
Bull. Nov. Comp. Center, Comp. Science, 17 (2002), 89{103c
 2002 NCC PublisherImitational simulation of �ne-grainalgorithms and structures�M.B. Ostapkevich, S.V. PiskunovThe WinALT system for imitational simulation of �ne-grain structures and al-gorithms is presented in the paper. Its architecture is substantiated; user's interfaceis described, possible applications are outlined. It is demonstrated that open archi-tecture of the system allows to construct di�erent versions of system for sequentialand parallel computers and supports models of nearly every kind of �ne-grain par-allelism with large data amount.1. IntroductionOne of main kinds of parallelism that lies in the foundation of parallel com-putation technology is called �ne-grain.Its attractiveness can be easily justi�ed. Many applications have ex-treme (natural) parallelization only within this kind of parallelism. Amongsuch applications signal and image processing, mathematical physics mod-els and graph problems, custom processor architecture design for massiveinformation processing can be mentioned.Such stages of research as observation of physical phenomena evolution,veri�cation or complexity (time, hardware, connection topology) estimationfor parallel computation structures by their algorithmic descriptions cannotbe accomplished without computer aided simulation. This makes actualthe development of �ne-grain algorithm simulating tool. Such tools weredeveloped in SSD ICM&MG for the last several years in the form of opensystem of imitational simulation WinALT. In this article, which is a sort ofan overview, the development of system architecture is considered for bothsequential and parallel versions of the system. The user's interface and thearea of its application are outlined.2. The WinALT basic version [1, 2]2.1. System design guidelinesThe main requirement that is demanded from the system is universalitywithin �ne-grain class of parallel algorithms.�Supported by the Russian Foundation for Basic Research under Grant 99-07-90422.



90 M.B. Ostapkevich, S.V. PiskunovSuch universality makes this system unique in a certain sense amongknown systems [3, 4]. Actually, all these systems support only one kind ofcellular architecture. The existence of only one system (with one �ne-grainmodel description language) for all researchers makes it possible 1) to com-pare results of di�erent developers; 2) to improve the system in cooperationwith numerous users; and 3) to create libraries of models and construct newmodels as combinations of existing ones.The decision of single tool construction prede�ned the following:1. A formal ground must be selected, which would integrate in itself allfeatures of particular �ne-grain computations.2. An architectural principle of system construction ought to be chosenso that a system would be easily adapted for growing number of simu-lating phenomena and ever for increasing user demands for tools andfunctions included into system and performance of hardware hostingthe system.Fine-grain computational model named Parallel Substitution Algorithm(PSA) [5] was chosen as a formal ground of the system. The PSA combinessubstitutional character of Markov's algorithm [6] with spatial parallelismof cellular automata [7]. The PSA is based on common for these notationsassociative mechanism of operation application. The PSA represents naturalparallelism of computations, which means that at each step all the allowedactions are executed for all the available data. Such constitution of a modelallows to describe within it cellular automata, neural and cellular-neuralnetworks, systolic structures, homogenous structures with programmed logicand so on.From the architectural point of view, the WinALT is built as an opensystem [8]. It was created quite universal, but in dynamic rather than staticway when all useful functions are embedded. A user has means to add newmodules with a certain uni�ed interface. He can replace or exclude modulesand modify their relationships. These modules can be produced by a userhimself or be parts of standard libraries [9]. The openness of the WinALT[9] is the main di�erence from its ancestor, ALT [10]. An open system[11] is characterized by such features as extensibility, scalability, portability,interoperability, and friendliness of user's interface.2.2. The WinALT user's interfaceThe interface represents main PSA properties, which are concluded in thethree following statements:� The processed information is presented as a cellular array, which is aset of cells, entities of atomic type (bit, character, number et al.) withcertain location within array.



