
Bull. Nov.Comp.Center, Comp.Science, 14 (2001), 43{58c
 2001 NCC PublisherBasic constructions of modelsin WinALT�M.B. Ostapkevich, S.V. PiskunovThe methods and tools of model construction with �ne-grain algorithms andstructures are considered and demonstrated by typical examples. The usage of thesystem for models with complicated structure and large amount of data is presented.IntroductionThe WinALT is a simulating system of �ne-grain algorithms and structures.Its overall description is presented in [1{3]. From a user's point of view themain WinALT window has accustomed appearance of a Windows applica-tion. Its interface is recognizable and intuitively clear, which undoubtedlyease the learning of the system. A model created by the means of the systemcan be distinctively divided into two tightly interacting parts: graphic andtextual. Each of them is supported by relevant subsystem of WinALT.The graphic subsystem [4] along with its usual functions such as visualrepresentation of source, intermediate and resulting data in a model, iconicview of tools and services, multiwindow document interface implements anumber of speci�c functions. These are determined by the main destinationof the system: being a tool for �ne-grain algorithms and structures research.Among such functions the construction of graphic images for commands andthe visualization of their application can be listed.The language subsystem [5] supplies a user with a set of tools for con-struction of textual part of model: the statements of a structured program-ming language similar to Pascal, the means for creation of libraries and�nally the most important ones, the tools for concise representation of dis-tributed in space parallel computations. We shall refer to the textual partof the model as a simulating program in the further text.The papers mentioned above are targeted on the description of the sys-tem architecture, the graphic interface and the language rather than thedescription of model construction within the system. Only [6] could bementioned as an exception. This article considers the two-level procedureof aggregative model construction, but it is assumed in it that a user isalready familiar with basic WinALT functions and is capable of creatingsimple models (those of the �rst level).�Supported by the Russian Foundation for Basic Research under Grant 99-07-90422.



44 M.B. Ostapkevich, S.V. PiskunovThe goal of the article is to aid a user to learn the basic functions ofWinALT in the process of model construction up to the level su�cient forcapability of building his own model with the help of standard samples anduser's documentation.The main attention is drawn in the article to simultaneous usage of allfunctions and tools provided by a system when creating a model. The sameservice can be provided in several ways, only the most evident of which shallbe mentioned.1. The structure of a model1.1. The general structure of a model. It is rational to represent aseparate model by a separate project. In general, the mechanisms of projectconstruction are similar to those in such Windows application as MicrosoftVisual Studio [7]. A project is created by the Project tab in a dialoguefrom File/New menu of the WinALT frame window. The construction ofa project results in creation of a directory that has the same name as theproject in a certain part of the directory tree. Inside the directory a �le with.wap extension appears. This �le is intended to store the list of �les thatbelong to the project. After a project has been opened, a user gains accessto all the tools and can create and modify a model. Visually a model lies inwindows of two types.The window of the �rst type, which has an associated �le with .3doextension, is created by selecting the string in Cellular Objects tab of thedialogue activated by File/New menu item. A lot of such windows couldbe created. These windows contain objects of a model. The extension of anobject �le depends on the format of stored data. For example, a �le thatcontains a pixel image has .bmp extension. The extension of default typeobject �le is .axt. The Boolean and integer types both have .ast, while
oating point object type has .aft extension and so on. It is up to a userto decide which object located in which window. Objects can be draggedfrom one window to another. The same object can be located in more thanone such window.The second type of window is represented by �les with .src extension.Such window can be created by selecting the string in Simulated Programtab of the File/New menu item dialogue. This window should contain asyntactically correct version of a simulating program after a model has beencreated. The windows title bears the name of the program the windowcontains. If a user wants to create more than one simulating program insingle model, he has to create the same number of windows of this type.This might be useful for example when more than one program process thesame set of objects or their sets of objects have a certain intersection.



