Bull. Nov. Comp. Center, Comp.Science, 14 (2001), 43-58
(© 2001 NCC Publisher

Basic constructions of models
in WinALT™

M.B. Ostapkevich, S.V. Piskunov

The methods and tools of model construction with fine-grain algorithms and
structures are considered and demonstrated by typical examples. The usage of the
system for models with complicated structure and large amount of data is presented.

Introduction

The WinALT is a simulating system of fine-grain algorithms and structures.
Its overall description is presented in [1-3]. From a user’s point of view the
main WinALT window has accustomed appearance of a Windows applica-
tion. Its interface is recognizable and intuitively clear, which undoubtedly
ease the learning of the system. A model created by the means of the system
can be distinctively divided into two tightly interacting parts: graphic and
textual. Each of them is supported by relevant subsystem of WinALT.

The graphic subsystem [4] along with its usual functions such as visual
representation of source, intermediate and resulting data in a model, iconic
view of tools and services, multiwindow document interface implements a
number of specific functions. These are determined by the main destination
of the system: being a tool for fine-grain algorithms and structures research.
Among such functions the construction of graphic images for commands and
the visualization of their application can be listed.

The language subsystem [5] supplies a user with a set of tools for con-
struction of textual part of model: the statements of a structured program-
ming language similar to Pascal, the means for creation of libraries and
finally the most important ones, the tools for concise representation of dis-
tributed in space parallel computations. We shall refer to the textual part
of the model as a simulating program in the further text.

The papers mentioned above are targeted on the description of the sys-
tem architecture, the graphic interface and the language rather than the
description of model construction within the system. Only [6] could be
mentioned as an exception. This article considers the two-level procedure
of aggregative model construction, but it is assumed in it that a user is
already familiar with basic WinALT functions and is capable of creating
simple models (those of the first level).

*Supported by the Russian Foundation for Basic Research under Grant 99-07-90422.

44 M.B. Ostapkevich, S.V. Piskunov

The goal of the article is to aid a user to learn the basic functions of
WinALT in the process of model construction up to the level sufficient for
capability of building his own model with the help of standard samples and
user’s documentation.

The main attention is drawn in the article to simultaneous usage of all
functions and tools provided by a system when creating a model. The same
service can be provided in several ways, only the most evident of which shall
be mentioned.

1. The structure of a model

1.1. The general structure of a model. It is rational to represent a
separate model by a separate project. In general, the mechanisms of project
construction are similar to those in such Windows application as Microsoft
Visual Studio [7]. A project is created by the Project tab in a dialogue
from File/New menu of the WinALT frame window. The construction of
a project results in creation of a directory that has the same name as the
project in a certain part of the directory tree. Inside the directory a file with
.wap extension appears. This file is intended to store the list of files that
belong to the project. After a project has been opened, a user gains access
to all the tools and can create and modify a model. Visually a model lies in
windows of two types.

The window of the first type, which has an associated file with .3do
extension, is created by selecting the string in Cellular Objects tab of the
dialogue activated by File/New menu item. A lot of such windows could
be created. These windows contain objects of a model. The extension of an
object file depends on the format of stored data. For example, a file that
contains a pixel image has .bmp extension. The extension of default type
object file is .axt. The Boolean and integer types both have .ast, while
floating point object type has .aft extension and so on. It is up to a user
to decide which object located in which window. Objects can be dragged
from one window to another. The same object can be located in more than
one such window.

The second type of window is represented by files with .src extension.
Such window can be created by selecting the string in Simulated Program
tab of the File/New menu item dialogue. This window should contain a
syntactically correct version of a simulating program after a model has been
created. The windows title bears the name of the program the window
contains. If a user wants to create more than one simulating program in
single model, he has to create the same number of windows of this type.
This might be useful for example when more than one program process the
same set of objects or their sets of objects have a certain intersection.

