
Bull. Nov.Comp.Center, Comp.Science, 14 (2001), 59{64c
 2001 NCC PublisherThe construction of graphic interfaces�M.B. Ostapkevich, D. ShashkovThe Object Visualization Engine library developed by the authors is describedin the paper and its architecture is substantiated. This library provides an easy wayfor a user to implement the modules for custom visualization of cellular objects.These modules are called Object Visualization Drivers (OVD). The algorithm ofthe OVD construction is given. Sample drivers on the rectangular and hexagonalgrids by means of colors, directions, and numeric values are presented.1. IntroductionFine grain computation models have versatile applications from the design ofmassively parallel computing devices to research in physics, chemistry, andbiology. This simulation process for such type of algorithms typically has ahuge number of simultaneously performed data transformations. Thus it isnot an easy task for a researcher to comprehend the phenomena that takeplace in the simulating model. This understanding must be facilitated bythe custom visualization modes which are most appropriate for a particularapplication. Di�erent �ne-grain applications typically do not have the sameform of intermediate data and results [1].The goal of the work is to provide a WinALT [2] user with a meansfor creation and insertion of custom cellular arrays visualization modes.This would allow to enrich the universality of the system for new potentialapplications. Such a means was constructed in a form of a library calledObject Visualization Engine (OVE), which is a part of the WinALT graphicinterface subsystem. The OVE includes the set of external libraries, eachof which implements one mode of visualization. These libraries are calledObject Visualization Drivers (OVD). A user may include his own drivers inthis set.The design of the system is based on the analysis of existing approachesto the construction of visualization tools such as graphic editors. The ap-proaches to the creation of systems that have open architectures based uponpublicly available interfaces of functions [4] were also taken into considera-tion.�Supported by the Russian Foundation for Basic Research under Grant 99-07-90422.



60 M.B. Ostapkevich, D. Shashkov2. Substantiation of the OVE architecture2.1. The requirements to the OVE. Some features of data represen-tation which are general for the whole class of �ne-grain algorithms can beobtained from the investigation of Parallel Substitution Algorithm [3] thatis the theoretical basement for this class of algorithms:1) all the data objects (further, cellular arrays) are represented by setsof data elements (further, cells) of the same type;2) cells are indexed by one, two or three dimensions depending on thedimension of a cellular array;3) the cell values are altered in the discrete time (typically a part of themat a single step).Thus, a cellular array has to be painted as a rectangle. The drawing ofany two cells in one array has to be done in the similar way. As the size ofan array may be huge for the real world tasks, a capability to visualize itspart must be implemented. The visible rectangle ought to slide easily.The obligatory operations for the object management are: creation, dele-tion, and modi�cation of attributes (name, scale, and visualization modes).The set of such operations was formed in graphic editors. Some of themwere implemented in the WinALT graphic subsystem, thus not all of themhas to be in the OVE. At the same time, the interoperability between theWinALT graphic subsystem and the OVE should be established.The cell values are not interpreted in the same way in di�erent appli-cations. The set of these applications is not prede�ned. Thus, a �xed setof the visualization modes may not reside in the OVE itself. Instead, theimplementations of visualization modes ought to be in a form of externalmodules which form a 
exible set. A user may add new modules to this setand exclude the existing ones.2.2. The OVE architecture overview. The requirements formed in thepassage above lead to the following architecture. It must be open and oughtto be based on the same principles as that of the whole WinALT [5]. Thesubsystem is divided into �xed and 
exible parts. The �xed part containsthe operations, which are the same for all the visualization modes. Andbesides, this part manages the external libraries (or Object VisualizationDrivers, the OVD), each of which implements a certain visualization mode.The set of the OVDs forms the 
exible part of the subsystem.3. The OVE architectureThe �xed part is represented by the following modules: the OVD manager(OVDMgr), visual object manager (VisObjMgr), standard interface element



The construction of graphic interfaces 61
Figure 1. OVE architecture

Figure 2. OVE standard interface elementspainter (VEDraw) and the interface modules between WinALT and OVE(WinOVE), Win32 and OVE (WinAMgr) (Figure 1).The OVDMgr implements the OVD loading. It calculates the number ofobjects being visualized under a certain mode. When a driver is no longerin use, the manager unloads it. The module includes as well the operationsfor inclusion and deletion of a visual mode and obtaining the list of theregistered visual modes. It is the OVDMgr who brings extensibility andscalability to the OVE.Some elements of the visual interface are common for all the visualmodes. Namely, these are the rulers, edit, and status lines (Figure 2). Theirdrawing is implemented in the VEDraw module.The main data object, that is processed by the OVE, is visual objectwhich includes a cellular object and the parameters of its visualization, such



