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Constructions used in associative parallel
algorithms for undirected graphs. Part 1

A. S. Nepomniaschaya

Abstract. The paper selects constructions used to represent a group of algorithms
for undirected graphs given as a list of edges and their weights on a model of asso-
ciative (content addressable) parallel systems with vertical processing (the STAR–
machine). To this end, the paper analyzes the implementation on the STAR–
machine of classical algorithms of Prim–Dijkstra, Kruskal, and Gabow, the method
of finding paths with respect to a given spanning tree and its application to solving
some tasks. Moreover, the paper proposes an improved version of implementing the
Gabow algorithm for finding the smallest spanning tree with a degree constraint of
a vertex on the STAR–machine.
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nected component, fundamental set of circuits, vertical processing system.

1. Introduction

Associative processing is a completely different way of storing, manipulat-
ing, and retrieving data as compared to traditional computation techniques.
Associative (content addressable) parallel processors of the SIMD type with
simple processing elements offer distinctive advantages over other parallel
systems such as data parallelism at the base level, the use of 2D tables as
the basic data structure, massively parallel search by contents, and process-
ing of unordered data [19]. Associative parallel systems are best suited to
solving non-numerical problems such as graph theory, computational geom-
etry, relational database processing, image processing, and genome match-
ing. In [18], the search and data selection algorithms for both bit–serial
(vertical) and fully parallel associative processors were described. In [3], the
depth search machines and their applications to computational geometry,
relational databases, and expert systems were investigated. In [4, 5], an ex-
perimental implementation of a multi–comparand multi-search associative
processor and some parallel algorithms for search problems in computa-
tional geometry were considered. In [6], an associative graph machine (the
AG–machine) and its possible hardware implementation were suggested. It
performs bit–serial and fully parallel associative processing of matrices rep-
resenting graphs as well as some basic set operations on matrices (sets of
columns).

Of special interest is the class of associative parallel processors of the
SIMD type with vertical processing because they simulate the complete as-
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sociative processing at the micro level. In [9], a model of the SIMD type
with vertical processing (the STAR–machine) was proposed. It is useful for
specifying and analyzing new associative hardware devices and for design-
ing associative algorithms. Associative parallel algorithms are represented
as corresponding procedures for the STAR–machine. In [7], basic associative
parallel algorithms were presented used to design different associative algo-
rithms for different applications. Let us enumerate some results of solving
graph problems on the STAR–machine. In [9, 10], we construct a natu-
ral straight forward implementation on the STAR–machine of the classical
graph algorithms of Dijkstra and Bellman–Ford for finding the single–source
shortest paths. In [12], we propose associative parallel algorithms for the
dynamic edge update of the minimum spanning trees of undirected graphs.
In [14], we present the efficient implementation on the STAR–machine of
the Italiano algorithms for the dynamic update of the transitive closure of
directed graphs. In [15, 16], we propose the efficient implementation on the
STAR–machine of the Ramalingam algorithms for the dynamic update of
the shortest paths subgraph of a directed graph with a sink.

The goal of this paper is to select the group of constructions used to
represent associative algorithms for undirected graphs given on the STAR–
machine as a list of edges and their weights. We first select constructions
used to design associative versions of the Prim–Dijkstra and Kruskal algo-
rithms for finding the minimum spanning tree [11]. Then we determine a
group of constructions to describe the method of finding the paths with
respect to the given spanning tree. To describe this method, we use two
associative parallel algorithms. Knowing a graph and a spanning tree, the
first algorithm constructs the matrix of tree paths. Knowing a graph, the
matrix of tree paths, and a chord, the second algorithm determines the po-
sitions of edges belonging to the tree path that connects the end-points of
the chord. Further we recall a group of algorithms for undirected graphs
using this method [13]. In particular, it includes the following three tasks:
to verify a minimum spanning tree in undirected graphs, to update a min-
imum spanning tree, to find a set of fundamental circuits with respect to
a particular spanning tree. In [8], we proposed an associative version of
the Gabow algorithm for finding the smallest spanning tree with a degree
constraint of a vertex. Here, we propose a new efficient associative parallel
algorithm for the auxiliary procedure from [8] that determines the positions
of edges to replace a given edge. We do this using the matrix of tree paths
described above.