Basic constructions of models in WinALT 45

1.2. The structure of the model graphic part. Graphic objects can
be created and edited with the help of Tools toolbar (Figure 1). The tools
presented in this toolbar are called Arrow, Creator, Magic
Wand (from left to right). Creator instrument is designed
for cellular array and template creation. A user has to press
the left mouse button and expand the rectangular area so as to
obtain the desired location and visual size of the creating ob-
ject. After the mouse button released, New Object dialogue box appears.
This dialogue allows the setting of object size for three dimensions, object
name including the type of object. A user may select one of the follow-
ing standard predefined object types: default, boolean, integer, float,
string, character. Default type allows to set values of all the WinALT
types to any cell. And besides, each cell may be declared empty by setting
its type to void. Also, a cell may be named by an identifier. Such assign-
ments can be accomplished by Magic Wand tool. When it is selected, a
user may see an object with input focus that points to the current cell in an
object. By moving the focus, different cells may be initialized with a value
and a type. Cell properties could be seen at the status line at the bottom
of WinALT main window. Arrow tool let select an object or a group of
objects, move the selected objects in a sheet, change their visual sizes. The
principal difference between an object and a template is semantic rather
than formal. Arrays are intended for data storage while templates set right
and left parts of substitution commands [8] in the graphic form. As usual,
arrays have boolean, integer, float, string, character types. Void type
appears in array only in exceptional cases. Cells are distinguished by colors.
Everything is different with templates, the main object type for them is
default and void type is widely used for its cells. Empty cells are denoted
by white crossed squares. But it is worthy to mention that it is allowed to
utilize the same cellular object both as an array and as a template within
the same model. For further explanation of model construction methods let
us divide templates into three types. The templates of the first type do not
contain named cells, there are only colored or void cells in such objects.
The templates of the second type contain only void cells, some of which are
named. Finally, the templates of the third type contain both colored and
empty cells some of which are named.

Figure 1

1.3. The structure of a simulating program is traditional. It contains
the following types of parts: a library call, a template description, a vari-
able declaration, a constant definition, a procedure, a function and the main
program body. Any type of fragment except for the main body could be
omitted. Or vice versa it can be repeated more than once. The blocks could
be located in a random order, but of course, the definition of a term must
precede its usage. For example, the function declaration must lie before its

46 M.B. Ostapkevich, S.V. Piskunov

call. The fragments and their items are denoted by keywords with evident
meaning. For example, that could be demonstrated by template declara-
tion, which is a statement specific for WinALT. This fragment lies within
object-end block. The element of such block is a command template de-
scription, which contains variable names. It contains a pattern keyword
and an identifier that specifies template. Due to the fact that WinALT lan-
guage possesses quite a poor set of its own operations, a user is provided
with a means for data transformations with the help of libraries, which can
be imported into a WinALT program by import or use statements. These
ones differ in the way they load functions from libraries. Use adds names
indirectly that means that function calls must include a library name fol-
lowed by two colons. Import allows using function names without explicit
specification of library where they are located. Thus, if two libraries contain
functions with the same name, at least one of them has to be imported in-
directly. The inclusion of external modules written in WinALT language is
done by a preprocessor command include. The syntax of all the three oper-
ators is similar: a keyword is followed by a name of library. Nearly any more
or less complicated model contains the import of dems_gio and standard
libraries. Decms_gio contains functions for value input/output for WinALT
standard types: boolean, integer, float, string, character. Standard
implements functions for type cast, object management, benchmarking and
so on. Two more libraries ought to be mentioned, as they will be useful for a
user from the very first step of system learning. These are Altio and Vmisc.
The former has operations for console input/output. For example, there are
string and integer value input/output. The console input/output is done in
a dedicated for this purpose dockable window inside the main WinALT win-
dow. Vmisc is composed by functions for the 2D vector graphics (drawing
of primitives, color settings, line and fill style, text output).

The libraries are located in acllib and bin directories inside WinALT
root directory. The set of functions inside a library can be listed by issuing
a command dumpacl.exe <library name> >> <output file>.

The declarations of variables and constants are similar to those in high
level languages, thus it will not be mentioned in the further text. The same
remark could be done for function and procedure usage.

2. The basic constructions of typical fine-grain
models

The basic constructions will be introduced with gradually increasing com-
plexity of simulating object. We shall consider mainly the construction of
models with the 2D cellular arrays and templates, though of course the sys-
tem has the capability of processing objects with the maximal number of

Basic constructions of models in WinALT 47

dimension equal to three. We select the 2D because of its simplicity and im-
proved visual perception in comparison with the 3D. But if a user learns the
construction of the 2D models, it will not be a great problem to commence
the construction of the 3D models.

2.1. Models with one cellular array and templates of the first type.
Let us commence with the simplest case when a simulating object is a fine-
grain structure represented by an array (for example, the 2D). It consists
of cells with the same type. A cell contains a memory element. The time
is discrete. A cell functioning is described by a finite set of rules. A cell
determines its new state and the new state for some of its neighbours (0)
applying these rules to the current state of neighbour cells and one of its
own (I).

