Bull. Nov. Comp. Center, Comp.Science, 14 (2001), 59-64
(© 2001 NCC Publisher

The construction of graphic interfaces*

M.B. Ostapkevich, D. Shashkov

The Object Visualization Engine library developed by the authors is described
in the paper and its architecture is substantiated. This library provides an easy way
for a user to implement the modules for custom visualization of cellular objects.
These modules are called Object Visualization Drivers (OVD). The algorithm of
the OVD construction is given. Sample drivers on the rectangular and hexagonal
grids by means of colors, directions, and numeric values are presented.

1. Introduction

Fine grain computation models have versatile applications from the design of
massively parallel computing devices to research in physics, chemistry, and
biology. This simulation process for such type of algorithms typically has a
huge number of simultaneously performed data transformations. Thus it is
not an easy task for a researcher to comprehend the phenomena that take
place in the simulating model. This understanding must be facilitated by
the custom visualization modes which are most appropriate for a particular
application. Different fine-grain applications typically do not have the same
form of intermediate data and results [1].

The goal of the work is to provide a WinALT [2] user with a means
for creation and insertion of custom cellular arrays visualization modes.
This would allow to enrich the universality of the system for new potential
applications. Such a means was constructed in a form of a library called
Object Visualization Engine (OVE), which is a part of the WinALT graphic
interface subsystem. The OVE includes the set of external libraries, each
of which implements one mode of visualization. These libraries are called
Object Visualization Drivers (OVD). A user may include his own drivers in
this set.

The design of the system is based on the analysis of existing approaches
to the construction of visualization tools such as graphic editors. The ap-
proaches to the creation of systems that have open architectures based upon
publicly available interfaces of functions [4] were also taken into considera-
tion.

*Supported by the Russian Foundation for Basic Research under Grant 99-07-90422.

60 M.B. Ostapkevich, D. Shashkov

2. Substantiation of the OVE architecture

2.1. The requirements to the OVE. Some features of data represen-
tation which are general for the whole class of fine-grain algorithms can be
obtained from the investigation of Parallel Substitution Algorithm [3] that
is the theoretical basement for this class of algorithms:

1) all the data objects (further, cellular arrays) are represented by sets
of data elements (further, cells) of the same type;

2) cells are indexed by one, two or three dimensions depending on the
dimension of a cellular array;

3) the cell values are altered in the discrete time (typically a part of them
at a single step).

Thus, a cellular array has to be painted as a rectangle. The drawing of
any two cells in one array has to be done in the similar way. As the size of
an array may be huge for the real world tasks, a capability to visualize its
part must be implemented. The visible rectangle ought to slide easily.

The obligatory operations for the object management are: creation, dele-
tion, and modification of attributes (name, scale, and visualization modes).
The set of such operations was formed in graphic editors. Some of them
were implemented in the WinALT graphic subsystem, thus not all of them
has to be in the OVE. At the same time, the interoperability between the
WinALT graphic subsystem and the OVE should be established.

The cell values are not interpreted in the same way in different appli-
cations. The set of these applications is not predefined. Thus, a fixed set
of the visualization modes may not reside in the OVE itself. Instead, the
implementations of visualization modes ought to be in a form of external
modules which form a flexible set. A user may add new modules to this set
and exclude the existing ones.

2.2. The OVE architecture overview. The requirements formed in the
passage above lead to the following architecture. It must be open and ought
to be based on the same principles as that of the whole WinALT [5]. The
subsystem is divided into fixed and flexible parts. The fixed part contains
the operations, which are the same for all the visualization modes. And
besides, this part manages the external libraries (or Object Visualization
Drivers, the OVD), each of which implements a certain visualization mode.
The set of the OVDs forms the flexible part of the subsystem.

3. The OVE architecture

The fixed part is represented by the following modules: the OVD manager
(OVDMegr), visual object manager (VisObjMgr), standard interface element

The construction of graphic interfaces 61

OVE
XALTOVE
VEDraw |« nogmog,zznz::::qoeﬁcuux
VVEE-E:::;h WinAMgr WAM_WinProc
¥ ¥ ¥
VisObjMgr OVDMgr WGrObj
VE_x::x(...) OVDN"I‘_xxﬂ...) WGEO_xxx(..)
E | WinC;VE I
WinALT

Figure 1. OVE architecture

"""""""" @2}5 N

;oo Lo |7 [1o 1o [1o0 1o |7 [0
55@1 10 |10 o [to |10 |10 {10 [0 |10
t z{w o [7 1o 1o 7 |10
¢ af o [0 1o [io @ o |10
t afio 1o [7 Jio 10 Jio fio [7 Jio
t o sfio 1o [o Jio 1o Jio 1o Jo io
t efio 1o [7 Jio 1o Jio 1o [7 Jio
4 _zfio Jio o o fio o fio o io
: (.0, 0, 0) = {int} 100 @

Figure 2. OVE standard interface elements

painter (VEDraw) and the interface modules between WinALT and OVE
(WinOVE), Win32 and OVE (WinAMgr) (Figure 1).