Basic constructions of models in WinALT 451.2. The structure of the model graphic part. Graphic objects canbe created and edited with the help of Tools toolbar (Figure 1). The toolspresented in this toolbar are called Arrow, Creator, MagicWand (from left to right). Creator instrument is designedfor cellular array and template creation. A user has to pressthe left mouse button and expand the rectangular area so as toobtain the desired location and visual size of the creating ob- Figure 1ject. After the mouse button released, New Object dialogue box appears.This dialogue allows the setting of object size for three dimensions, objectname including the type of object. A user may select one of the follow-ing standard prede�ned object types: default, boolean, integer, float,string, character. Default type allows to set values of all the WinALTtypes to any cell. And besides, each cell may be declared empty by settingits type to void. Also, a cell may be named by an identi�er. Such assign-ments can be accomplished by Magic Wand tool. When it is selected, auser may see an object with input focus that points to the current cell in anobject. By moving the focus, di�erent cells may be initialized with a valueand a type. Cell properties could be seen at the status line at the bottomof WinALT main window. Arrow tool let select an object or a group ofobjects, move the selected objects in a sheet, change their visual sizes. Theprincipal di�erence between an object and a template is semantic ratherthan formal. Arrays are intended for data storage while templates set rightand left parts of substitution commands [8] in the graphic form. As usual,arrays have boolean, integer, float, string, character types. Void typeappears in array only in exceptional cases. Cells are distinguished by colors.Everything is di�erent with templates, the main object type for them isdefault and void type is widely used for its cells. Empty cells are denotedby white crossed squares. But it is worthy to mention that it is allowed toutilize the same cellular object both as an array and as a template withinthe same model. For further explanation of model construction methods letus divide templates into three types. The templates of the �rst type do notcontain named cells, there are only colored or void cells in such objects.The templates of the second type contain only void cells, some of which arenamed. Finally, the templates of the third type contain both colored andempty cells some of which are named.1.3. The structure of a simulating program is traditional. It containsthe following types of parts: a library call, a template description, a vari-able declaration, a constant de�nition, a procedure, a function and the mainprogram body. Any type of fragment except for the main body could beomitted. Or vice versa it can be repeated more than once. The blocks couldbe located in a random order, but of course, the de�nition of a term mustprecede its usage. For example, the function declaration must lie before its



46 M.B. Ostapkevich, S.V. Piskunovcall. The fragments and their items are denoted by keywords with evidentmeaning. For example, that could be demonstrated by template declara-tion, which is a statement speci�c for WinALT. This fragment lies withinobject-end block. The element of such block is a command template de-scription, which contains variable names. It contains a pattern keywordand an identi�er that speci�es template. Due to the fact that WinALT lan-guage possesses quite a poor set of its own operations, a user is providedwith a means for data transformations with the help of libraries, which canbe imported into a WinALT program by import or use statements. Theseones di�er in the way they load functions from libraries. Use adds namesindirectly that means that function calls must include a library name fol-lowed by two colons. Import allows using function names without explicitspeci�cation of library where they are located. Thus, if two libraries containfunctions with the same name, at least one of them has to be imported in-directly. The inclusion of external modules written in WinALT language isdone by a preprocessor command include. The syntax of all the three oper-ators is similar: a keyword is followed by a name of library. Nearly any moreor less complicated model contains the import of dcms_gio and standardlibraries. Dcms_gio contains functions for value input/output for WinALTstandard types: boolean, integer, float, string, character. Standardimplements functions for type cast, object management, benchmarking andso on. Two more libraries ought to be mentioned, as they will be useful for auser from the very �rst step of system learning. These are Altio and Vmisc.The former has operations for console input/output. For example, there arestring and integer value input/output. The console input/output is done ina dedicated for this purpose dockable window inside the main WinALT win-dow. Vmisc is composed by functions for the 2D vector graphics (drawingof primitives, color settings, line and �ll style, text output).The libraries are located in acllib and bin directories inside WinALTroot directory. The set of functions inside a library can be listed by issuinga command dumpacl.exe <library name> >> <output �le>.The declarations of variables and constants are similar to those in highlevel languages, thus it will not be mentioned in the further text. The sameremark could be done for function and procedure usage.2. The basic constructions of typical �ne-grainmodelsThe basic constructions will be introduced with gradually increasing com-plexity of simulating object. We shall consider mainly the construction ofmodels with the 2D cellular arrays and templates, though of course the sys-tem has the capability of processing objects with the maximal number of



