
Bull. Nov. Comp.Center, Comp. Science, 24 (2006), 89–103
c© 2006 NCC Publisher

Associative parallel algorithm for dynamic
reconstruction of the shortest paths tree after

insertion of a vertex∗

A. Sh. Nepomniaschaya, T.V. Snytnikova

1. Introduction

Finding shortest paths in a weighted graph is a fundamental and well studied
problem in computer science. Such a problem arises in practice in different
application settings.

In this paper we study the single source shortest paths version of the
problem in a directed graph with non-negative edge weights. The best known
static solution for this problem on directed graphs with n vertices and m
edges is the O(m + n log n) implementation of Dijkstra’s algorithm [4] that
uses Fibonacci heaps [7].

The dynamic version of this problem consists of maintaining the short-
est paths information while the graph changes without recomputing every-
thing from scratch after every update on the graph. In this framework the
most general types of update operations for the single source shortest paths
problem include insertions and deletions of edges, update operations on the
weight of edges, insertions or deletions of isolated vertices [9]. The typical
operations for the all-pairs shortest paths problem include update opera-
tions on weights, finding the shortest distance and finding the shortest path
between two vertices, if any. When arbitrary sequences of the above opera-
tions are allowed, we refer to the fully dynamic problem. If we consider only
insertions (deletions) of edges, we refer to the incremental (decremental)
problem.

In the case of positive edge weights several solutions have been proposed
for dynamic maintaining the shortest paths. Ausiello et.al. [1] propose
an efficient solution for the all-pairs incremental problem assuming that
edge weights are restricted in the range of integers [1..C]. Chaudhuri and
Zaroliagis [3] devise efficient solutions for the all-pairs shortest paths problem
for bounded treewidth graphs when the weight of edges changes. Klein et.al.
[12] propose a fully dynamic solution to maintain all-pairs shortest paths for
planar graphs with unrestricted edge weights. Franciosa et.al. [6] devise fast
algorithms that maintain a single source shortest paths tree (sp-tree) of a

∗Partially supported by the Russian Foundation for Basic Research under Grant
03-01-00399

90 A. Sh. Nepomniaschaya, T.V. Snytnikova

general directed graph with integer edge weights in the range of integers
[1..C] during a sequence of edge deletions or a sequence of edge insertions.

However, on general graphs with arbitrary edge weights, neither a fully
dynamic solution nor a decremental solution for the single source shortest
paths problem is known in the standard models (the worst case and the
amortized analysis) that is assymptotically better than recomputing a new
solution from scratch.

In the case of arbitrary real edge weights, Ramalingam and Reps [18,
19] devise fully dynamic algorithms for updating the single source shortest
paths using the output bounded model. In this model the running time
of an algorithm is analyzed in terms of the output change rather than the
input size. In [18, 19] the authors assume that the graph has no negative-
length cycles before and after input update. Note that they do not deal with
zero-length cycles. Frigioni et.al. [10] study the semi-dynamic single source
shortest paths problem for both directed and undirected graphs with posi-
tive real edge weights in terms of the output complexity. The decremental
solution works only for planar graphs, while the incremental solution works
for any graph and its complexity depends on the existence of a k-bounded
accounting function for the graph. Frigioni et.al. [9] propose fully dynamic
algorithms for updating the distances and an sp-tree in either a directed
or an undirected graph with positive real edge weights under arbitrary se-
quences of edge updates. The cost of the update operations is given as a
function of the number of output updates by using the notion of k-bounded
accounting function. For general graphs with n vertices and m edges the
algorithms require O(

√
m log n) worst case time per output update. Frigioni

et al. [11] propose the fully dynamic solution for the problem of updating
the shortest paths from a given source in a directed graph with arbitrary
edge weights. The authors devise a new algorithm for performing edge dele-
tions and weight increases that explicitly deals with zero-length cycles. They
also propose an algorithm for handling edge insertions and weight decreases
that explicitly deals with negative-length cycles. The cost of the update
operations is evaluated as a function of the structural property of the graph
and of the number of output updates. Note that algorithms from [6, 9–11,
18, 19] use the dynamic version of Dijkstra’s algorithm. In [13], Narváez
et.al. study a group of algorithms for dynamic maintaining an sp-tree after
performing the update operations on the edge weights. The authors propose
two incremental methods to transform the well-known static algorithms of
Dijkstra, Bellman-Ford, and D’Esopo-Pape into new dynamic algorithms.

