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Cellular automata construction based on
molecular dynamics simulation data analysis

Dmitry Novikov

Abstract. The Delaunay Tessellation is used to construct a cellular automata
resembling model based on data obtained from molecular dynamics experiment.
Particle coordinates at each time step of required length are tessellated to compose
a system of vertices and edges, which are classified to produce states and transitions.
These states and transitions are used to describe a local order of structure and its
evolution in cellular automata under consideration.

1. Introduction

Mechanical alloying often results in the formation of disordered non-equilibrium
states of a material [1, 2]. There are numerous questions about this mate-
rial inner structure, mechanisms of formation, etc. It can be stated that the
problem of disordered solid state in general is one of the least investigated
areas of solid state physics [3].

Physical methods often fail to give satisfactory results due to a specific
structure of a material and undesirable transformations taking place in the
course of analysis.

Computer-aided modeling is one of a few methods that can be used to
study materials in question.

While attempting to model the structure and properties of the interfacial
boundary between two solid metals, which constitute a sufficient part of
the initial stage of forming a product (the so-called mechanocomposite) of
intermetallic compounds, we performed the shape analysis of the structure
alongside the interfacial boundary [4]. The Delaunay tessellation of particle
coordinates obtained from Molecular Dynamics (MD) model was treated
with S simplex coloring [5]. The analysis showed that most of “imperfect”
simplexes are located near to the interfacial boundary on the side of a softer
metal.

Further investigation showed that most versatile regions coincide with
imperfect ones, whilst the rest structure remains nearly unchanged. In order
to describe these specific regions and their evolution, the methods described
further were proposed.

In this paper, 2D models are in the main investigated to improve effi-
ciency and clearness of results. All the results obtained are also valid for 3D
models.
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2. Theory

2.1. Geometric properties of the Delaunay method. In mathemat-
ics and computational geometry, the Delaunay triangulation for a set P of
points in the plane is the triangulation T (P ) such that no point in P is inside
the circumcircle of any triangle in T (P ). The triangulation was invented by
Boris Delaunay in 1934 [6].

In the general n-dimensional case, it is stated as follows: For a set P
of points in the n-dimensional Euclidean space, the Delaunay tessellation
is the tessellation T (P ) of P such that no point in P is inside the circum-
hypersphere of any simplex in T (P ).

The Delaunay simplexes constructed for the entire system form a mo-
saic covering the space without overlapping and gaps. Thus, the Delaunay
simplexes can be regarded as the “bricks” composing the empty interatomic
space in an atomic system.

An example of the Delaunay tessellation is shown in Figure 1.

Figure 1. Two-dimensional illustration of the Delaunay tessellation

Thus, simplex is supposed to be formed of vertices that stand for
atoms in MD simulation and edges that connect these atoms and in terms
of physics define the closest neighbors of an atom.

2.2. Model system. The MD underlying a Cellular Automata (CA)
model construction was chosen to be two-dimensional and to consist of 2500
atoms placed in the periodic boundary conditions with constant pressure.
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An experimental model was prepared by heating (∼ 105 steps at a temper-
ature of ≈ 4000 K) to form a disordered state and quenched afterwards.
This non-equilibrium system was used to compute a number of states and
transitions. When heated to 600 K, the structure slowly relaxes to a less
strained state.

Choosing a time step. The time step for MD simulation at the stage
of Structure and Transitions Analysis was chosen to be 5 · 10−16 s at 600 K.
Though MD requirements allowed a time step increase to about ∼ 10−15 s, it
was not appropriate for a proper transition generation. Increasing the time
step would lead to the formation of clusters of transitions which require a
different and complex analysis.

For simplicity and efficiency let us assume that there is only one transi-
tion occurrence for a given structure fragment for a single time step. It can
be roughly estimated to be about 5–10 transitions per 1000 vertices.

The time step depends on temperature in invectively proportional man-
ner.