Imitational simulation of �ne-grain algorithms and structures 91� Algorithm is presented by set of parallel substitutions. A substitutionhas left and right parts. Left part expression generates an associatedcellular array for each cell name. If this array exists in processed array,then the substitution is executed. Execution means the replacementof a certain basic part of found array by the right part of substitutionof the same cell name.� The process of computation is iterative: all the applicable in a cellulararray substitutions are executed at each step. The execution is �nishedwhen there are no more applicable substitutions in processed array. Itis this array that is the result of the PSA work.The writing of correct parallel algorithm is not an easy task. To facilitateit, the local information transformations are used in the PSA in graphicalform of certain cellular object discrete space of cellular arrays, left and rightparts of substitutions. Left and right parts are represented by cellular arraysthat called templates. It is this approach that is the principle of the interfaceconstruction. Its property is tight integration of textual and graphical formsof model description. The interface is divided into graphical and languageparts. The language part of model is called simulating program.2.2.1. Graphical interface. When conducting simulating process thatconsists of multitude of data parallel transformations, it is very importantto present the results in an easily readable form for a user, so that he atleast could understand the qualitative picture of processes in model. Thusthe friendliness is the key feature of a GUI.Multiwindow interface is well known to a Windows user. The tools andfunctions of the system are gathered into the GUI elements, such as panelsand menues [12].The representation of cellular object: the array or the template is themain part of graphical interface. A 3D object is visualized as a deck ofrectangular layers, one of which is visible at the screen. Also, an object canbe shown as evolvent of layers in a plane. A layer is a matrix of the coloredcells. The colour denotes the cell value.A model forms a project, which includes a set of cellular objects, all thesimulating program sources, and all the used external libraries. All the partsof a project and its tree can be shown in their respective windows.The system tools and services gives a user a comfortable environmentfor the construction and the modi�cation of cellular arrays and simulatingprograms. The environment includes means for data transformations obser-vations. In debug mode, it is possible to trace all substitution applications.The model window, given in the next section sample, gives an impressionon graphical interface.



92 M.B. Ostapkevich, S.V. Piskunov

Figure 1. Sample the OVE screenshotOf course, the list of implemented functions given above is by no waycomplete. As the WinALT is an open system, it can be enriched by subsys-tems with new functions for graphical representation of objects in models.One of such subsystems that were included in the system is OVE [13]. Itenables the inclusion of custom visualization modes in the system. Thesemodes are implemented by external libraries written by a user. They arecalled object visualization drivers. The samples of their screenshots areshown in Figure 1 for square and hexagonal grids, value visualization bycolor, arrows and numbers.2.2.2. Language interface. The language is used for the model textualform writing. It is discussed and substantiated in details in [14, 15]. Extensi-bility is one of distinctive properties of the language. The language consistsof three parts. The �rst one contains operators for compact representationof parallel computations spread in space and based upon the PSA. Anotherpart unites statements of general purpose sequential language for structuredprogramming. The last part is presented by means of library construction inthe system language and function import from libraries included into widelyspread general purpose languages, C or C++ in the current version.The �rst part of the language is central. A lot of its operators is similarto the ALT operators. A parallel substitution is set by a compound paralleloperator that includes in, at, do operators. The compound operator de�nesa ubiquitous execution of local information transformations within a cellulararray.The in operator with a cellular array name de�nes the space of substitu-tion application. The substitution itself is set by at-do tuple of operators.The at contains the name of left-hand template, while the do contains thename of right-hand template. Just as in the ALT system, a vector form of



Imitational simulation of �ne-grain algorithms and structures 93substitution exists. Such substitution makes a transformation in a group ofobjects at once. In this case, each tuple operator is followed by the list ofcellular object names in round brackets. Placing templates into lists meansthat their movement in cellular arrays is performed in coordination. Theinformation transformations are also performed in coordination.The iterative procedure of the PSA application is implemented by ex-endsynchroblock. For the sake of convenience, there are two more types ofsynchroblocks: clock-end, change-end. The clock executes a speci�ednumber of iterations. The change is executed once. The number of iterationsin clock can be set by a constant or expression. Also, expressions can beused instead of constants in on operator, that limits the area of substitutionapplicability in cellular array by its certain part.The same situation is with step operator that sets applicability step.The let operator, which implements synchronous assignment, is among newoperators. Included into a synchroblock, it changes the value of its param-eter, a variable, only at the end of synchroblock iteration. This operatorallows to imitate substitutions with any naming functions [5] and not justtemplate description functions.The existence of the second part in the language is justi�ed by severalreasons. First, many parallel algorithms have at least a small part of se-quential computations [16]. Second, there is a need to describe complexdata transformations by the functional substitutions. Such transformationsare formed as procedures and functions. Their names are used as a param-eter in do operator. Third, it is required to describe auxiliary procedures,such as data input/output.The uni�cation of parallel and sequential parts of the language is reachedby the ability of synchroblocks to contain both types of operators. Never-theless, the semantics of sequential operators is not altered in synchroblocks,the results of their execution are assigned immediately.The third part of the language is responsible for extensibility. It containsimport and use operators. These operators import external libraries.Pascal was chosen as syntactic prototype of the WinALT language. Thischoice means that the structurization of model program, procedure andfunction syntax and most of keywords are borrowed from Pascal.The ALT and the WinALT systems are used for the design and the re-search of computing devices models [5, 17]. The use of the WinALT forcellular-neural networks is presented in [18]. The technology of model con-struction is considered in [19]. Here we shall introduce the model of physicalprocess.Example of model description (Figure 2). The model implements circum-
uence of obstacle by 
uid stream. It is based upon [20, 21] and is calledthe FHP model on hexagonal grid.There are six types of particles with six directions of motion. The angle