Frigioni and Italiano [8] consider graphs whose vertices may be switched
either on or off. The authors study the problem of dynamically maintaining
a planar graph under an intermixed sequence of edge and vertex updates.
They show how to efficiently maintain connectivity on planar graphs under
an intermixed sequence of switch-on, switch-off, insert, delete, and query

Dynamic reconstruction of the shortest paths tree 91

operations in polylogarithmic time for updates and queries. Their algo-
rithms use separator properties of planar graphs.

In this paper, we propose a simple associative parallel algorithm for
dynamic maintenance of distances and the shortest paths from a source
vertex when a new vertex is inserted in the underlying graph. Let G be a
directed graph with non-negative edge weights and T be an sp-tree. Let a
new vertex be added to G. We want to compute a new sp-tree for the altered
graph by performing changes in the given sp-tree. Our model of computation
(the STAR-machine) simulates the run of associative (content addressable)
parallel systems of the SIMD type with bit-serial (vertical) processing and
simple single-bit processing elements (PEs). Such an architecture is best
suited to solving the graph problems.

Our algorithm is also based on the dynamic version of Dijkstra’s algo-
rithm. Differently from the above-mentioned papers, it uses simple and
natural data structures and it is implemented in parallel. The algorithm is
represented on the STAR-machine as a procedure InsertV whose correctness
is proved. We obtain that this procedure takes O(hk) time, where h is the
number of bits for coding the infinity and k is the number of vertices whose
tree paths change after inserting a new vertex along with its incident edges
into the current graph. Following [5], it is assumed that each elementary
operation of the STAR-machine (its microstep) takes one unit of time.

2. Model of associative parallel machine

Here, we propose a short description of the model. It is defined as an
abstract STAR-machine of the SIMD type with a vertical data processing
[14]. It consists of the following components:

– a sequential control unit (CU), where programs and scalar constants
are stored;

– an associative processing unit consisting of p single-bit PEs;
– a matrix memory for the associative processing unit.
The CU passes an instruction to all PEs in one unit of time. All active

PEs execute it in parallel while inactive PEs do not perform it. Activation
of a PE depends on the data.

Input binary data are loaded in the matrix memory in the form of two–
dimensional tables in which each datum occupies an individual row and it
is updated by a dedicated processing element. The rows are numbered from
top to bottom and the columns — from left to right. Both a row and a
column can be easily accessed. Some tables may be loaded in the matrix
memory.

An associative processing unit is represented as h vertical registers each
consisting of p bits. Vertical registers can be regarded as a one-column array.
The bit columns of the tabular data are stored in the registers which perform

92 A. Sh. Nepomniaschaya, T.V. Snytnikova

the necessary Boolean operations.
Its run is described by means of the language STAR [14] being an exten-

sion of Pascal. Let us briefly consider the STAR constructions needed for
the paper. To simulate data processing in the matrix memory, we use data
types word, slice, and table. Constants for the types slice and word are
represented as a sequence of symbols of the set {0, 1} enclosed within single
quotation marks. The types slice and word are used for the bit column
access and the bit row access, respectively, and the type table is used for
defining the tabular data. Assume that any variable of the type slice con-
sists of p components which belong to {0, 1}. For simplicity let us call slice
any variable of the type slice.