2. An associative parallel machine model

In this section, we first recall the main operations of the STAR–machine.
The description of the model is given, for example, in [9].
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Let us present some elementary operations and a predicate for variables
of the type slice.1

We use the following operations:
SET(Y ) simultaneously sets all components of Y to ′1′;
CLR(Y ) simultaneously sets all components of Y to ′0′;
Y (i) selects the i-th component of Y ;
FND(Y ) returns the number i of the first (the uppermost) ′1′ of Y , i ≥ 0;
STEP(Y ) returns the same result as FND(Y ), then resets the first ′1′

found to ′0′.
To execute the data parallelism, we introduce in the usual way the bitwise

Boolean operations: X andY , X or Y , not Y , X xor Y . We also use a
predicate SOME(Y ) that results in true if there is at least a single bit ′1′

in the slice Y . For simplicity, the notation Y ̸= ∅ means that the predicate
SOME(Y ) results in true.

Note that the predicate SOME(Y ) and all operations for the type slice
are also performed for the type word.

Let T be a variable of the type table. We employ the following elemen-
tary operations:

ROW(i, T ) returns the i-th row of the matrix T ;
COL(i, T ) returns its i-th column.
Note that the STAR statements are defined in the same manner as for

Pascal. They are used for presenting the procedures.
Now, we recall a few basic procedures [7] implemented on the STAR–

machine. They use a given slice X to indicate with ′1′ the row positions
used in the corresponding procedure. In [7], we have shown that basic
procedures take O(r) time each, where r is the number of bit columns in
the corresponding matrix.

The procedure MATCH(T,X,w,Z) determines the positions of the rows
of the matrix T that coincide with the given pattern w. It returns the slice
Z, where Z(i) =′ 1′ if and only if ROW(i, T ) = w and X(i) =′ 1′.

The procedure GREAT(T,X, v, Z) defines the positions of rows of the
given matrix T which are greater than the given pattern v written in binary
code. It returns the slice Z, where Z(i) =′ 1′ if and only if ROW(i, T ) > v
and X(i) =′ 1′.

The procedure MIN(T,X,Z) finds the positions of rows in the given
matrix T where the minimal element is located. These positions are marked
with ′1′ in the result slice Z.

The procedure MAX(T,X,Z) is defined by analogy with MIN(T,X,Z).
The procedure TMERGE(T,X, F ) writes the rows of the matrix T , in-

dicated with bits ′1′ in the slice X, into the matrix F . Other rows of the
matrix F do not change.

1For simplicity let us call slice any variable of the type slice.
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The procedure ADDC(T,X, v, F ) adds the binary word v to those rows
of the matrix T which are selected with bits ′1′ in the given slice X, and
writes down the result into the corresponding rows of the matrix F . Other
rows of the matrix F consist of zeroes.

The procedure SUBTV(T, F, Z,R) writes the result of subtracting the
matrix F from the matrix T into the matrix R.

3. Preliminaries

Let G = (V,E) be an undirected weighted graph with the set of vertices
V = {1, 2, . . . , n}, the set of edges E and the function wt that assigns a
weight to every edge. We assume that |V | = n and |E| = m.

In the STAR–machine matrix memory, a graph will be represented as
association of the matrices Left, Right, and Weight, where each edge (u, v)
is matched with the triple < u, v, wt(u, v) >.

A path from v1 to vk in G is a sequence of vertices v1, v2, . . . , vk, where
(vi, vi+1) ∈ E for 1 ≤ i < k. If v1 = vk, then the path is said to be a cycle
or circuit.