Let us create cellular objects which are required for a model of such a
structure.

First of all, we create a cellular array that contains the cell states of the
structure. A user may construct an array and set the initial values of its
cells as it was described in 1.2. Depending on which alphabet of cell states
a structure cell has, a user chooses between the existing types of cellular
arrays and WinALT value types.

The creation of templates is commenced considering the case when a
structure cell is a finite automaton with inputs and outputs and the rules
are state transitions. In this case, the templates of the first type could be
used. A template of the first type is defined by the states of a cell and its
neighbours. The default visualization mode in WinALT depicts cell states
by colors. The size of template is selected so that all the relevant cells reside
inside the rectangular area of the minimal dimensions. All the cells that are
ignored but included in the rectangle of the template have to be initialized
with void type. Each rule has two associated templates: one for I set and
another for O set. The former is called input template, while the latter
is output template of the rule. If the two sets coincide, the sizes for both
templates are the same. Otherwise the sizes are different. The samples of
templates are depicted in Figure 2.

e

d) e) f) g)

a

Figure 2. Samples of typical templates: a), b) left-hand part, c) right-hand parts
for rules with the von Neumann and the Moore automata, d), e) both parts of rules
for the Margolus automata, f), g) both parts of symbolic substitutions

48 M.B. Ostapkevich, S.V. Piskunov

It is assumed in WinALT that the top left cell of the template is the
anchor that is applied to any cell of the cellular arrays. For pairs of objects
it might be required to adjust their reciprocal po-
% sitions. This could be accomplished by insertion
of void cells in one of the templates. But a better
way is to issue shift operator that will be dis-
cussed later. A sample of such an adjustment is
Figure 3. The adjust- depicted in Figure 3.
ment of classic cellular The samples of structures which could be sim-
automata templates ulated by the templates described above are the
classical cellular automata [9], cellular automata with the Margolus neigh-
bourhood [10], symbolic substitution algorithms [11], or parallel substitution
algorithms [8], if there are no functional symbols in its record.

After all the required graphic object have been constructed, a simulating
program can be written.

To simulate one step of a fine-grain structure functioning, a simulating
program has to include operators that preform tiling for each cell in a cellular
array by the left-hand templates. Whenever all the non void cells of the
cellular array coincide with cells of applied template, they are substituted
by ones from the right-hand template. In the language, this tiling for one
rule is represented by the following bunch of the following statements:

in <cellular array name>
at <left hand template>
do <right hand template>

The pair of at-do operators is a command of substitution [8].

Note 1. If the adjustment of templates is required, shift operator is placed
after at. Shift contains the name of template and three coordinates in
brackets as parameters. The three coordinates denote three shifts for each
axis. The shift ()<right hand template name>(1,1,0) operator performs
the same adjustment as depicted in Figure 3.

The number of such constructions coincides with the number of transition
rules in the table of transitions. Their order is random. A record can be
more concise by excluding all in statements except the first one. Let us
denote such a record as R. To specify that all the changes of cell values are
synchronous, the record R is placed within so called synchroblock. There are
three types of such blocks in the language. A user chooses one depending on
the number of iterations and the condition of termination. If only one step
is to be executed, ch <R> end synchroblock is used. If k (k > 1) iterative
synchroblock cl k; <R> end is the most appropriate one. Finally, the
third type of synchroblock is implemented for the case when a model has

Basic constructions of models in WinALT 49

to repeat steps until no more changes of cell values occur (ex <R> end). It
can iterate eternally. To create a valid program, the synchoblock must be
placed within begin-end. block. The resulting program consists only of the
main body. Though being rather simple it is sufficient for many fine-grain
models simulation (such as classical cellular automata, cellular structures
with some non-classical neighbourhood [8, 11]). But a program with such a
structure cannot simulate many other models, such as an automaton with
the Margolus neighbourhood. Here a more complicated tiling is required,
as odd and even cells are handled differently. This sort of tiling could be
accomplished by on and step operators. On is placed after in and is used
for selection of a rectangular area inside the cellular array selected in in. On
takes six parameters in brackets. Parameters are separated by comma. The
first pair sets the range for z axis, the rest are for y and z respectively. The
value —1 denotes that the border coincides with the border of an array. If on
is included into the bunch, the tiling is made only for the selected rectangle.
Operator step sets the step of tiling. It takes three parameters in brackets
with comma as a separator. The first one sets step for z axis, the second
and the third are for y and z respectively. The main body for the Margolus
neighbourhood might look like this:

begin ch
ex in <cellular_array.-name>
ch on <1,-1,1,-1,-1,-1>

in <cellular._array name> step (2, 2, 1)
step (2, 2, 1) <R>
<> end
end end
end.