Now we present some elementary operations and predicates for slices.
Let X, Y be variables of the type slice and i be a variable of the type

integer. We use the following operations:
SET(Y) sets all components of Y to ′1′;
CLR(Y) sets all components of Y to ′0′;
Y (i) selects the i-th component of Y ;
FND(Y) returns the ordinal number i of the first (or the uppermost) ′1′

of Y , i ≥ 0;
STEP(Y) returns the same result as FND(Y) and then resets the first

′1′ found to ′0′.
In the usual way we introduce the predicates ZERO(Y) and SOME(Y)

and the bitwise Boolean operations X and Y , X or Y , not Y , X xor Y .
Let w be a variable of the type word and T be a variable of the type

table. We employ the following elementary operations:
w(i) returns the i-th component (bit) of w;
TRIM(i, j, w) returns the substring w(i)w(i + 1)...w(j), where 1 ≤ i <

j ≤| w |;
ROW(i, T) returns the i-th row of the matrix T ;
COL(i, T) returns the i-th column of the matrix T .
Note that all operations for the type slice are also performed for the

type word.
Remark 1. Note that the STAR statements are defined in the same man-

ner as for Pascal. We will use them later for presentation of our procedures.
Following [5], we assume that each elementary operation of the STAR-

machine takes one unit of time. Therefore we will measure time complexity of
an algorithm by counting all elementary operations performed in the worst
case.

Now we consider a group of basic procedures to be used later. Imple-
mentation of these procedures on the STAR-machine has been given in [15,
16]. They use the given slice X to select by ′1′ positions of rows being used
in the corresponding procedure.

Dynamic reconstruction of the shortest paths tree 93

The procedure MATCH(T,X, v, Z) defines positions of those rows of the
given matrix T which coincide with the given pattern v written in the binary
code. It returns the slice Z, where Z(i) =′ 1′ if and only if ROW(i, T) = v
and X(i) =′ 1′.

The procedure MIN(T, X,Z) defines positions of those rows of the given
matrix T , where minimum elements are located. It returns the slice Z,
where Z(i) =′ 1′ if and only if ROW(i, T) is the minimum element of the
matrix T and X(i) =′ 1′. To return the minimum element of T , we define
the position of the first ′1′ in Z and then select the corresponding row of T .

The procedure SETMIN(T, F, X, Y) defines positions of the rows of the
matrix T being less than the corresponding rows of the matrix F . It returns
the slice Y , where Y (j) =′ 1′ if and only if ROW(j, T) <ROW(j, F) and
X(j) =′ 1′.

The procedure ADDC(T,X, v, F) adds the binary word v to those rows
of the matrix T which are selected by ′1′ in X, and writes down the result
into the corresponding rows of the matrix F . The rows of F , which are
selected by ′0′ in X, will consist of zeros.

The procedure ADDV(T, R, X, F) writes the result of adding the rows
of matrices T and R selected by ones in the slice X into the corresponding
rows of the matrix F . Note that this procedure is based on the associative
algorithm from [5].

The procedure TMERGE(T, X, F) writes into the matrix F those rows
of the given matrix T which are selected by ′1′ in X. The rows of the matrix
F , which are selected by ′0′ in X, are not changed.

The procedure TCOPY1(T, j, h, F) writes h columns from the given ma-
trix T , starting with the (1 + (j − 1)h)-th column, into the matrix F .

The procedure TCOPY2(F, j, h, T) writes the given matrix F , consisting
of h columns, into the result matrix T beginning with its (1 + (j − 1)h)-th
column, where j ≥ 1.

In [15, 16], we have shown that basic procedures take O(k) time each,
where k is the number of bit columns in the corresponding matrix.

3. Preliminaries

Let G = (V,E, w) be a directed weighted graph with the set of vertices
V = {1, 2, . . . , n}, the set of directed edges (arcs) E ⊆ V × V and the
function wt that assigns a weight to every edge. We assume that |V | = n
and |E| = m.

A weight matrix of G is an n× n matrix which contains as elements the
arc weights. We assume that wt(u, v) = ∞ if (u, v) /∈ E.

Note that the weights are non-negative integers represented as binary
strings.

94 A. Sh. Nepomniaschaya, T.V. Snytnikova

A path from u to v in G is a finite sequence of vertices u = v1, v2, . . . ,
vk = v, where (vi, vi+1) ∈ E for i = 1, 2, . . . , k − 1 and k > 2. The shortest
path between two vertices in a weighted graph is a path with the minimum
sum of weights of its arcs.