A spanning tree T = (V,E′) of the given graph G is a connected acyclic
subgraph of G, where E′ ⊆ E. Each edge e ∈ E − E′ is called a chord of
G with respect to the spanning tree. Adding a chord to a spanning tree
creates precisely one circuit.

A fundamental set of circuits is a collection of such circuits with respect
to a particular spanning tree.

A minimum spanning tree (MST) of G is a spanning tree where the sum
of weights of the corresponding edges is minimal.

A connected component is a maximal connected subgraph.

4. Finding a minimum spanning tree of an undirected graph

In this section, we propose two constructions used to represent on the STAR–
machine the Prim–Dijkstra and Kruskal algorithms for finding a minimum
spanning tree of an undirected graph.

The Prim–Dijkstra algorithm builds a minimum spanning tree by grow-
ing a subtree TS . Initially, TS consists of a single vertex s. The first edge
of TS is chosen as the edge of the minimal weight which is incident to s.
The subtree TS grows by including edges of the minimal weight that have
a single vertex belonging to TS . The process continues until all vertices are
included in TS .

On the STAR–machine, the Prim–Dijkstra algorithm is represented as a
procedure MSTPD [11] whose input parameters are matrices Left, Right,
and Weight, the binary representation of a vertex s, and the global slice
Z that saves the positions of edges belonging to G. This procedure returns
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the slice Tree that saves the positions of edges included into the minimum
spanning tree. In [11], we prove correctness of this procedure and show that
on the STAR–machine it takes O(n log n) time, where n is the number of
vertices in the initial graph.

Let us present two constructions used to represent the procedureMSTPD
on the STAR–machine.

The first construction uses a variable node of the type word and the
variables N1 and N2 of the type slice. The variable node will save the
new vertex that will be included into the fragment of TS at every step. The
variables N1 and N2 will accumulate the positions of the edges that have
a single vertex belonging to the fragment of TS being built. Initially, the
variable node saves the vertex s, and the slices N1 and N2 consist of zeroes.

Construction 1. (Finding the positions of edges forming a cycle.)
Let the current vertex node be included into the current fragment of

the minimum spanning tree TS . Then we first select the positions of edges
whose left vertex coincides with node and save them in the slice N1. Then
we select the positions of edges whose right vertex coincides with node and
save them in the slice N2. After that we intersect the slices N1 and N2 and
delete the positions of edges belonging to this intersection from the slice Z.

Really, every edge from the intersection of N1 and N2 has the following
property: it does not belong to the fragment of TS being built but its end–
points belong to TS . Therefore such edges must be deleted from the global
slice Z because they form a cycle.

To obtain the slices N1 and N2, the basic procedure MATCH is applied
to the matrices Left and Right.

Construction 2. (Finding the current vertex for including into TS .)
Let an edge from the i-th position of the association of the matrices Left,

Right, and Weight be added to TS . Then the new value of the variable node
is determined as follows.

if N1(i)=’1’ then node:=ROW(i,Right)

else node:=ROW(i,Left);

Obviously, in Construction 2 one can use the bit N2(i) instead of the
bit N1(i).

The Kruskal algorithm builds a minimum spanning tree TS in the fol-
lowing way.

Initially, all the edges of G are sorted out in the increasing order. The
first edge of the tree is the first edge in this new array. At any next step,
one chooses, among the edges incident to vertices included into the tree, the
uppermost edge in the new array that does not form a cycle.

The associative version of the Kruskal algorithm is given as a procedure
MST1 whose input parameters are the matrices Left, Right, and Weight,
and the number of vertices n. The procedure returns the slice Result that
saves the positions of edges belonging to the minimum spanning tree. In
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[11], we have shown that the procedure MST1 takes O(n log n) time.
The procedure MST1 uses the variables N1 and N2 of the type slice and

the variables node1 and node2 of the type word. The variables N1 and N2
are used for the same goal as in the procedure MSTPD. The variables node1
and node2 are used to select the left and the right vertices of the current
edge included in TS .