Basic constructions of models in WinALT 47dimension equal to three. We select the 2D because of its simplicity and im-proved visual perception in comparison with the 3D. But if a user learns theconstruction of the 2D models, it will not be a great problem to commencethe construction of the 3D models.2.1. Models with one cellular array and templates of the �rst type.Let us commence with the simplest case when a simulating object is a �ne-grain structure represented by an array (for example, the 2D). It consistsof cells with the same type. A cell contains a memory element. The timeis discrete. A cell functioning is described by a �nite set of rules. A celldetermines its new state and the new state for some of its neighbours (O)applying these rules to the current state of neighbour cells and one of itsown (I).Let us create cellular objects which are required for a model of such astructure.First of all, we create a cellular array that contains the cell states of thestructure. A user may construct an array and set the initial values of itscells as it was described in 1.2. Depending on which alphabet of cell statesa structure cell has, a user chooses between the existing types of cellulararrays and WinALT value types.The creation of templates is commenced considering the case when astructure cell is a �nite automaton with inputs and outputs and the rulesare state transitions. In this case, the templates of the �rst type could beused. A template of the �rst type is de�ned by the states of a cell and itsneighbours. The default visualization mode in WinALT depicts cell statesby colors. The size of template is selected so that all the relevant cells resideinside the rectangular area of the minimal dimensions. All the cells that areignored but included in the rectangle of the template have to be initializedwith void type. Each rule has two associated templates: one for I set andanother for O set. The former is called input template, while the latteris output template of the rule. If the two sets coincide, the sizes for bothtemplates are the same. Otherwise the sizes are di�erent. The samples oftemplates are depicted in Figure 2.@@�� ��@@@@ @@���� @@����@@ @@����@@@@�� ��@@a) b) c) d) e) f) g)Figure 2. Samples of typical templates: a), b) left-hand part, c) right-hand partsfor rules with the von Neumann and the Moore automata, d), e) both parts of rulesfor the Margolus automata, f), g) both parts of symbolic substitutions



48 M.B. Ostapkevich, S.V. PiskunovIt is assumed in WinALT that the top left cell of the template is theanchor that is applied to any cell of the cellular arrays. For pairs of objects@@�� ��@@��@@ ��@@ ���@@��@@@@Figure 3. The adjust-ment of classic cellularautomata templates it might be required to adjust their reciprocal po-sitions. This could be accomplished by insertionof void cells in one of the templates. But a betterway is to issue shift operator that will be dis-cussed later. A sample of such an adjustment isdepicted in Figure 3.The samples of structures which could be sim-ulated by the templates described above are theclassical cellular automata [9], cellular automata with the Margolus neigh-bourhood [10], symbolic substitution algorithms [11], or parallel substitutionalgorithms [8], if there are no functional symbols in its record.After all the required graphic object have been constructed, a simulatingprogram can be written.To simulate one step of a �ne-grain structure functioning, a simulatingprogram has to include operators that preform tiling for each cell in a cellulararray by the left-hand templates. Whenever all the non void cells of thecellular array coincide with cells of applied template, they are substitutedby ones from the right-hand template. In the language, this tiling for onerule is represented by the following bunch of the following statements:in <cellular array name>at <left hand template>do <right hand template>The pair of at-do operators is a command of substitution [8].Note 1. If the adjustment of templates is required, shift operator is placedafter at. Shift contains the name of template and three coordinates inbrackets as parameters. The three coordinates denote three shifts for eachaxis. The shift()<right hand template name>(1,1,0) operator performsthe same adjustment as depicted in Figure 3.The number of such constructions coincides with the number of transitionrules in the table of transitions. Their order is random. A record can bemore concise by excluding all in statements except the �rst one. Let usdenote such a record as R. To specify that all the changes of cell values aresynchronous, the record R is placed within so called synchroblock. There arethree types of such blocks in the language. A user chooses one depending onthe number of iterations and the condition of termination. If only one stepis to be executed, ch <R> end synchroblock is used. If k (k � 1) iterativesynchroblock cl k; <R> end is the most appropriate one. Finally, thethird type of synchroblock is implemented for the case when a model has