62 M.B. Ostapkevich, D. Shashkovas cell scale, the visibility of rulers and edit line, current mode of visualiza-tion and so on. The operations on the visual objects, which are common forall the visual modes, are implemented in the VisObjMgr module. And therest of them are located in the OVDs.The integration of the OVE, that is based upon Win32 SDK, intoWinALT, which uses the MFC class library, is performed by the WINOVEmodule.4. Object visualization drivers and theirinterfaceAs it was mentioned above, the painting is not done by the OVE itself. Itis up to a driver to draw. A driver is a dynamically linked library. TheOVE calls it via its interface that is the same for all OVDs and hides thedi�erences between the particular drivers.The interface consists of two functions: OVD_Paint and OVD_Request.OVD_Paint is the main OVD function, as it performs the drawing of anobject. OVD_Request contains the code for all the other OVD operations. Ittakes an integer value that denotes subfunction code and two values. Theirmeaning depends on a particular subfunction. Not all the subfunctions areobligatory for the implementation of a commonplace driver. The OVE cancall, for example, a subfunction in the OVD to determine if a driver requiresthe visibility or rulers or edit line. Or the OVE may demand the correctionof cell sizes.An OVD may not paint directly in a window. It draws in a memoryregion instead. The OVE caches the created images so as to speed up thedrawing or scrolling and improve the overall performance.The set of the Win32 API functions used in a driver is quite small, thusthe code is quite portable because these functions can be easily reimple-mented. In Linux WINE package for the Win32 emulation can be used.5. Steps of the OVD creationThe OVE distribution contains the source of the simplest driver. A user maycommence the code from the scratch or basing upon this skeleton, which hasto be modi�ed in the following locations.The loop body in OVD_Paint must contain the code for cell drawing forone or several visualization submodes. Only the main submode is obligatory.The OVE passes the submode number in SETSUBMODE subfunction. Thenumber is kept in nSubMode variable in the skeleton. The main submoderedraw is requested by default. If a user have press Ctrl and/or Shift, other



The construction of graphic interfaces 63modes are activated. After the key was released the main mode is restoredin one second.All the other code modi�cations are done in the OVD_Request function.First, the initialization code has to be inserted into the INITIALIZE sub-function. It is activated after the OVD has been loaded. Then, the code forcell size correction is implemented if required. in CORRECT_SIZES subfunc-tion. If a driver has no �xed, maximal, or minimal cell sizes, this step canbe omitted. The last place to modify is DEMAND_PROPERTIES subfunction.The OVE calls it to determine the capabilities of an OVD (e.g., whether itis capable to edit) and what the OVD demands from the OVE (e.g., if therulers have to be visible).6. The OVD samples overviewA number of samples were designed for the most widely used visual modes.The spreadsheet mode outputs the values as numbers in rectangular cells(Figure 3a). The stream mode interpreters the cell values as directions andpaints them with arrows (Figure 3b). Many models in physics, such asdi�usion, use the hexagon grid mode (Figure 3c). The visual mode for the1D objects that contains signal samples (e.g., sound) is depicted in Figure 3d.a bc dFigure 3. Visual modes7. ConclusionThe further development of the OVE includes �rst of all the construction ofnew OVDs. The standard WinALT visual modes in the graphic subsystem



64 M.B. Ostapkevich, D. Shashkovhave to be converted into the OVD form. The uni�cation of intermodularinteraction mechanisms will be done by converting the OVE interfaces intoevent-driven style with the help of DCMS [6].References[1] To�oli T., Margolus N. Cellular Automata Machines. { Moscow: Mir, 1991.[2] Beletkov D., Ostapkevich M., Piskunov S., Zhileev I. WinALT, a software toolfor �ne-grain algorithms and structures synthesis and simulation // LNCS. {Springer, 1999. { ü 1662. { P. 491{496.[3] Achasova S.M., Bandman O.L., Markova V.P., Piskunov S.V. Parallel Substi-tutution Algorithm. Theory and Application. { Singapore: World Scienti�c,1994.[4] Wirth N. A plea for lean software // IEEE Comp. { 1995. { Vol. 28, ü 2. {P. 64{68.[5] Ostapkevich M. The open architecture of WinALT // NCC Bulletin, SeriesComp. Science. { Novosibirsk: NCC Publisher, 1998. { Issue 9. { P. 93{106.[6] Ostapkevich M. Event-driven tools for open system design // NCC Bulletin,Special Series. { Novosibirsk: NCC Publisher, 1999. { Issue 1. { P. 15{22.