94 M.B. Ostapkevich, S.V. Piskunov

Figure 2. Sample model screenshotbetween neighbor directions is 60 degrees. There is also a motionless particle.The grid is represented by two layer FHP_gas cellular array. The layer zerois a working �eld for moving particles. Digits from 0 to 6 of cell state in thislayer correspond to seven kinds of particles. The seventh digit correspondsto the obstacle. The �rst layer is used for hexagonal grid imitation. Thisimitation is done by separation of layer into even and odd rows and by twotwo-layer templates H_even, H_odd. In even rows of FHP_gas, the cells areset to 1, while in odd rows { to 0. The central cell in the �rst layer of H_evenis set to 1, while the same cell in H_odd is reset to 0. The proposed wayof cell state setting enables associative mechanism of template alternationin the simulating process. The variables written into cells of the layer zeroin H_even, H_odd templates sets the direction of particle motion: x1 (goesright), x2 (goes left), x3 (goes up right), x4 (goes down left), x5 (goes upleft), x6 (goes down right). The x variable is introduced for the case ofmotionless particle. The cells of the �rst layer (left most column) representsa line of particle sources. FHP_gas_union is entirely auxiliary. It serves forthe convenience of circum
uence observation by a user.The simulating program is made as follows: three synchroblocks 1, 2,3 (ch-end couple) are included into synchroblock 0 (ex-end couple). Such



Imitational simulation of �ne-grain algorithms and structures 95program structure means that the update of cell values is done within a loopconsisting of three steps. An essential part of the program is depicted in theright window in Figure 2. The use of functions in do operators is typicalfor this program. These functions transform values of local variables thatcorrespond to template cells.The update of grid nodes states is done within two steps of iteration.The �rst step (synchroblock 1) performs the impact of particles. Impacts aretaken from [21] and described in Impact_table_1, Impact_table_2 arrays.They are executed by FHP_impact_table function and H_simp_A template.Unlike [20], this model as in [21] has a possibility of particle deviation fromits direction. Deviations are set in Probably_table array and performed bythe same function and template as in impact. The generation of particlesis also done at the �rst step by the FHP_source function and the H_simptemplate. The second step (synchroblock 2), each particle is moved alongits direction from its current position to adjacent. This motion is performedby the FHP_shift function H_even, the H_odd templates for even and oddFHP_gas array rows, respectively. At the same step, the bouncing from wallis done by the FHP_wall_shift function. This action is done by the vectoroperators in-at-do. The vector components are listed in round braces aftereach of operators. For even and odd strings of the FHP_gas array the sameH_even, H_odd templates with addition of H_border are used. The latterallows to recognize an obstacle.At the third step (synchroblock 3), also, a vector command of sub-stitution moves the FHP_gas cell states to FHP_gas_union. The functionFHP_union and the H_simp_A, H_simp_U templates serve for that.To give an impression about functions used in the model, one of them isshown below. It is de�ned for all cells of layer zero in FHP_gas and it operatesx, z variables of the two layer template H_simp_A. The source constant isused to locate source cells in layer zero. Mask_x0 is for separation of themotionless particles. The wall constant serves for the wall detection. Therand() is a library function for the pseudo-random value generation. Therand_tran is a constant that sets the probability of single particle mutation.r is a stack variable. The �rst if operator cuts source cells. The secondlocates single cells, while the third changes the particle directions. The elseoperator marks cell states, which are di�erent from single cell states. Thefourth if with probability 0.5 changes cell state to new, in this case, the oldcell value is used as address in the Impact_table_1, Impact_table_2 arrays.These arrays code a transition table of a certain stochastic automaton. First128 positions code con�gurations of cell impact. Last 128 entries serve forcoding of cell bouncing from an obstacle.function FHP_impact;rbegin