A tree of the shortest paths T with the root vertex s is a connected acyclic
subgraph of G which contains all graph vertices and is such that the path
from s to any vertex v in T is the shortest path from s to v in G.

Following [6], let us call an sp − tree the single source shortest paths
tree.

In [17], we propose an associative parallel algorithm for finding the
matrix of the shortest distances D along with the sp-tree T .

For any arc vi → vj , let vi be the parent of vj and vj be the son of vi.
For the sake of convenience, we will use an n× n matrix of descendants

T whose every i-th column saves by ′1′ the sons of vertex vi.
Remark 2. The sp-tree is obtained as follows. Knowing the matrix of

descendants T , we easily build a matrix T1 whose every i-th row saves by
′1′ positions of vertices belonging to the tree path from s to vi. Then we
transpose the matrix T1 and obtain the corresponding sp-tree.

Let us agree to denote the shortest distance from s to a vertex vi as
dist(s, vi).

We will also use the auxiliary procedure WTRANS(w, h, n, R) [17] having
the input parameters: the given binary string w and the integers h and n,
where h is the number of bits for coding infinity and n is the number of
graph vertices. It returns the matrix R in whose each i-th row there is the
string wi =TRIM(1 + (i− 1)h, ih, w).

4. Reconstruction of the sp-tree and the matrix of distances

In this section, we provide an associative parallel algorithm that reconstructs
the matrix of descendants T and recomputes the matrix of the shortest
distances D for the vertices that belong to a subtree rooted in a vertex from
a set L.

Our algorithm performs the following steps.
Step 1. In the set L, select a vertex, say vi, having the shortest distance

in D. Delete vi from L.
Step 2. Determine in parallel those vertices vj for which there is an arc

vi → vj . Then compute in parallel dist(s, vi) + wt(vi, vj).
Step 3. By means of a slice, say Z, save those vertices vk whose paths

include the vertex vi and dist(s, vk) > dist(s, vi)+wt(vi, vk). Add vk to the
set L.

Step 4. For vertices marked with ′1′ in the slice Z, write new distances
in the corresponding rows of the matrix D and write a new parent vi in the
matrix T .

Dynamic reconstruction of the shortest paths tree 95

Step 5. If L 6= Θ 1, go to Step 1.
This algorithm is implemented as a procedure Propagate which uses

the following input parameters: the transposed weight matrix for the given
graph G; the binary code of infinity inf ; the added vertex v.

It returns the matrix of descendants T and the matrix of the shortest
distances D that correspond to the sp-tree for the graph G with the added
vertex v.

Initially the shortest path from s to v has been written in the v-th row
of the matrix D and the parent of v has been written in the v-th row of the
matrix T .

Now we propose the following procedure.

procedure Propagate(G: table; inf: word; v: integer;
var T: table; var D: table);

var i,j,h: integer;
w,w1: word;
A,L,X,Y,Z: slice;
D1,R1: table;

1. Begin SET(Y); CLR(L);
2. L(v):=’1’;
3. while SOME(L) do
4. begin MIN(D,L,X);
5. i:=STEP(X); w:=ROW(i,D);
6. L(i):=’0’;
/* In the slice L, we delete the vertex having

the minimal distance from the root s. */
7. TCOPY1(G,i,h,R1);
/*The matrix R1 saves the weights of arcs incident to vertex vi. */
8. MATCH(R1,Y,inf,Z); A:= not Z;
9. ADDC(R1,A,w,D1);
10. SETMIN(D1,D,A,Z);
/*The slice Z saves the vertices whose distances from s

were decreased. */
11. if SOME(Z) then
12. begin L:=L or Z;
13. TMERGE(D1,Z,D);
/*The matrix D saves new distances for vertices

selected in the slice Z. */
14. CLR(w1); w1(i):=’1’;
15. while SOME(Z) do
16. begin j:=STEP(Z);
17. ROW(j,T):=w1;

1The notation L 6= Θ denotes that there is at least one component ′1′ in the slice L.