2.3. The CA states. To build CA model of the system and to simplify a
structure analysis, we have to transform a continuum model representation
into a discrete set of states.

This can be done by the edge length discretization and further assigning
this discrete measure to the vertex state.

Lengths diagram. We performed several MD runs at different tem-
peratures to obtain distribution of edge lengths and its dependence on the
temperature. The model system was heated to a desired temperature and
analyzed for some 105 steps to obtain the length distribution (Figure 2).

Specific lmax and lmin, that are the minimum and maximum supposed
lengths of an edge in the system, were chosen to be 4.1 and 2.1 A, respec-
tively. This corresponds to the maximum and minimum lengths to meet at
800 K, the 200 K higher temperature than that of the analyzed model.

Let us note that lmax and lmin should be chosen to be as close as possible
to avoid excess of unused states. On the other hand, the selection of too
close lmax and lmin may lead to an improper state definition. Moreover, the
most versatile structure fragments usually make up these utmost states. So,
a proper attention should be given to the choice of lmax and lmin.

The length measure calculation. For each edge in the tessellation,
we assign a nonnegative integer measure

Li =
⌊

li − lmin

lstep

⌋
,

that stands for the function of its length. Here li is a length of edge, lstep =
(lmax−lmin)/Nstat, Nstat is the number of discrete edge lengths in the system,
and bxc is rounding to the nearest integer not exceeding x.
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Figure 2. Edge lengths distribution in the model system in different
temperature conditions

Figure 3. The Delaunay triangulation of the model system with measures
assigned to vertices
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We divided the interval into Nstat = 10 equal parts. So, the length lstep
of a single part is (4.1− 2.1)/10 = 0.2 (A).

The vertex measure calculation. Having all edges characterized, we
can obtain measure for the vertex (Figure 3). It is composed of the surround-
ing edges measures arranged in a specific order. It is simple and efficient
to represent the row of edge’s measures in a sorted way. In this case, for
example, two vertices with edges (3, 7, 1, 1, 4) and (1, 1, 4, 3, 7), respectively,
would have the same state.

2.4. Transitions. If we run MD simulation and monitor the vertices
states, we will notice they are changing. There are three types of possi-
ble transitions: Edge Length Change (ELC), Edge Disappearance (ED),
and Edge Appearance (EA). Each transition is associated with two vertices.

In Table 1, a brief example of a set of transitions is shown. They are
encoded in a following manner:

V1, V2 are measures of two vertices on the ends of a varying edge. Labels V1

and V2 are assigned to vertices as a result of their measures compar-
ison and the least measure in representation of an integer is labeled
as V2. This helps to decrease the number of transitions. Some pairs
V1 and V2 can take part in several transitions. This should be taken
into account when calculating probability of the transitions.

Table 1. Dictionary of transitions obtained by analysis of the model system

Edge Length Change Edge Disappearance Edge Appearance

V1 V2 L0 L1 P V1 V2 L0 P V1 V2 L1 P

112223 112222 1 2 304678 1223346 112226 6 85 122234 11122 6 79
122223 112223 1 2 277084 1223346 111226 6 79 122334 11122 6 79
222222 122223 2 1 272368 1222346 111226 6 75 122235 11222 7 73
222222 122222 2 1 227659 1222346 112226 6 71 122334 11222 6 67
122223 122222 1 2 198473 1222357 112227 7 69 122234 11222 6 61
222223 222222 2 1 197121 1222357 111227 7 66 122235 11122 7 60
112223 112223 1 2 185503 1222367 111227 7 60 122229 12222 9 56
222223 122222 2 1 182089 1222299 122229 9 57 122333 11122 6 53
122223 112222 1 2 181392 1222367 112227 7 55 122236 11222 7 46
222222 122222 2 3 160065 1222356 111226 6 55 122226 11222 7 46
122223 122223 3 2 154703 1122367 112227 7 48 112236 11222 7 46
122223 112223 2 1 133654 1223357 112227 7 45 122235 11122 6 45
112223 111223 1 2 132050 1122367 111227 7 45 112234 11122 6 45
122222 112223 2 1 130627 2223346 111226 6 44 112334 11122 6 43
122222 112223 2 3 121830 1222399 112229 9 43 122236 11122 7 43
122223 122223 1 2 121762 1222356 112226 6 41 122235 11222 6 42
222223 222223 2 1 119680 2222346 111226 6 41 122344 11122 6 42
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L0 is an initial length measure of the changed edge. The edge with
this length measure must connect V1 and V2 (it is absent for EA
transition).