96 M.B. Ostapkevich, S.V. Piskunovif z <>source thenif (x=mask_x0) or ((x<>0) and ((x)mod 2=0) and (x<wall)) thenr := (rand ())mod rand_tran;if r < 7 thenx := Probably_table(r);end {if}elseif (rand()) mod 2=0 then x := Impact_table_1(x);elsex := Impact_table_2(x);end {if}end {if}end {if}end {FHP_impact}The sample explicitly demonstrates the compactness and intuitive un-derstandability of graphical model representation and readability and con-ciseness of language means. The main block of model program is entirelypresented at screenshot. The part of program that is not depicted at thescreen and contains library function calls, variable and template declara-tions, procedures and functions, which are used in the main block, is writtenin a standard Pascal-like form.2.3. Architecture of basic version of system2.3.1. General description. The architecture is described in [1, 9]. Thereare three distinctively discernible parts of the system: kernel, graphical, andlanguage subsystems. The system extensibility and scalability is obtainedthrough modular design, which permits the implementation of most func-tions in external libraries. Operations for the support of such libraries areinside the kernel. The main means of intermodular interactions is event.This allows to minimize the number of interfaces and ease porting to dis-tributed environments.2.3.2. Kernel. Main kernel modules are the following: object manager andexternal library manager. The destination of modules and their interactionwith other modules will be described below in the overview of main subsys-tems. Object manager implements operations for cellular object creation,modi�cation of object properties and cells. The manager supports cellularobjects in di�erent formats. In fact, the real implementation of format sup-port is made outside the manager, in external libraries that interact withmanager through its interfaces.Library manager solves the problem of language extensibility by givinga mechanism of language enriching with functions that are implemented inexternal dynamically linked libraries.



Imitational simulation of �ne-grain algorithms and structures 972.3.3. Graphical subsystem. Graphical subsystem is module built asa Windows application. It was developed in Microsoft Visual C++ withthe MFC library. Basic and derived classes allow it to act as object editorand set of tools. The separation of physical, logical and visual levels inthe WinALT system allows graphical subsystem to use cellular objects in auniform way not depending on which particular format they are created in.The interaction between layers is done via kernel interface.2.3.4. Language subsystem. It implements the interpreter of systemlanguage. The preliminary translation into internal code is used becausethe performance of interpretation is a critical parameter. The kernel inter-faces for object and external library processing are used by a translator.The subsystem exists in two forms: 1) coupled with graphical subsystem;2) stand-alone console version. The console version does not have any toolsfor object visualization and editing. It is capable only to compile and executeprograms.2.3.5. The development of the WinALT architecture. In the pro-cess of the WinALT development, the modi�cation of its architecture wasplanned and is under implementation now. It increases the degree of the sys-tem structurization. The essence of modi�cation is the introduction of newlayer in hierarchy and general purpose function concentration in a library,which is external for the WinALT. The library is called Dynamically Con-�gurable Modular System (DCMS) [22]. This library can be considered as apart of software platform upon which the system is implemented. It enrichesthe platform with new interfaces that contain operations for a) associativedata access by a string key, b) the DCMS format typed value management,c) event-driven intermodular interface.Associative search by a unique key is used in language subsystem intranslation block and in object manager for object descriptor retrieval byidenti�er. It is also required for storage of substitution set indexed by namesand coordinates in substitution storage manager. Associative search is usedfor sparse array representation as well. The data structures for associativesearch [23] were developed. Their e�ciency in comparison with binary andbitcoded trees was shown for the data search in �ne-grain algorithms simu-lating system. The DCMS from a virtual machine point of view has opera-tions for value processing. These values always have certain type. They arerepresented in single format in the RAM and their operations are containedin the so called value manager. The DCMS values are used as uni�ed formof intermodular data exchange. For example, interaction between topol-ogy manager and console or graphical environment entirely relies upon theDCMS values. The DCMS event-driven intermodular communication is alsowidely used because it simpli�es modi�cations in system even at interface