Basic constructions of models in WinALT 49to repeat steps until no more changes of cell values occur (ex <R> end). Itcan iterate eternally. To create a valid program, the synchoblock must beplaced within begin-end. block. The resulting program consists only of themain body. Though being rather simple it is su�cient for many �ne-grainmodels simulation (such as classical cellular automata, cellular structureswith some non-classical neighbourhood [8, 11]). But a program with such astructure cannot simulate many other models, such as an automaton withthe Margolus neighbourhood. Here a more complicated tiling is required,as odd and even cells are handled di�erently. This sort of tiling could beaccomplished by on and step operators. On is placed after in and is usedfor selection of a rectangular area inside the cellular array selected in in. Ontakes six parameters in brackets. Parameters are separated by comma. The�rst pair sets the range for x axis, the rest are for y and z respectively. Thevalue �1 denotes that the border coincides with the border of an array. If onis included into the bunch, the tiling is made only for the selected rectangle.Operator step sets the step of tiling. It takes three parameters in bracketswith comma as a separator. The �rst one sets step for x axis, the secondand the third are for y and z respectively. The main body for the Margolusneighbourhood might look like this:beginex ch in <cellular array name>step (2, 2, 1)<R>end ch in <cellular array name>step (2, 2, 1)<R>end on <1,-1,1,-1,-1,-1>endend.The simulation of the Margolus automaton is based on the alternationof two grids, which is accomplished by placing two ch synchroblocks sequen-tially into one ex synchroblock. The odd grid is imitated done via shift ofthe region for which the tiling is constructed by one cell to the bottom andto the left with the help of on operator.2.2. Models with one cellular array and templates of the secondtype. The templates of the �rst type have rather wide application both indigital device [12] and physical [9, 13] models, as many types of their datatransformations can be performed by �nite automata. But in the most ofpractically useful models the state transition tables have a huge number ofentries thus leading to the big size of a program's main body. As an ex-ample, the Gri�te (its description is given in the sample below) automaton



50 M.B. Ostapkevich, S.V. Piskunovtransition table could be considered. In the case of cellular neural networkwith continuous sigmoide function such a table cannot be constructed. Thesolution is to utilize templates of the second type proposed by the system.These templates being a part of the graphic subsystem allow using functionsin the WinALT language. The interconnection of templates and functionsis established by a couple of at and do operators where the former containsthe template name as a parameter while the latter speci�es the associatedfunction. All or some of template cell names are treated as function vari-ables. The ones that are initialized within a function must be placed in thelist after the function name in the call statement. This list should be withinbrackets. Its items are separated by semicolons or commas. The templatevariable names are local in the sense that the same names can be used inother templates. A function may have as well its own local variables for thesake of particular implementation convenience. These variables are de�nedimmediately after the name of the function.Example 1. The Gri�te automaton model on hexagon grid is depicted inFigure 4. Each cell of byte::space_Hex array can have one of k states,numbered from 0 to k � 1. Each cell alters its state according the fol-lowing rule (Demon function): if the central cell named a in patt1_Hex orpatt2_Hex templates has s state at the current step, and the state of eitherb, c, d, or e cell is greater by one, the value of the central cell becomes
Figure 4