L1 is the final length measure of the changed edge (it is absent for ED
transition);

P is the number of times the transition was detected in the course of
analysis, P is used to calculate the probability of the transitions.

3. Analysis of results

3.1. The number of items in the dictionary. Using the vertex measure
analysis, we compose a dictionary of transitions for the model system. In
Figure 4, the number of transitions collected in the dictionary vs. time step
(iteration) is shown.

Figure 4. The growth of the dictionary

It can be seen in the diagram that there is a fast growth of the dictionary
during the first 2 · 105 iterations, and then it considerably slows almost
reaching a constant value at 1.4 · 105. This behavior does not sufficiently
depend on structural changes in the model MD experiment. It was verified
to reproduce initially from the time steps 5 · 105 and 106.

3.2. Transitions. While analyzing over 1.3 · 106 iterations, about 1.4 · 105

unique transitions were obtained. Among them ∼ 92 % ELC, ∼ 4 % ED
and ∼ 4 % EA transitions. The total number of transitions analyzed is
∼ 15.4 · 106, where ∼ 99.8 % constitute ELC and equally about 0.1 % refer
to ED and EA.

As was mentioned above, some different transitions take place with the
same vertex pairs. Sets of transitions in the dictionary were analyzed for
intersections and the following results were obtained: the first intersection
to analyze was the inner intersection, which constitutes ∼ 21 % for ELC,
∼ 0.7 % for ED, and ∼ 26 % for EA transitions. The outer intersections
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Table 2. The results of dictionary analysis

Type

Total number of
transitions

Unique transitions
in dictionary

Intersection of V1,V2-sets
in dictionary

Number Percent Number Percent ELC ED EA

ELC 15437619 99.7891 125902 92.5518 27212 3080 2753
ED 16306 0.1054 5080 3.7344 3080 36 104
EA 16319 0.1055 5052 3.7138 2753 104 1311

were found to be as follows (percentage is given for a set of the least length):
∼ 61 % ED vs. ELC, ∼ 54 % EA vs. ELC, and ∼ 2 % ED vs. EA. A brief
representation of introduced data is given in Table 2.

3.3. Distribution of specific states. Figures 5–7 show the distribution
of transitions appearance.

Analysis of this diagrams shows that for all three types of transitions, two
specific regions can be distinguished. The first one is occupied with diverse
transitions that rarely occur. This region is in the vicinity of zero. Another
region consists of a few transitions that appear very frequently (some of
these transitions are marked in the diagrams). These transitions might be
used for structure and properties characterization.

Figure 5. ELC transition appearance frequency. Selected
transitions are marked with corresponding transition codes
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Figure 6. EA transition appearance frequency. Selected
transitions are marked with corresponding transition codes

Figure 7. ED transition appearance frequency. Selected
transitions are marked with corresponding transition codes
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4. Conclusion

The proposed method can be used for a formal description and characteri-
zation of disordered amorphous structures in the plane and in three dimen-
sions. A combination of transition templates can be used to describe the
evolution of these structures thus leading to CA model construction. The
initial data for states and transitions computation may be obtained from
any method with appropriate output data. Transitions and states obtained
for small clusters can be used to model the larger-scale systems.

Further theory enhancements including second order meshing of data
may be used to improve the theoretical efficiency of the method and will be
presented in the future.
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