98 M.B. Ostapkevich, S.V. Piskunovlevel.In the conclusion of Section 2 it should be mentioned that the size ofsystem source texts is 3MB.3. Description of cluster versionSu�ciently detailed simulation of cellular algorithms for non-linear dynam-ics, image reconstruction, imitation of parallel computation structures re-quire a huge amount of computational resources. For example, the experi-ments of such types were held on cellular arrays with sizes from 1024�1024up to 5000�5000 on Connection Machine [20]. The �elds of even greatersizes are required in the 3D case. That requires porting of the system to par-allel computer. Further the architecture of cluster version and constructionof models in it shall be considered.3.1. Architecture of cluster versionCluster version is an extension of the basic WinALT version. It consists ofthree parts: client, daemon, and server.Client part is represented either by graphical or console version of theWinALT. Server is a modi�ed console version. Daemon is utility, which iscurrently implemented only under Win32. The user interface for its set upconsists of icon in Explorer task bar and a menu associated with it. Bothserver and daemon are installed on each cluster node.The interaction of components goes as follows. Daemon is activated atstartup on cluster nodes and is waiting for commands. A user launchesclient part. It requests daemon to start server parts on each node.The parts of cluster version have some cluster speci�c modules. Themain ones are:� network communication module, which allows to make connectionsbetween machines, perform synchronization and data transfers; thereare two versions of this module: one for client and daemon and theother for server;� modi�cation of object manager for client version; it enables objectdivision for spread on cluster hosts;� server's modi�ed module of syntax analyzer and code generation in-cluding generation of communication code;� server's modi�ed interpreter of internal code including cluster datatransfer and synchronization procedures.The separation of network communication module allows to utilize net-work communications from di�erent libraries (e.g., PVM [24], MPI [25],



Imitational simulation of �ne-grain algorithms and structures 99sockets [26]). That can be accomplished by creation of speci�c versions ofthis module.The choice between low and high level communication tools is resolvedby balance of e�ciency and 
exibility on one hand and ease of implementa-tion on the other. In the WinALT, as a simulating system, the importantof the two former factors is high. That has leaded to refusal in usage of thePVM and the MPI at least at this stage of development. Current versionrelies upon sockets library as a means of interaction between part of the dis-tributed application both at initialization and computation phases. Socketsis currently a de facto standard interface of TCP/IP [27].The source code size of cluster speci�c modules is 243KB.3.2. Model construction and execution on cluster3.2.1. Porting model to cluster. Model that was built in the basicversion of system is automatically ported to cluster if it meets certain limi-tations:� data is represented by one or several cellular arrays that have equalsizes at least for dimension, which is used for division of these arraysinto parts that are to be spread among cluster machines;� only local data transformations set by templates with sizes indepen-dent from processed data array sizes and at least one degree less thanthe latter are used;� only fully de�ned local data transformations are used;� local transformations with associative search are used.Such limitations are by no means burdensome as they are actually theproperties of most �ne-grain algorithms and structures from classes (seeSection 2.1) which are targets of designed system. Typical sample fromSection 2.2.2 proves this thesis.Automatic porting of model from one version of system to another meansthat a user is relieved from explicit coding of communications. The executionof a model is initiated by a user on the host where the client is running.Data preparation and their transmission to cluster nodes is performed byinteracting client and daemons without user participation.The phase of user construction in the basic WinALT version can beconsidered as debugging one, when a user has a possibility to use all theavailable model construction and debugger functions. Later the results ofsingle machine simulations can be used as reference ones in �rst (test) launchon the cluster.It is more complicated when a model in basic version uses some typesof operators for simulation acceleration on single machine. Among these