The simulation of the Margolus automaton is based on the alternation
of two grids, which is accomplished by placing two ch synchroblocks sequen-
tially into one ex synchroblock. The odd grid is imitated done via shift of
the region for which the tiling is constructed by one cell to the bottom and
to the left with the help of on operator.

2.2. Models with one cellular array and templates of the second
type. The templates of the first type have rather wide application both in
digital device [12] and physical [9, 13] models, as many types of their data
transformations can be performed by finite automata. But in the most of
practically useful models the state transition tables have a huge number of
entries thus leading to the big size of a program’s main body. As an ex-
ample, the Griffite (its description is given in the sample below) automaton

50 M.B. Ostapkevich, S.V. Piskunov

transition table could be considered. In the case of cellular neural network
with continuous sigmoide function such a table cannot be constructed. The
solution is to utilize templates of the second type proposed by the system.
These templates being a part of the graphic subsystem allow using functions
in the WinALT language. The interconnection of templates and functions
is established by a couple of at and do operators where the former contains
the template name as a parameter while the latter specifies the associated
function. All or some of template cell names are treated as function vari-
ables. The ones that are initialized within a function must be placed in the
list after the function name in the call statement. This list should be within
brackets. Its items are separated by semicolons or commas. The template
variable names are local in the sense that the same names can be used in
other templates. A function may have as well its own local variables for the
sake of particular implementation convenience. These variables are defined
immediately after the name of the function.

Example 1. The Griffite automaton model on hexagon grid is depicted in
Figure 4. Each cell of byte: :space_Hex array can have one of k states,
numbered from 0 to k — 1. Each cell alters its state according the fol-
lowing rule (Demon function): if the central cell named a in patti_Hex or
patt2_Hex templates has s state at the current step, and the state of either
b, ¢, 4, or e cell is greater by one, the value of the central cell becomes

object

pattern patt1_Hex
pattern patt2_Hex
endiphiecti

const
tik = 10000; k=14;
end {oonst)

function DEMON;
Juf
begin
buf := { a+1)mod k ;
if (buf = b)or(buf = c)er(buf = d)or(buf = e) ar (buf = f) or (buf = g)
then a = buf ; end
end function DEMON]

begin {grogram & ta H)
¢l tik;
show
in byte::space_Hex
step (1,2,1)
at patt1_Hex
do DEMON (a)
on {0,1,1,1, 1, -1)
step (1,2,1)
at patt2_Hex
do DEMON (a)

end {ui}
Jpattl Hex end. {program & ca M}

SLE #

Figure 4

Basic constructions of models in WinALT 51

(s + 1) mod k at the next step. The implementation of hexagon grid above
the rectangular is based upon the usage of pair of templates and on and
step operators.

Note 2. An auxiliary operator show is used in the simulating program in
Figure 4. It redraws all the objects with their current cell states. Of course,
more than one such operator can be placed in a program. There is one more
auxiliary operator stop intended to suspend the program. In the graphic
edition, a program execution can be resumed by pressing resume button at
execution toolbar (F1).

2.3. Models with one cellular array and templates of the third
type. These templates unlike ones of the second type are more demonstra-
tive. The text of the function linked with such a template is simpler as the
values of coloured cells need not to be verified within its body. There are no
essential differences between these templates and those of the second type.

2.4. Models with several cellular arrays and templates of all types.
The models with one big cellular array are typical for fine-grain structures
that simulate physical phenomena or cellular automata behaviour in the
finite part of infinite discrete space. But a structure that has more than one
such array can be easily imagined. For example, an associative processor
may consist of one 2D bit array and several 1D slices. The 2D matrix is
an associative memory divided into strings that contain numbers. The 1D
slices are lines of simple processor nodes, which process simultaneously the
columns of the matrix. For the construction of such sort of structures the
WinALT gives the means for vector processing. The tuple in, at, do is a
part of the means. When in vector mode these operators contain a list of
objects names in brackets, the items as usual are separated by comma or
semicolon. If at list contains templates of the second or third type, do must
contain a single name of a function. Such function can use named cells from
any object in at vector as its variables. If the list contains only templates
of the first type, do may be followed by similar template list. The syntax
requires that the number of list items in both lists should be equal, otherwise
the longer list will be truncated to length of the shorter one. However, a
user may use an artificial trick. A name of once void cell template could
be placed to the position, which is to be ignored. To enable the usage of
templates with different sizes it is assumed that the first array in in list is
the master and other are slaves. If the slave array is greater or equal to the
master, the coordinates within the vector substitution are the same. If it
is smaller by a certain axis, then its coordinate is calculating by taking the
module of master coordinate division by the slave array size for that axis.
This way of coordinate transformation allows to list arrays with different