Basic constructions of models in WinALT 51(s+ 1) mod k at the next step. The implementation of hexagon grid abovethe rectangular is based upon the usage of pair of templates and on andstep operators.Note 2. An auxiliary operator show is used in the simulating program inFigure 4. It redraws all the objects with their current cell states. Of course,more than one such operator can be placed in a program. There is one moreauxiliary operator stop intended to suspend the program. In the graphicedition, a program execution can be resumed by pressing resume button atexecution toolbar (F1).2.3. Models with one cellular array and templates of the thirdtype. These templates unlike ones of the second type are more demonstra-tive. The text of the function linked with such a template is simpler as thevalues of coloured cells need not to be veri�ed within its body. There are noessential di�erences between these templates and those of the second type.2.4. Models with several cellular arrays and templates of all types.The models with one big cellular array are typical for �ne-grain structuresthat simulate physical phenomena or cellular automata behaviour in the�nite part of in�nite discrete space. But a structure that has more than onesuch array can be easily imagined. For example, an associative processormay consist of one 2D bit array and several 1D slices. The 2D matrix isan associative memory divided into strings that contain numbers. The 1Dslices are lines of simple processor nodes, which process simultaneously thecolumns of the matrix. For the construction of such sort of structures theWinALT gives the means for vector processing. The tuple in, at, do is apart of the means. When in vector mode these operators contain a list ofobjects names in brackets, the items as usual are separated by comma orsemicolon. If at list contains templates of the second or third type, do mustcontain a single name of a function. Such function can use named cells fromany object in at vector as its variables. If the list contains only templatesof the �rst type, do may be followed by similar template list. The syntaxrequires that the number of list items in both lists should be equal, otherwisethe longer list will be truncated to length of the shorter one. However, auser may use an arti�cial trick. A name of once void cell template couldbe placed to the position, which is to be ignored. To enable the usage oftemplates with di�erent sizes it is assumed that the �rst array in in list isthe master and other are slaves. If the slave array is greater or equal to themaster, the coordinates within the vector substitution are the same. If itis smaller by a certain axis, then its coordinate is calculating by taking themodule of master coordinate division by the slave array size for that axis.This way of coordinate transformation allows to list arrays with di�erent



52 M.B. Ostapkevich, S.V. Piskunov
Figure 5
Figure 6



Basic constructions of models in WinALT 53dimensions in the same list. If on follows in the selection is done in themaster array. The selection in slaves is done in accordance with the ruledescribed above. Step sets the same steps for all items in vector.Example 2. An imitational model of �ne-grain structure that implementsa search algorithm by a key from [14] is depicted in Figure 5. A key is a bitword kept in bit::word register. The search of words that coincide withthe key is performed in the strings of bit::table array. The words thathave coincidence with the key are marked in the respective bits of bit::Zregister unless they are masked by zero in bit::X register. The algorithmof search is set by Z_and_Y and Z_and_not_Y functions, which use x and ycell names from templates var_x and var_y as variables de�ned for Z andY registers. The selection of a function at i-th step depends on the state ofbuffer cell, that keeps i-th digit of bit::word register. The i-th digit isselected with the help of bit::shift register.The tool for virtual cellular array creation can also be assumed as ameans for parallel computations. A virtual array is a subarray of anotherarray. A virtual array is created via Create Virtual Object window acti-vated from Virtual menu of the main window if a parent array was selectedby Arrow tool before. The values of cells in both arrays are changed syn-chronously. A virtual array plays the same role as on operator for its parentarray. But in the case of vector operators its role is somewhat di�erent.Unless on, which can only select parts of arrays, a virtual array can itselfbe placed in a vector list. More than one virtual arrays could be de�ned forthe same parent array.Example 3. Virtual cellular arrays could be used to emulate in�nite cel-lular space for a certain dimension. Let us close together the ends ofbyte::space Hex array from Example 1 by x axis so as to form a cylinder.The required changes in the model are shown in Figure 6. Patt_Hex_V1,patt_Hex_V2, patt_Hex_V3, patt_Hex_V4 templates and Vir_Up, Vir_Dnvirtual arrays are added to the graphic part. Two virtual arrays are locatedin the two top and two bottom rows of the parent array respectively. Forthe sake of simplicity, it is assumed that the number of cells along y axis inbyte::space_Hex array is even. The operator tuples shown in the pictureon the right are inserted in cl-end synchroblock.3. Auxiliary methods and tools for �ne-grainmodel constructionPreviously, the basic types of program structures were considered. They aresu�cient for many interesting but rather simple models. Nevertheless, it is