96 A. Sh. Nepomniaschaya, T.V. Snytnikova

/*For any vertex vj marked with ′1′ in the slice Z,
a new parent is written in the j-th row of T . */

18. end;
19. end;
20. end;
21. End;

Theorem 1. Let an undirected graph G be represented as a transposed
weight matrix. Let the distance matrix D and the matrix of descendants T
be given for G. Let a vertex v be added to G, the shortest path from s to v
be written in the v-th row of D, the v-th column consisting of zeros and the
v-th row saving the parent of v be added to the matrix T . Then the procedure
Propagate(G,inf,v,T,D) returns the matrices D and T that correspond to the
sp-tree for the graph G with the vertex v.

Proof. (Sketch) We will prove the theorem by induction on the number
of arcs which are added to the subtree S(v) of the new sp-tree.

Basis is checked for the case when S(v) consists of a single arc. After
performing lines 1–6, the slice L consists of the vertex v, the variable w saves
dist(s, v), and v is deleted from L. Then it is included into S(v) because, in
view of Remark 4, the value of dist(s, v) cannot be decreased.

After performing lines 7–10, the slice Z saves positions of those sons vk

of vertex v for which dist(s, vk) > dist(s, v) + wt(v, vk), where dist(s, vk) is
the length of the shortest path in the previous sp-tree. Let us call such a
vertex vk a selected vertex.

After performing lines 11–18, the selected vertices are included into the
slice L, the smaller new distances dist(s, v)+wt(v, vk) are written in the cor-
responding rows of the matrix D instead of the previous values of dist(s, vk).
Besides, the vertex v is marked as a parent of every vertex vk. Then we run
to the end of the statement while SOME(L) do (line 20). Since L 6= Θ, we
perform line 4. Here, among the vertices of L, we choose the son vj for
which the new shortest distance from s has the minimum value. This son is
deleted from L because the distance from s to vj cannot be decreased. Ac-
tually, assume that during the construction of the new sp-tree, there exists
another path fom s to vj , say γ, that includes the vertex v. Then obviously
γ includes no less than two arcs. Since the weights of arcs are non-negative
and wt(v, vj) ≤ wt(v, vr) for all vr 6= vj , the path γ will have the greater
length than the path including the arc v → vj . Since the new shortest path
to the vertex vj has been written in the j-th row of the matrix D and its
parent has been written in the j-th row of the matrix T , the vertex vj is
included into S(v). Hence, the arc v → vj belongs to S(v).

Step of induction. Let vertices v = v1, v2, . . . , vk have been already in-
cluded into S(v). Let vj be the son of vr (2 ≤ r ≤ k). Let, at the current

Dynamic reconstruction of the shortest paths tree 97

iteration, the path from s to vj including the vertex v have the minimum
value in L. Then by analogy with the basis, after deleting the vertex vr from
the slice L, the new distance from s to vj is written in the j-th row of the
matrix D and its parent vr is written in the j-th row of the matrix T . Since
this distance from s to vj cannot be decreased, vj is deleted from the slice
L and then it is included into S(v). Therefore, a new arc (vr, vj) is added
to the subtree S(v). ¥

Now we propose an associative parallel algorithm that performs the dy-
namic update of an sp-tree after insertion of a new vertex v to the graph.

Let InE be a row that saves the weights of arcs entering the vertex v.
Let OutE be an n × h matrix whose every i-th row saves the weight of an
arc outgoing from the vertex v.

An associative parallel algorithm for the dynamic update of the sp-tree
after insertion of a vertex v to G performs the following steps:

Step 1. Insert the vertex v into the graph G.
Step 2. Determine the parent of v in the current sp-tree and the shortest

distance from s to v.
Step 3. Recompute the matrix of the shortest paths D and the matrix

of descendants T for the graph G with the added vertex v.
On the STAR-machine this algorithm is implemented as a procedure

InsertV.
It uses the following input parameters: integers h and n described above;

the vertex v; the code of infinity inf ; the row InE; the matrix OutE.
It returns the transposed weight matrix for the graph G with the added

vertex v and the recomputed matrices D and T that correspond to the
extended graph G.