100 M.B. Ostapkevich, S.V. Piskunovoperators are those Pascal-like from the second part of the WinALT languageif they are used for control constructions in the main block of simulatingprogram.In this case before porting, a program has to be manually modi�ed.Otherwise the parallel simulation might loose its gain in performance oversequential. First, remaining within limitations of the WinALT language,\undesirable" operators should be eliminated if that is possible. Additionallayers in templates or extra templates can be used for this. Usually suchmodi�cation made with the help of visualization tools is not di�cult.Nevertheless, if a model is radically changed and data amount increasesconsiderably, a user has to program communications manually. The minimalset of functions exists in cluster version for this purpose. In this case, theresults of simulation in sequential mode should be used for comparison andveri�cation.3.2.2. Model execution on cluster. To execute a model on cluster,a user either runs a) console version from command line, e.g., from FarCommander being in model project directory, or b) graphical version fromexplorer menu start/Programs/WinALT/WinALT. In either case, he speci�esthe obligatory topology parameters, name of main source program to simu-late, arrays to split, arrays to send back to a client as results of simulation.The templates are always sent identical to all cluster nodes.To make a transition of model from 2.2.1. to a model running on twohosts, it is enough to issue a command line:m:\winalt\bin\xaltcon.exe -tFHP1 -x2 -y1 -z1 -h(0,0,0)192.168.76.1-h(1,0,0)192.168.76.3 -rFHP_gas -rFHP_gas_union FHP_gas_imi.srcThe meaning of parameters is explained in the following list:winalt { root directory of the system;-tFHP1 { sets topology name;-x2 { sets size by x to two;-y1 { sets size by y to one;-z1 { sets size by z to one;-h(0,0,0)192.168.76.1 { sets IP for host in grid position (0,0,0) to192.168.76.1;-h(1,0,0)192.168.76.3 { sets IP for host in grid position (1,0,0) to192.168.76.3;-rFHP gas { declares object FHP_gas as divided and sent back as result;-rFHP gas union { declares FHP_gas_union as divided and sent back asresult;FHP gas imi.src { sets simulating source name.



Imitational simulation of �ne-grain algorithms and structures 101After initialization the client part compiles simulating program for twopurposes: a) veri�es syntax correctness; b) builds list of used cellular objectsand included �les. If the program contains errors, the execution is termi-nated. Otherwise, the client part prepares data for each node by makingcopies of some �les and splitting some of objects. Then it gets daemons ofcluster hosts into exclusive usage and sends prepared data to them. Theykeep it in their local �le systems.After completion of these steps, the client initiates simulating programexecution on cluster nodes through a command send to each server. Serverparts simulate the model program and at the end of each synchroblock thesynchronize data in divided arrays. Client polls the status of server processesand retrieves the console output. After termination of server parts, thearrays declared as results are sent back from daemons to client. Client partpastes them back into single objects.3.3. Results of the WinALT parallel version testingThe testing of cluster version was done for cellular automata models withlocal neighborhood of �ve or nine cells and two types of source data initial-ization: data spread over all array or concentrated in central part of array.The number of machines with equal performance varied from two to nine.Cluster version has shown good speedup rate [28] which is proximate to thenumber of hosts for models with steady data distribution (changes from 2.92for three hosts to 8.21 for nine) in the case of main array size 201x201. Inthe case of initial data concentrated in center, it is 2.61, 3.51, 3.77 for 3, 4, 5machines, respectively. The degradation of speedup rate is explained by thefact that the amount of data along the axis of object division is diminishedin a single host while template size, which determines the size of data sentbetween hosts, remain constant. That means that the communication timeaugments while computation time decreases.4. ConclusionThe system gives comfortable environment for accomplishing of all simu-lation steps: from model construction to simulating with particular sourcedata sets on single or multiple processors. The means of system allow tocreate concise and rather self-documented model description of models forall known �ne-grain kinds.Further system development is planned in two directions.The �rst direction is related to increasing of its portability. Currentlyonly console edition can work both in Win32 and Linux. It is planned tocreate portable graphical subsystem (its prototype is described in [13]) andthen porting parallel version to Linux.