54 M.B. Ostapkevich, S.V. Piskunovevident that the set of models is virtually unexhaustible and the models canbe quite complicated. So now we would like to draw user's attention to suchmethods and system tools of model construction, that are aimed to overcomethe problems of a model complexity. We have to take into consideration thatthere are several kinds of model complexity. Namely, these are:1) the amount of processed data;2) the complexity of simulating program structure;3) the di�culty of cell neighbourhood de�nition;4) non-trivial search of the area where a substitution command may beapplied; and5) the complexity of functional transformation of data within a cell ofcellular array.3.1. The support for construction of models with huge amountof data. As usual the real-life problems contain a huge amount of trans-formed data. Their simulation is time consuming. This is the case when thegraphic user's interface, which is created for the interactive mode, gives noadvantages in comparison with the traditional text console. Au contraire,the usage of the GUI version lacks the e�ciency of console and slows downthe speed of simulation. Thus, a user is provided with a console versionof WinALT. A user can lunch it from any console mode �le shell as FarCommander by issuing the following commands:1) adding the WinALT binary directory to the PATH variable so as toavoid printing the full path to the console version executable �le;2) changing the current disk and the current directory to the disk andthe directory of project to be simulated; and3) printing the command line, which contains the name of console exe-cutable \xaltcon.exe" and the name of source program �le to run, forexample, it would be written in the DOS shell prompt:c:cd \winalt\projects\MyProjectxaltcon.exe MyProgram.srcA user is recommended to divide the construction of model into twostages. First, a model is designed and debugged with the small objects in-teractively in the GUI version. When debugged a program could be executedin the console mode with data of real size. To ease the visualization in thetext console, a Console library is implemented. In contains the proceduresfor colored text output and cursor positioning. A sample object viewer is



Basic constructions of models in WinALT 55implemented in WinALT. Its interface is similar to that of Far Commander.The sample is located in ncviewer directory within samples folder.3.2. The structurization of simulating programs. A program thatresides within a single .src �le could be structurized by splitting it intoseveral functions and procedures. But even in this case the source textmight become quite vast and thus hardly readable. In this situation, a usercan divide a monolith program into modules kept in separate �les. The �lescould be inserted into the �le that contain the main program body by thepreprocessor include statement mentioned in Subsection 1.3. The divisioninto modules is demonstrated by the following sample. Let a certain �lemain.src contain the source with a and b procedures. The former prints\WinALT!" text, while the latter call  :use altio12 procedure a()begin34 WriteStringLn($"WinALT!")end fag56 procedure b() begin78 a()end fbg910 beginb()1112 end.This �le could be broken into two. The bf a procedure is placed in anauxiliary �le, e.g. auxiliary.inc. It contains strings 1{5. The text of main�le contains include auxiliary as the �rst string and strings 6{12 as thetail. Only the main source �le has to be added to project. An auxiliary�le could be placed anywhere in the �le system, though the most preferableplace is the directory of the project.Also a user should take into consideration that there are virtually nolimits in the system for the nested synchroblocks and joint usage of theoperators of the �rst and second tiers. This mixture allows constructingparallel-sequential composition of synchronous cellular array transforma-tions of di�erent kinds. Let us mark as well that a parameter of cl canbe an expression that controls the number of iterations dynamically whenexecuting thus simplifying the structure of a program.3.3. The means of non-local neighbourhood template construc-tion. The templates considered in Section 2 had only local neighbours. Toavoid this constraint, an operator for the synchronous assignment shouldbe used. It has similar syntax as the traditional assignment in WinALTwith the only exception. A keyword let must precede the assignment it-self. Unlike the ordinary assignment which alters the value immediately,the synchronous version changes is when leaving the synchroblock it resides.