52

. do

R L EER RN ST S TR SRR

use standard

object
pattern bit:table
pattern var_x
pattern var_z
end

bit::buffer

ar k.

unction transmission;

begin
=%
end
unction Z_and_Y:
hegin
z:=zandx
end

unction Z_and_not_Y;

T T I

bit:X bit:Z bit: begl;.: zand (%
end
var_xvar_z white Dlack ~ patsh L patsh R pegin

Ll

ch(Z

Figure 5

o

k= SizeX (§"bit::table");

M.B. Ostapkevich, S.V. Piskunov

in (bit:Z bit:X)
at (var_z, var_x)
do transmission (2)
end {ch})

clock k:
show pause
ch
{¥:= COL (i, table}}
in (bit:table, bit:shift. bit:Y)
at (var_x, white, var_z)
do transmission (2)

{buffer = word (i)}
in (bit:word, bit::shift, bit:buffer) 3
at (var_x, white, var_z)
do transmission (2)
end {ch}

in(bit:Z bit:Y, bit:buffer)
at (var_z, var_x, white)
doZ_and_Y (z)
at (var_z, var_x, black)
do Z_and_not_Y (2)
in bit::shift
atpat_sh_L
do pat_sh_R
end {ch}
end {cl}
end.

L % B

\\\\Pj\[‘\l\\\\\\F@]\\\\I\\\PP\\\I\\\\’I

Figure 6

L Hex W1, patt_Hex V2
DEROM (&)

Basie constructions of models in WinALT 53

dimensions in the same list. If on follows in the selection is done in the
master array. The selection in slaves is done in accordance with the rule
described above. Step sets the same steps for all items in vector.

Example 2. An imitational model of fine-grain structure that implements
a search algorithm by a key from [14] is depicted in Figure 5. A key is a bit
word kept in bit::word register. The search of words that coincide with
the key is performed in the strings of bit::table array. The words that
have coincidence with the key are marked in the respective bits of bit::Z
register unless they are masked by zero in bit: :X register. The algorithm
of search is set by Z_and_Y and Z_and_not_Y functions, which use x and y
cell names from templates var_x and var_y as variables defined for Z and
Y registers. The selection of a function at i-th step depends on the state of
buffer cell, that keeps i-th digit of bit::word register. The i-th digit is
selected with the help of bit: :shift register.

The tool for virtual cellular array creation can also be assumed as a
means for parallel computations. A virtual array is a subarray of another
array. A virtual array is created via Create Virtual Object window acti-
vated from Virtual menu of the main window if a parent array was selected
by Arrow tool before. The values of cells in both arrays are changed syn-
chronously. A virtual array plays the same role as on operator for its parent
array. But in the case of vector operators its role is somewhat different.
Unless on, which can only select parts of arrays, a virtual array can itself
be placed in a vector list. More than one virtual arrays could be defined for
the same parent array.

Example 3. Virtual cellular arrays could be used to emulate infinite cel-
lular space for a certain dimension. Let us close together the ends of
byte: :space Hex array from Example 1 by x axis so as to form a cylinder.
The required changes in the model are shown in Figure 6. Patt_Hex_V1,
patt_Hex_V2, patt_Hex_V3, patt_Hex_V4 templates and Vir_Up, Vir_Dn
virtual arrays are added to the graphic part. Two virtual arrays are located
in the two top and two bottom rows of the parent array respectively. For
the sake of simplicity, it is assumed that the number of cells along y axis in
byte::space_Hex array is even. The operator tuples shown in the picture
on the right are inserted in cl-end synchroblock.