The procedure MST1 runs as follows. The first edge of TS is chosen as
the edge having the minimal weight in the new array. Every next edge for
TS is selected as the edge of the minimal weight among the edges having
a single vertex belonging to the current TS . To select the edges that are
candidates to be included into the tree, Construction 1 is used.

In [11], we have shown that the execution of the Prim–Dijkstra algorithm
and the associative version of the Kruskal algorithm are based on the same
method allowing one to determine the positions of edges whose addition to
the growing tree form a cycle.

5. Computation of functions defined on trees

In this section, we select constructions that will be used in the associative al-
gorithm for finding paths with respect to a given spanning tree [13]. We will
use the matrix Code whose every i-th row saves the binary representation
of the vertex i (1 ≤ i ≤ n).

In [20], Tarjan suggests a special technique, path compression in bal-
anced trees, for computing functions defined on trees. In [13], we propose a
method for finding tree paths in undirected graphs. It is oriented towards
the associative update of information and the representation of a graph as
a list of triples. The method consists of two associative parallel algorithms.
Knowing a graph and a spanning tree, the first algorithm builds the matrix
of tree paths TPaths, whose every i-th column saves the positions of edges
belonging to the tree path from v1 to vi. Knowing a graph, the matrix
TPaths and a chord σ, the second algorithm determines the positions of
edges belonging to the path that connects end–points of σ. On the STAR–
machine, the first algorithm is implemented as a procedure MatrixPaths. It
uses the following parameters: the matrices Left, Right, and Code, the
spanning tree given as a slice Tree and the number of graph vertices n. It
returns the matrix TPaths. The procedure uses the following idea. Assume
we know the positions of edges included into the tree path from v1 to vr.
Then we construct a tree path from v1 to such a vertex vk that is adjacent
to vr, the corresponding edge γ from the spanning tree connects the vertices
vr and vk, and the path from v1 to vk has not been built yet. The tree path
from v1 to vk is obtained by adding the position of the edge γ to the path
from v1 to vr.

The procedure MatrixPaths uses, in particular, the variables node1 and
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node2 of the typeword, N1 andN2 of the type slice, and k and j of the type
integer. We use the variable node1 (respectively, node2 ) to save the binary
code of the vertex for which the tree path from v1 has been constructed
(respectively, has not been constructed) and the slice N1 (respectively, N2)
to store the positions of the tree edges whose left (respectively, right) vertex
has been included in the tree path from v1.

The procedure MatrixPaths uses the following three constructions.
Construction 3. (Finding the current and new vertices included into the

path being built.)
Assume at the current iteration we select the uppermost edge (say, γ)

written in the i-th position of N1 or N2. Then the end–points node1 and
node2 of γ are determined as follows. If the left end–point of γ has been
included into the growing fragment of TS , then its right end–point is the
new vertex for TS . Otherwise, the new vertex is its left end–point.

We perform this by means of the following operator.
if N1(i)=’1’then

begin node1:=ROW(i,Left); node2:=ROW(i,Right) end

else begin node1:=ROW(i,Right); node2:=ROW(i,Left) end.

Construction 4. (Finding a path from the root v1 to the new vertex in-
cluded into the path being built.)

Let at the current iteration the edge γ be selected from the i-th position
of N1 or N2. Let k and j be decimal numbers of the end–points of γ. Let
j be the new vertex added to the fragment of TS . Then the tree path from
v1 to j is obtained by including the position i of the edge γ into the copy of
the k-th column of the matrix TPaths.

The next construction uses the variables node1 and node2 of the type
word.