The OVDMgr implements the OVD loading. It calculates the number of
objects being visualized under a certain mode. When a driver is no longer
in use, the manager unloads it. The module includes as well the operations
for inclusion and deletion of a visual mode and obtaining the list of the
registered visual modes. It is the OVDMgr who brings extensibility and
scalability to the OVE.

Some elements of the visual interface are common for all the visual
modes. Namely, these are the rulers, edit, and status lines (Figure 2). Their
drawing is implemented in the VEDraw module.

The main data object, that is processed by the OVE, is visual object
which includes a cellular object and the parameters of its visualization, such

62 M.B. Ostapkevich, D. Shashkov

as cell scale, the visibility of rulers and edit line, current mode of visualiza-
tion and so on. The operations on the visual objects, which are common for
all the visual modes, are implemented in the VisObjMgr module. And the
rest of them are located in the OVDs.

The integration of the OVE, that is based upon Win32 SDK, into
WinALT, which uses the MFC class library, is performed by the WINOVE

module.

4. Object visualization drivers and their
interface

As it was mentioned above, the painting is not done by the OVE itself. It
is up to a driver to draw. A driver is a dynamically linked library. The
OVE calls it via its interface that is the same for all OVDs and hides the
differences between the particular drivers.

The interface consists of two functions: OVD_Paint and OVD_Request.
OVD_Paint is the main OVD function, as it performs the drawing of an
object. OVD_Request contains the code for all the other OVD operations. It
takes an integer value that denotes subfunction code and two values. Their
meaning depends on a particular subfunction. Not all the subfunctions are
obligatory for the implementation of a commonplace driver. The OVE can
call, for example, a subfunction in the OVD to determine if a driver requires
the visibility or rulers or edit line. Or the OVE may demand the correction
of cell sizes.

An OVD may not paint directly in a window. It draws in a memory
region instead. The OVE caches the created images so as to speed up the
drawing or scrolling and improve the overall performance.

The set of the Win32 API functions used in a driver is quite small, thus
the code is quite portable because these functions can be easily reimple-
mented. In Linux WINE package for the Win32 emulation can be used.

5. Steps of the OVD creation

The OVE distribution contains the source of the simplest driver. A user may
commence the code from the scratch or basing upon this skeleton, which has
to be modified in the following locations.

The loop body in OVD_Paint must contain the code for cell drawing for
one or several visualization submodes. Only the main submode is obligatory.

The OVE passes the submode number in SETSUBMODE subfunction. The
number is kept in nSubMode variable in the skeleton. The main submode
redraw is requested by default. If a user have press Ctrl and/or Shift, other

The construction of graphic interfaces 63

modes are activated. After the key was released the main mode is restored
in one second.

All the other code modifications are done in the OVD_Request function.
First, the initialization code has to be inserted into the INITIALIZE sub-
function. It is activated after the OVD has been loaded. Then, the code for
cell size correction is implemented if required. in CORRECT_SIZES subfunc-
tion. If a driver has no fixed, maximal, or minimal cell sizes, this step can
be omitted. The last place to modify is DEMAND_PROPERTIES subfunction.
The OVE calls it to determine the capabilities of an OVD (e.g., whether it
is capable to edit) and what the OVD demands from the OVE (e.g., if the
rulers have to be visible).

6. The OVD samples overview

A number of samples were designed for the most widely used visual modes.
The spreadsheet mode outputs the values as numbers in rectangular cells
(Figure 3a). The stream mode interpreters the cell values as directions and
paints them with arrows (Figure 3b). Many models in physics, such as
diffusion, use the hexagon grid mode (Figure 3c). The visual mode for the
1D objects that contains signal samples (e.g., sound) is depicted in Figure 3d.

Figure 3. Visual modes

7. Conclusion

The further development of the OVE includes first of all the construction of
new OVDs. The standard WinALT visual modes in the graphic subsystem

64 M.B. Ostapkevich, D. Shashkov

have to be converted into the OVD form. The unification of intermodular
interaction mechanisms will be done by converting the OVE interfaces into
event-driven style with the help of DCMS [6].

References

[1] Toffoli T., Margolus N. Cellular Automata Machines. — Moscow: Mir, 1991.

[2] Beletkov D., Ostapkevich M., Piskunov S., Zhileev I. WinALT, a software tool
for fine-grain algorithms and structures synthesis and simulation // LNCS. -

Springer, 1999. — Ne 1662. — P. 491-496.

[3] Achasova S.M., Bandman O.L., Markova V.P., Piskunov S.V. Parallel Substi-
tutution Algorithm. Theory and Application. — Singapore: World Scientific,
1994.

[4] Wirth N. A plea for lean software // IEEE Comp. — 1995. — Vol. 28, Ne 2. —
P. 64-68.

[6] Ostapkevich M. The open architecture of WinALT // NCC Bulletin, Series
Comp. Science. — Novosibirsk: NCC Publisher, 1998. — Issue 9. — P. 93-106.

[6] Ostapkevich M. Event-driven tools for open system design // NCC Bulletin,
Special Series. — Novosibirsk: NCC Publisher, 1999. — Issue 1. — P. 15-22.