Now we provide the following procedure.

procedure InsertV(h,n,v: integer; inf: word; InE: word;
OutE: table; var G: table; var T: table; var D: table);

var i: integer;
R1,D1: table;
u,w: word;
X,Y: slice;

1. Begin SET(X); CLR(u);
2. ROW(v,G):=InE;
3. TCOPY2(OutE,v,h,G);
4. WTRANS(InE,h,n,R1);
5. MATCH(R1,X,inf,Y);
6. X:= not Y;
7. ADDV(R1,D,X,D1);
8. MIN(D1,X,Y); i:=FND(Y);
9. w:=ROW(i,D1);

98 A. Sh. Nepomniaschaya, T.V. Snytnikova

10. ROW(v,D):=w;
11. u(i):=’1’; ROW(v,T):=u;
12. CLR(Y); COL(v,T):=Y;
13. Propagate(G,inf,v,T,D);
14. End;

Theorem 2. Let a directed graph G be represented as a transposed
weight matrix. Let the distance matrix D and the matrix of descendants T
be given for G. Let the code of infinity inf , its length h, and the additional
vertex v for G be known. Let the weights of arcs entering v be given as a
row InE and the weights of arcs outgoing from v be given as a matrix OutE.
Then the procedure InsertV(h,n,v,inf,InE,OutE,G,T,D) returns the altered
weight matrix and matrices D and T that correspond to the sp-tree for the
graph G with the added vertex v.

Proof. (Sketch) According to Theorem 1, the procedure Propagate re-
turns the matrices D and T that correspond to the sp-tree for the graph G
along with the added vertex v. Therefore it is necessary to check that, after
performing lines 1–12, we obtain, in particular, all input parameters for the
procedure Propagate.

One can immediately verify that, after performing lines 1–3, we obtain
the transposed weight matrix for the graph G with the added vertex v. By
means of the technique from [17], after performing lines 4–6, we determine
positions of arcs entering v. Then, after fulfilling lines 7–8, we first deter-
mine the length of different paths from s to the new vertex v. Knowing
these paths, we select a vertex vi such that the arc vi → v belongs to the
tree path from s to v and this path has the minimum weight.

After performing lines 9–11, this shortest distance is written in the v-th
row of the matrix D. Then in the v-th row of the matrix T , the vertex vi is
marked as the parent of v. Finally, after performing line 12, we set zeros in
the v-th column of the matrix T .

Now all conditions of Theorem 1 are satisfied. Therefore we can apply
the procedure Propagate. ¥

Let us evaluate time complexity of the procedure InsertV. By analogy
with [17], we obtain that this procedure takes O(hk) time, where h is the
number of bits required for coding the maximum weight of the shortest
paths from the source vertex s and k is the number of vertices whose tree
paths change. Note that the static algorithm for finding the sp-tree from
[17] requires O(hn) time, where n is the number of graph vertices.

Remark 3. Let a new arc, say vi → vj , be inserted in the graph. Then
we update the sp-tree as follows. We first determine the weight of the new
tree path from s to vj that includes vi. If it is no less than dist(s, vj)

Dynamic reconstruction of the shortest paths tree 99

written in the j-th row of the matrix D, then matrices T and D do not
change. Otherwise, we write the new distance in the j-th row of the matrix
D. Moreover, in the j-th row of the matrix T , we mark the vertex vi as the
father of the vertex vj . After that, by means of the procedure Propagate,
we recompute tree paths and distances for the vertices from the subtree
rooted at the vertex vj .

5. Experiments

In this section, we provide an example of implementing the procedure In-
sertV on the STAR-machine. To this end, we will use the experimental
system VisualStar [2] which allows one to edit, compile, and implement pro-
cedures written in the language STAR. It was realized by means of Borland
Delphi 4.0.

The original graph G and its sp-tree are given in Figure 1.