Construction 5. (Finding decimal numbers of end–points of an edge.)
Let an edge (say, γ) be written in the i-th row of association of the

matrices Left andRight. Then the binary representation of its end–points is
written in the i-th row of the matrices Left and Right. Let a variable node1
(respectively, node2) save the i-th row of the matrix Left (respectively,
Right). Then the corresponding decimal numbers of the end–points of γ are
obtained by applying the basic procedure MATCH and the operation FND
to the matrix Code.

The second associative algorithm is implemented on the STAR–machine
as a procedure PathPositions having the following input parameters: the ma-
trices Left, Right, Code, and TPaths, and the position of a chord, say σ. It
returns a slice Y , where the positions of edges from the tree path connecting
end–points of σ are marked by ′1′. This procedure uses the following idea.
Knowing the position i of a chord σ in the graph representation and the
matrix TPaths, it determines the decimal numbers of the end–points of σ.
The resulting slice Y is obtained by means of the operation xor between the
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bit columns of the matrix TPaths that correspond to the end–points of σ.
The procedure PathPositions uses, in particular, the variables node1 and

node2 of the type word and the variables n1 and n2 of the type integer.
The variables node1 and node2 are used for the same purposes as in the pro-
cedureMatrixPaths. The variables n1 and n2 save the decimal representation
of node1 and node2.

The procedure PathPositions uses the following construction.
Construction 6. (Building a tree path that connects end–points of a chord.)
Let the matrix TPaths be given. Let a chord σ be written in the i-th

row of the graph representation. Let n1 and n2 be decimal numbers of the
end–points of the chord. Then the tree path connecting the end–points of σ
is obtained by means of the operation xor between the n1-th and n2-th bit
columns of the matrix Tpaths.

Enumerate some applications of the associative parallel algorithm for
finding a tree path between any pair of vertices in undirected graphs. In
[1], Chin and Houck considered the following problem of the static update
of minimum spanning trees. Let T be a minimum spanning tree in a given
undirected graph G. For each edge (v, w) of T it is necessary to determine
a chord (x, y) by which (v, w) should be replaced to obtain a new minimum
spanning tree if the edge (v, w) is deleted from G. The algorithm of Chin
and Houck labels each tree edge from T with its replacement. It takes O(n2)
time. In [19], Tarjan suggested an algorithm for the same task which uses
the technique of path compression on balanced trees and takes O(mα(m,n))
time, where n is the number of vertices, m is the number of edges in the
given graph, and α is a functional inverse of Ackermann’s function.

In [13], we proposed an associative parallel algorithm for the same task.
Let us explain the main idea of this algorithm.

Let (x1, y1), (x2, y2), . . . , (xk, yk) be chords of G with respect to the
given MST T . The chords are updated in the increasing order with respect
to their weights as follows. First, we define the positions of tree edges which
belong to the path (say, γ1) joining vertices x1 and y1. Each edge from γ1
should be replaced with the chord (x1, y1). Let the first r (r ≤ k−1) chords
have been updated. Then the (r + 1)-th chord is updated as follows. We
define the positions of tree edges which belong to the path (say, γr+1) joining
the vertices xr+1 and yr+1. Each edge from γr+1 not included into the tree
paths γ1, γ2, . . . , γr should be replaced with the chord (xi+1, yi+1). On the
STAR–machine, this algorithm is implemented as a procedure UpdateMST
having the following input parameters: the matrices Left, Right, Weight,
and Code, the minimum spanning tree given as a slice Tree, and the number
of vertices n. The procedure returns a matrix F whose every j-th column
(j ≤ 2k − 1) saves the positions of edges from T replaced with the same
chord. Position of this chord is marked with ′1′ in the (j + 1)-th column of
the matrix F .
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In [1], Chin and Houck proposes the following criterion of verifying min-
imum spanning trees in undirected graphs:

A spanning tree T is optimum if and only if for each chord (vi, vj)
wt(vi, vj) ≥ max{wt(x, y): (x, y) is on the tree path joining vi and vj}.