56 M.B. Ostapkevich, S.V. Piskunov
Figure 7A global or local variable, cell name in a template or a cell can be the des-tination of this sort of assignment. A cell is speci�ed by an array name andthree coordinates separated by comma inside round brackets. A separatecoordinate is an expression. Particularly it could be an integer constant ora variable. A source of an assignment is an expression. Its syntax is muchsimilar to that of Pascal. It is the usage of expressions and operators of the�rst tier, especially conditional operator and loops that lets select a subsetof cells within an array, which reciprocal location depends, for example, ona coordinate value in an array of index variable, a counter of iterations, anindex variable and so on. Let us demonstrate that by a sample (Figure 7).3.4. Dynamic selection of template anchor cells and regions of sub-stitutional command applicability. The usage of expressions as param-eters in step, on, and shift operators helps to overcome the complexity ofneighbourhood cell de�nition in a substitution. For example, let a 2D arrayA with size 2� 3 be de�ned. At the same time, any bundle of in-at-do caninclude on(A(0,0), A(0,1), A(1,0), A(1,1), A(2,1), A(2,1)) opera-tors. In this case, along with changing of A array cell values, the region ofat-do command applicability is altered.3.5. The construction of hierarchical models. A user may separate asingle and complex transformation performed within a cell into a series ofsimpler ones, which have a hierarchical dependence. This could be accom-plished by using synchroblocks and calls of functions within do operatorsinside a body of a substitutional command. Such an action may be inter-



Basic constructions of models in WinALT 57preted as a construction of a model that consists of several nested cellularstructures.4. ConclusionThe further acquirement of methods and tools of model construction can becontinued by using the sample models that are installed along with WinALT.These examples reside in the samples folder within home WinALT directory.References[1] Piskunov S.V. WinALT { a simulation system for computations with spatialparallelism // NCC Bulletin, Series Comp. Science. { Novosibirsk: NCC Pub-lisher, 1997. { Issue 6. { P. 71{85.[2] Beletkov D.T., Ostapkevich M.B., Piskunov S.V., Zhileev I.V. The tools oflanguage and graphic interface of a simulating system for computations withspatial parallelism // Proc. of the VIth Intern. Workshop \Distributed DataProcessing". { Novosibirsk, 1998. { P. 228{232 (in Russian).[3] Beletkov D.T., Ostapkevich M.B., Piskunov S.V., Zhileev I.V.WinALT, a soft-ware tool for �ne-grain algorithms and structures synthesis and simulation //Lect. Notes in Comput. Sci. { 1999. { Vol. 1662. { P. 491{496.[4] Beletkov D.T. The graphic construction of computer 3D models of cellular al-gorithms and structures // Proc. Conf. of Young Scientists / Institute of Com-putational Mathematics and Mathematical Geophysics. { Novosibirsk, 1998. {P. 3{13 (in Russian).[5] Ostapkevich M.B. The WinALT system language tools // Proc. Conf. of YoungScientists / Institute of Computational Mathematics and Mathematical Geo-physics. { Novosibirsk, 1998. { P. 182{194 (in Russian).[6] Beletkov D.T., Zhileev I.V. Construction of models of computing structureswith �ne-grain parallelism in system WinALT // This issue. { P. 1{6.[7] Kruglinski D.J. Inside Visual C++. { Microsoft Press, 1996.[8] Achasova S.M., Bandman O.L., Markova V.P., Piskunov S.V. Parallel Sub-stitution Algorithm. Theory and Application. { Singapore: World Scienti�c,1994.[9] Codd E.F. Cellular Automata. { New York; London: Acad. Press, 1968.[10] To�oli T., Margolus N. Cellular Automata Mechanics. { Massachusetts Insti-tute of Technology, 1987; Russian Translation. { Moscow: Mir, 1991.[11] Brenner K.H. Programmable optical processor based on symbolic substitu-tion // Applied Optics. { 1988. { Vol. 27, ü 9. { P. 1687{1691.



58 M.B. Ostapkevich, S.V. Piskunov[12] Fet Ya.I. Parallel Processing in Cellular Arrays. { Taunton, UK: ResearchStudies Press, Ltd., 1995.[13] Wolfram Stephen Theory and Applications of Cellular Automata. { Singapore:World Scienti�c, 1986.[14] Nepomniaschaya A.S. Language STAR for associative and parallel computa-tion with vertical data processing // Proc. Intern. Conf. \Parallel ComputingTechnologies". { Singapore: World Scienti�c, 1991. { P. 258{265.