Figure 1. Graph G and its sp-tree

Let the matrix of the shortest distances D and the matrix of descendants
T that correspond to the sp-tree from Figure 1 be given for the graph G.
Let vertex 10 along with the arcs 2 → 10, 5 → 10, 10 → 6, and 10 → 7 be
added to G. Let wt(2, 10) = wt(5, 10) = wt(10, 6) = 1 and wt(10, 7) = 6 as
shown in Figure 2.

We have to reconstruct the matrices D and T in such a way that they
will correspond to the sp-tree of the altered graph G after adding vertex 10.

Note that in any iteration of performing the procedure InsertV, we indi-
cate both the current distance from s to every vertex v of G and the current
father of any v.

Let us agree to mark in bold the vertices from the set L whose distances
from s decrease at the current iteration. Let P (v) denote a father of the
vertex v.

After performing the 6-th iteration, we obtain the matrix of distances D
and the matrix of descendants T for the altered graph G after adding vertex

100 A. Sh. Nepomniaschaya, T.V. Snytnikova

Figure 2. The altered graph G and its sp-tree

Matrix T
1 2 3 4 5 6 7 8 9 10

1 0 0 0 0 0 0 0 0 0 0
2 1 0 0 0 0 0 0 0 0 0
3 1 0 0 0 0 0 0 0 0 0
4 0 1 0 0 0 0 0 0 0 0
5 0 0 1 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 1
7 0 0 0 0 0 0 0 0 1 0
8 0 0 0 0 0 1 0 0 0 0
9 0 0 0 0 0 0 0 1 0 0
10 0 1 0 0 0 0 0 0 0 0

Figure 3. The sp-tree for G with the added vertex 10

10. The obtained matrix of descendants from Table 1 corresponds to the
tree of the shortest paths given in Figure 3.

6. Conclusions

We proposed a new result concerning the dynamic maintenance of the short-
est paths tree after insertion of a new vertex in a directed graph with non-
negative arc weights. The algorithm is implemented as the procedure In-
sertV on the STAR-machine that simulates the run of associative parallel
processors with vertical processing. We apply some constructions from [18]
being designed in implementing Dijkstra’s algorithm on the STAR-machine
to obtain the shortest paths tree along with the matrix of the shortest dis-
tances. We proved correctness of the procedure InsertV and evaluate its
time complexity. We have obtained that it takes O(hk) time, where h is
the number of bits required for coding the maximum weight of the shortest

Dynamic reconstruction of the shortest paths tree 101

Table 1. Implementation of InsertV

Iteration 1 Iteration 2 Iteration 3
D L P(v) D L P(v) D L P(v)

1 0 0 0 0 0 0 0 0 0
2 2 0 1 2 0 1 2 0 1
3 3 0 1 3 0 1 3 0 1
4 4 0 2 4 0 2 4 0 2
5 4 0 3 4 0 3 4 0 3
6 6 0 4 4 1 10 4 0 10
7 10 0 9 9 1 10 9 1 10
8 8 0 6 8 0 6 6 1 6
9 9 0 8 9 0 8 9 0 8
10 3 1 2 3 0 2 3 0 2

Iteration 4 Iteration 5 Iteration 6
D L P(v) D L P(v) D L P(v)

1 0 0 0 0 0 0 0 0 0
2 2 0 1 2 0 1 2 0 1
3 3 0 1 3 0 1 3 0 1
4 4 0 2 4 0 2 4 0 2
5 4 0 3 4 0 3 4 0 3
6 4 0 10 4 0 10 4 0 10
7 9 1 10 8 1 9 8 0 9
8 6 0 6 6 0 6 6 0 6
9 7 1 8 7 0 8 7 0 8
10 3 0 2 3 0 2 3 0 2

paths from s and k is the number of vertices whose tree paths change.
We are planning to design an associative parallel algorithm for dynamic

reconstruction of the shortest paths tree after deleting a vertex along with
its incident edges from a digraph.

References

[1] Ausiello G., Italiano G.F., Marchetti-Spaccamela A., Nanni U. Incremental
algorithms for minimal length paths // J. of Algorithms. — 1991. — Vol. 12,
N 4. — P. 615–638.