In [17], this criterion is implemented on the STAR-machine as a proce-
dure CST (Checking a Spanning Tree) having the following input parame-
ters: matrices Left, Right, Weight, and Code, a spanning tree T given as
a slice Tree, and the number of vertices n. The procedure returns true if
and only if all chords of T satisfy the criterion.

The procedure CST runs as follows. At first, by means of the procedure
MatrixPaths, we construct the matrix TPaths. Then for every chord (vi, vj)
by means of the procedure PathPositions, we determine the positions of edges
included into the tree path joining the vertices vi and vj . Further by means
of the basic procedure GREAT, we verify whether there is an edge in this
path whose weight is greater than the weight of the chord (vi, vj).

In [13], we present an associative parallel algorithm for finding the fun-
damental set of circuits with respect to the given spanning tree T . On the
STAR–machine, this algorithm is given as a procedure FSC (Fundamental
Set of Circuits) that uses the same input parameters as a procedure CPT.
This procedure returns a matrix F whose every i-th column saves the posi-
tions of edges included into the i-th fundamental cycle.

Informally, the procedure FSC runs as follows. At first, by means of a
slice, say Z, one saves the positions of chords with respect to a given span-
ning tree. Then by means of the procedure MatrixPaths, we construct the
matrix TPaths. While Z ̸= ∅, the current fundamental cycle is determined
as follows. The position of the current updated chord (x, y) is selected and
deleted from the slice Z. After that by means of the procedure PathPositions,
one determines the positions of tree edges that belong to the tree path, say
γ, from x to y. The current fundamental cycle is obtained after including
the position of the chord γ into the tree path from x to y. These positions
are saved in the current bit column of the matrix F .

6. Finding the smallest spanning tree with a degree
constraint of a vertex

In this section, we present an improved version of the implementation of
the Gabow algorithm for finding the smallest spanning tree with a degree
constraint of a vertex on the STAR–machine.

Let t be the degree constraint of a vertex r in a given undirected graph
G and deg(r) = k. The Gabow algorithm constructs the smallest spanning
tree of G that contains only t edges incident to r. Let Tk be the set of all
spanning trees for which deg(r) = k. Let R be the set of all edges incident
to r. The main idea of this algorithm is to find the smallest spanning tree
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that contains the set R. Then elementary exchanges are performed until
the degree of the vertex r decreases to t. To speed up the computation,
first of all a minimum spanning forest U of G − r is constructed. Then
only edges from R

∪
U are used. The elementary exchanges satisfy to the

following property. Let T be the smallest spanning tree in the set Tk. If
edges e ∈ T

∩
R and f /∈ T

∪
R are chosen so that T − e+ f is a spanning

tree and wt(f)−wt(e) is the minimal value among such edges, then T−e+f
is the smallest spanning tree in the set Tk−1.

To find the elementary exchanges, the Gabow algorithm uses a system
of queues. For every edge e ∈ T

∩
R, a queue F (e) is built to save the edges

f that merge two connected components of T − e. The priority queue of
any edge f is its weight. Another queue X saves elementary changes (e, f),
where f is the edge of the minimal weight that can replace the edge e. The
priority of this exchange is the value wt(f)− wt(e). Let the edges e and e′

from R have the same replacement f . Then after deleting the edge e and
replacing it with the edge f , the edge f should be deleted from the queue
F (e′), the replacement (e′, f) should be deleted from the queue X, a new
priority queue F (e′) should be built by merging the queues F (e) and F (e′),
a new replacement f ′ should be found for e′ and it should be written into
the queue X.

In [8], it is assumed that every edge incident to the vertex r has the
form < r, p, wt(r, p) >, and all such edges are written in the first r rows of
the graph representation. To describe the main constructions, the following
three auxiliary procedures are used.