3. Auxiliary methods and tools for fine-grain
model construction

Previously, the basic types of program structures were considered. They are
sufficient for many interesting but rather simple models. Nevertheless, it is

54 M.B. Ostapkevich, S.V. Piskunov

evident that the set of models is virtually unexhaustible and the models can
be quite complicated. So now we would like to draw user’s attention to such
methods and system tools of model construction, that are aimed to overcome
the problems of a model complexity. We have to take into consideration that
there are several kinds of model complexity. Namely, these are:

1) the amount of processed data;

[\

the complexity of simulating program structure;

the difficulty of cell neighbourhood definition;

NSENT)

)
)
)
) non-trivial search of the area where a substitution command may be
applied; and

5) the complexity of functional transformation of data within a cell of
cellular array.

3.1. The support for construction of models with huge amount
of data. As usual the real-life problems contain a huge amount of trans-
formed data. Their simulation is time consuming. This is the case when the
graphic user’s interface, which is created for the interactive mode, gives no
advantages in comparison with the traditional text console. Aw contraire,
the usage of the GUI version lacks the efficiency of console and slows down
the speed of simulation. Thus, a user is provided with a console version
of WinALT. A user can lunch it from any console mode file shell as Far
Commander by issuing the following commands:

1) adding the WinALT binary directory to the PATH variable so as to
avoid printing the full path to the console version executable file;

2) changing the current disk and the current directory to the disk and
the directory of project to be simulated; and

3) printing the command line, which contains the name of console exe-
cutable “xaltcon.exe” and the name of source program file to run, for
example, it would be written in the DOS shell prompt:

c:
cd \winalt\projects\MyProject
xaltcon.exe MyProgram.src

A user is recommended to divide the construction of model into two
stages. First, a model is designed and debugged with the small objects in-
teractively in the GUI version. When debugged a program could be executed
in the console mode with data of real size. To ease the visualization in the
text console, a Console library is implemented. In contains the procedures
for colored text output and cursor positioning. A sample object viewer is

Basie constructions of models in WinALT 55

implemented in WinALT. Its interface is similar to that of Far Commander.
The sample is located in ncviewer directory within samples folder.

3.2. The structurization of simulating programs. A program that
resides within a single .src file could be structurized by splitting it into
several functions and procedures. But even in this case the source text
might become quite vast and thus hardly readable. In this situation, a user
can divide a monolith program into modules kept in separate files. The files
could be inserted into the file that contain the main program body by the
preprocessor include statement mentioned in Subsection 1.3. The division
into modules is demonstrated by the following sample. Let a certain file
main.src contain the source with a and b procedures. The former prints
“WinALT! text, while the latter call a:

1 use altio 7 begin
2 procedure a() 8 a()
3 begin 9 end {b}
4 WriteStringln($"WinALT!'") | 10 begin

5 end {a} 11 b0
6 procedure b() 12 end.

This file could be broken into two. The bf a procedure is placed in an
auxiliary file, e.g. auxiliary.inc. It contains strings 1-5. The text of main
file contains include auxiliary as the first string and strings 6-12 as the
tail. Only the main source file has to be added to project. An auxiliary
file could be placed anywhere in the file system, though the most preferable
place is the directory of the project.

Also a user should take into consideration that there are virtually no
limits in the system for the nested synchroblocks and joint usage of the
operators of the first and second tiers. This mixture allows constructing
parallel-sequential composition of synchronous cellular array transforma-
tions of different kinds. Let us mark as well that a parameter of cl can
be an expression that controls the number of iterations dynamically when
executing thus simplifying the structure of a program.

3.3. The means of non-local neighbourhood template construc-
tion. The templates considered in Section 2 had only local neighbours. To
avoid this constraint, an operator for the synchronous assignment should
be used. It has similar syntax as the traditional assignment in WinALT
with the only exception. A keyword let must precede the assignment it-
self. Unlike the ordinary assignment which alters the value immediately,
the synchronous version changes is when leaving the synchroblock it resides.

56 M.B. Ostapkevich, S.V. Piskunov

s¢ standard
ar

%

size CHAIN = SizeX ($"boolean:CHAIN") -1;
v {aar}

boolean:CHAIN onst

BLACK = falge;
WHITE = frue;
nd {eonat}

cpin
ch

: For x =0 {0 gize CHAIN do
- if boolean:CHAIN (x) = BLACK and boolean:CHAIN (2*x 1) = WHITE
boolean:CHAIN then
1t boolear: CHAIN (x) = WHITE,
Tt boolean:CHAIN (2%x+1} = BLACK;
show
enid i1
ened {fort
ened Lok}

Figure 7

A global or local variable, cell name in a template or a cell can be the des-
tination of this sort of assignment. A cell is specified by an array name and
three coordinates separated by comma inside round brackets. A separate
coordinate is an expression. Particularly it could be an integer constant or
a variable. A source of an assignment is an expression. Its syntax is much
similar to that of Pascal. It is the usage of expressions and operators of the
first tier, especially conditional operator and loops that lets select a subset
of cells within an array, which reciprocal location depends, for example, on
a coordinate value in an array of index variable, a counter of iterations, an
index variable and so on. Let us demonstrate that by a sample (Figure 7).

