCP/IP protocol. — Moscow: Ecotrends, 1993. — Vol. 3 (in Rus-
sian).

Wilkinson B. Computer Architecture: Design and Performance. — London:
Prentice Hall, 1991.

104