102 M.B. Ostapkevich, S.V. PiskunovThe second direction is dedicated to increasing of system e�ciency for�ne-grain models with features, such as concentration of data at a certainpart of array. In parallel version, it is planned to implement dynamic loadbalancing for host load.References[1] Beletkov D.T., Ostapkevich M.B., Piskunov S.V., Zhileev I.V. WinALT, a soft-ware tool for �ne-grain algorithms and structures synthesis and simulation //Lect. Notes in Comput. Sci. { 1999. { Vol. 1662. { P. 491{496.[2] Beletkov D.T., Ostapkevich M.B., Piskunov S.V., Zhileev I.V. The tools oflanguage and graphical interface of a simulating system for computations withspatial parallelism // Proc. of the VI-th Intern. Workshop DDP. { Novosibirsk,1998. { P. 228{232 (in Russian).[3] Cellular Automata Simulation System. {http://www.cs.runet.edu/~dana/ca/cellular.html.[4] CellLab. { http://mathcs.sjsu.edu/faculty/rucker/cellab.htm.[5] Achasova S.M., Bandman O.L., Markova V.P., Piskunov S.V. Parallel Sub-stitution Algorithm. Theory and Application. { Singapore: World Scienti�c,1994.[6] Markov A.A. Theory of Algorithms // Proc. of Mathematical Institute ofAcademy of Science of USSR. { 1954. { Vol. 42 (in Russian).[7] Codd E.F. Cellular Automata. { New York, London: Academic Press, 1968.[8] Wirth N. A plea for lean software // IEEE Computer. { 1995. { Vol. 28, Iss. 2. {P. 64{68.[9] Ostapkevich M. The open architecture of WinALT // NCC Bulletin, Se-ries Comp. Comp. Science. { Novosibirsk: NCC Publisher, 1998. { Iss. 9. {P. 93{106.[10] Markova V.P., Piskunov S.V., Pogudin Y.M. Formal methods, language andinstrumental tools of cellular algorithms and structures synthesis // Program-mirovanie. { 1996. { ü 4. { P. 24{36.[11] Filinov E. The selection and development of the open system environmentconceptual model // Open Systems. { 1995. { Vol. 6, ü 4. { P. 32{46.[12] Beletkov D.T. Graphical construction of computer models of 3D cellular al-gorithms and structures // Proc. of Young Scientists Conf. { Novosibirsk:ICMMG, 1998. { P. 3{13.[13] Ostapkevich M., Shashkov D. The construction of graphical interfaces // NCCBulletin, Series Comp. Comp. Science. { Novosibirsk: NCC Publisher, 2001. {Iss. 14. { P. 59{64.



Imitational simulation of �ne-grain algorithms and structures 103[14] Ostapkevich M. Language tools of WinALT system // Proc. of Young ScientistConf. { Novosibirsk: ICMMG, 1998. { P. 182{194.[15] Piskunov S.V. WinALT { a simulation system for computations with spatialparallelism// NCC Bulletin, Series Comp. Comp. Science. { Novosibirsk: NCCPublisher, 1997. { Iss. 6. { P. 71{85.[16] Denisov V.M., Matveev U.N., Ochin E.F. The principles of system organizationfor image processing on the basis of cellular logic // Foreign radioelectronics. {1984. { ü 1. { P. 3{25.[17] Kostsov E.G., Piskunov S.V. Computer-aided design of two-layer computa-tional matrix with optical interconnections // Avtometriya. { 2000. { Vol. 3. {P. 3{16.[18] Pudov S. A method for learning of �rst-order cellular networks // NCC Bul-letin, Series Comp. Comp. Science. { Novosibirsk: NCC Publisher, 2001. {Iss. 14. { P. 65{77.[19] Ostapkevich M., Piskunov S.V. Basic constructions of models in WinALT //NCC Bulletin, Series Comp. Comp. Science. { Novosibirsk: NCC Publisher,2001. { Iss. 14. { P. 43{58.[20] To�oli T., Margolus N. Cellular Automata Mechanics. { Massachusetts Insti-tute of Technology, 1987; Russian Translation. { Moscow: Mir, 1991.[21] Medvedev Yu. Cellular-automata models of 
uid dynamics // NCC Bulletin.Special issue. { Novosibirsk: NCC Publisher, 1999. { P. 97{102.[22] Ostapkevich M. Event-driven tools for open system design // NCC Bulletin.Special issue. { Novosibirsk: NCC Publisher, 1999. { P. 15{22.[23] Ostapkevich M. Expulsive tree data structures for fast data search by a key //NCC Bulletin, Series Comp. Comp. Science. { Novosibirsk: NCC Publisher,1999. { Iss. 10. { P. 73{82.[24] Geist A., Beguelin A., Dongarra J., JiangW., Manchek R., Sunderum V. PVM:Parallel Virtual Machine a User's Guide and Tutorial for Networked ParallelComputing. { Cambridge, Massachusetts, London, England: The MIT Press,1994.[25] Snir M., Otto S.M., Huss-Lederman S., Walker D., Dongarra J. MPI: theComplete Reference. { Boston: MIT Press, 1996.[26] Network Interface Guide. { Sun Microsystems, Inc, Palo Alto, 2000.[27] Technology of Electronic Communications: Multinetworks, Internetwork Com-munications, TCP/IP protocol. { Moscow: Ecotrends, 1993. { Vol. 3 (in Rus-sian).[28] Wilkinson B. Computer Architecture: Design and Performance. { London:Prentice Hall, 1991.



104