[2] Borets T.V. A programming system VisualStar // Proc. of the Conference of
young scientists / Ed.: G.A. Michailov. — Novosibirsk, 2004. — P. 20–26.

102 A. Sh. Nepomniaschaya, T.V. Snytnikova

[3] Chaudhuri S., Zaroliagis C.D. Shortest path queries in digraphs of small
treewidth // Lect. Notes Comput. Sci. — 1995. — Vol. 944. — P. 244–255.

[4] Dijkstra E. W. A Note on Two Problems in Connection with Graphs // Nu-
merische Mathematik. — 1959. — Vol. 1. — P. 269–271.

[5] Foster C.C. Content Addressable Parallel Processors. — NY: Van Nostrand
Reinhold Company, 1976.

[6] Franciosa P.G., Frigioni D., Giaccio R. Semi-dynamic shortest paths and
breadth-first searsch in digraphs // Lect. Notes Comput. Sci. — 1997. — Vol.
1200. — P. 33–46.

[7] Fredman M.L., Tarjan R.E. Fibonacci heaps and their use in improved network
optimization algorithms // J. of the ACM. — 1987. — Vol. 34. — P. 596–615.

[8] Frigioni D., Italiano G.F. Dynamically switching vertices in planar graphs //
Algorithmica. — Berlin: Springer–Verlag, 2000. — Vol. 28, N 1. — P. 76–103.

[9] Frigioni D., Marchetti-Spaccamela A., Nanni U. Fully dynamic algorithms for
maintaining shortest paths trees // J. of Algorithms. — Academic Press, 2000.
— Vol. 34, N 2. — P. 351–381.

[10] Frigioni D., Marchetti-Spaccamela A., Nanni U. Semi–dynamic algorithms
for maintaining single source shortest paths trees // Algorithmica. — Berlin:
Springer–Verlag, 1998. — Vol. 25, N 3. — P. 250–274.

[11] Frigioni D., Marchetti-Spaccamela A., Nanni U. Fully dynamic shortest paths
in digraphs with arbitrary arc weights // J. of Algorithms. — Elsevier Science,
2003. — Vol. 49, N 1. — P. 86–113.

[12] Klein P.N., Rao S., Rauch M., Subramanian S. Faster shortest path algorithms
for planar graphs // Proc. ACM Symp. on Theory of Computing, Montreal,
Quebec, Canada, May 23–25, 1994. — P. 27–377.

[13] Narváez P., Siu K.-Y., Tzeng H.-Y. New dynamic algorithms for shortest paths
tree computation // IEEE/ACM Trans. Networking. — 2000. — Vol. 8, N 6.
— P. 734–746.

[14] Nepomniaschaya A. S. Language STAR for associative and parallel computa-
tion with vertical data processing // Proc. of the Internat. Conf. “Parallel
Computing Technologies”. — Singapure: World Scientific, 1991. — P. 258–
265.

[15] Nepomniaschaya A. S. Solution of path problems using associative parallel pro-
cessors // Proc. of the Internat. Conf. on Parallel and Distributed Systems,
ICPADS’97, Korea, Seoul. — IEEE Computer Society Press, 1997. — P. 610–
617.

[16] Nepomniaschaya A. S., Dvoskina M. A. A simple implementation of Dijkstra’s
shortest path algorithm on associative parallel processors // Fundamenta In-
formaticae. — IOS Press, 2000. — Vol. 43. — P. 227–243.

Dynamic reconstruction of the shortest paths tree 103

[17] Nepomniaschaya A. S. Concurrent selection of the shortest paths and distances
in directed graphs using vertical processing systems // Bull. Novosibirsk Comp.
Center. Ser. Computer Science. — Novosibirsk, 2003. — Iss. 19. — P. 61–72.

[18] Ramalingam G. Bounded incremental computation // Lect. Notes Comput.
Sci. — 1996. — Vol. 1089.

[19] Ramalingam G. and Reps T. An incremental algorithm for a generalization of
the shortest paths problem //J. of Algorithms. — Academic Press, 1996. —
Vol. 21. — P. 267–305.

104