3.4. Dynamic selection of template anchor cells and regions of sub-
stitutional command applicability. The usage of expressions as param-
eters in step, on, and shift operators helps to overcome the complexity of
neighbourhood cell definition in a substitution. For example, let a 2D array
A with size 2 x 3 be defined. At the same time, any bundle of in-at-do can
include on(A(0,0), A(0,1), A(1,0), A(1,1), A(2,1), A(2,1)) opera-
tors. In this case, along with changing of A array cell values, the region of
at-do command applicability is altered.

3.5. The construction of hierarchical models. A user may separate a
single and complex transformation performed within a cell into a series of
simpler ones, which have a hierarchical dependence. This could be accom-
plished by using synchroblocks and calls of functions within do operators
inside a body of a substitutional command. Such an action may be inter-

Basie constructions of models in WinALT 57

preted as a construction of a model that consists of several nested cellular
structures.

4.

Conclusion

The further acquirement of methods and tools of model construction can be
continued by using the sample models that are installed along with WinALT.
These examples reside in the samples folder within home WinALT directory.

References

(1]

[2]

Piskunov S.V. WinALT - a simulation system for computations with spatial
parallelism // NCC Bulletin, Series Comp. Science. — Novosibirsk: NCC Pub-
lisher, 1997. — Issue 6. — P. 71-85.

Beletkov D.T., Ostapkevich M.B., Piskunov S.V.; Zhileev I.V. The tools of
language and graphic interface of a simulating system for computations with
spatial parallelism // Proc. of the VIth Intern. Workshop “Distributed Data
Processing”. — Novosibirsk, 1998. — P. 228-232 (in Russian).

Beletkov D.T., Ostapkevich M.B., Piskunov S.V., Zhileev [.V. WinALT, a soft-
ware tool for fine-grain algorithms and structures synthesis and simulation //

Lect. Notes in Comput. Sci. — 1999. — Vol. 1662. — P. 491-496.

Beletkov D.T. The graphic construction of computer 3D models of cellular al-
gorithms and structures // Proc. Conf. of Young Scientists / Institute of Com-
putational Mathematics and Mathematical Geophysics. — Novosibirsk, 1998. —
P. 3-13 (in Russian).

Ostapkevich M.B. The WinALT system language tools // Proc. Conf. of Young
Scientists / Institute of Computational Mathematics and Mathematical Geo-
physics. — Novosibirsk, 1998. — P. 182-194 (in Russian).

Beletkov D.T., Zhileev 1.V. Construction of models of computing structures
with fine-grain parallelism in system WinALT // This issue. — P. 1-6.

Kruglinski D.J. Inside Visual C4++. — Microsoft Press, 1996.

Achasova S.M., Bandman O.L., Markova V.P., Piskunov S.V. Parallel Sub-
stitution Algorithm. Theory and Application. — Singapore: World Scientific,
1994.

Codd E.F. Cellular Automata. — New York; London: Acad. Press, 1968.

Toffoli T., Margolus N. Cellular Automata Mechanics. — Massachusetts Insti-
tute of Technology, 1987; Russian Translation. — Moscow: Mir, 1991.

Brenner K.H. Programmable optical processor based on symbolic substitu-

tion // Applied Optics. — 1988. — Vol. 27, Ne 9. — P. 1687-1691.

58 M.B. Ostapkevich, S.V. Piskunov

[12] Fet Ya.l. Parallel Processing in Cellular Arrays. — Taunton, UK: Research
Studies Press, Ltd., 1995.

[13] Wolfram Stephen Theory and Applications of Cellular Automata. — Singapore:
World Scientific, 1986.

[14] Nepomniaschaya A.S. Language STAR for associative and parallel computa-
tion with vertical data processing // Proc. Intern. Conf. “Parallel Computing

Technologies”. — Singapore: World Scientific, 1991. — P. 258-265.