The minimum spanning tree of a connected component is built by means
of the procedure MSTC(Left,Right,Weight,S1,Q,R) using the slice S1 to save
the positions of edges from G, among which the connected component is
constructed. It returns the slice R to save the positions of edges belonging
to the minimum spanning tree of the connected component and the slice Q
to save the positions of the edges from S1 not included into the minimum
spanning tree.

The minimum spanning forest for G− r is built by means of the proce-
dure FOREST(Left,Right,Weight, Z, U), using the slice Z to indicate the
positions of edges among which the connected components are looked for.
It returns a slice U to save the positions of edges belonging to the minimum
spanning forest.

For a given edge e = (r, p), written in the j-th row of the graph represen-
tation, the positions of its replacing edges are found by means of the proce-
dure EXCHANGE(Left,Right, j, Z,R, U). It returns a slice U , in which the
positions of replacing edges for the edge from the j-th position are marked
with bits ′1′. The slice Z saves the positions of the edges deleted from the
minimum spanning forest of G−r, and the slice R saves the positions of the
edges from the minimum spanning tree containing all the edges incident to
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r.
Let us briefly consider four constructions from [4] used in the associative

version of the Gabow algorithm.
Construction 7. (Finding the smallest spanning tree including all edges

incident to r.)
At first, define the maximal weight (w1) of the edges incident to r. Then

costruct a new matrix Cost from the matrix Weight as follows. Weights of
edges, incident to r, are increased by the value w1. After that perform the
procedure MSTC using the matrix Cost instead of the matrix Weight.

This construction uses the basic procedures MAX, ADDC, and TMEDGE.
Construction 8. (Finding a replacement for an edge from the j-th row.)
Let an edge e be written in the j-th row of the graph representation. By

means of the procedure EXCHANGE, define in a slice (U) the positions of
edges that can replace the edge e. Then define the position i of the replacing
edge f having the minimal weight. Save the position j of the edge e in a slice
(W ) and store the position i of its replacing edge f in the j-th component
of an array (A).

Construction 8 uses the basic procedures MATCH and MIN.
Construction 9. (Finding the current exchange.)
By means of a matrix (Cost1), save the augments of rows corresponding

to the positions ′1′ in the slice W . The position of the current exchange
(m) is the row of the matrix Cost1 with the minimal augment. Thus, the
pair (m,A[m]) is the current exchange. The position of the replacing edge
is obtained by means of the statement i:=A[m].

Construction 9 utilizes the basic procedures SUBTV and MIN.
Construction 10. (Checking whether there are two edges with the same

replacing edge.)
Let (m, i) be a current exchange. Knowing the position m of the deleted

edge e, define the column number (p) in a matrix (Change) where the
positions of its replacing edges are stored. Write ′0′ in the i-th bit of the
p-th column. Check whether there is bit ′1′ in the i-th row of the matrix
Change. If this is true, determine the column number (l) whose i-th bit is
′1′ in the i-th row of the matrix Change and replace it with ′0′. Finally,
perform the disjunction between the p-th column and the l-th column and
write the result into the l-th column of the matrix Change.

Now we present a new elegant associative algorithm for performing the
procedure EXCHANGE. To this end, we use the matrix TPaths built by
means of the procedureMatrixPaths considered in the previous section. From
constructing the matrix TPaths, we obtain the following property: every
i-th row of this matrix saves by bits ′1′ the positions of the vertices whose
tree paths from the root r include the edge written in the i-th row of the
graph representation. Hence, if we delete from G the edge e = (r, p) written
in the j-th row, then the j-th row of the matrix TPaths saves by ′1′ the
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vertices that belong to the subtree with the root p. These vertices form a
connected component including p.

The new associative algorithm uses the following idea. Let a slice Z save
the positions of edges deleted from the minimum spanning forest for the
graph G − r. Then the replacement for the edge e = (r, p) can be such an
edge marked by ′1′ in the slice Z that has only a single vertex belonging to
the subtree with the root p.

The new associative algorithm uses the matrices Left, Right, Code, and
TPaths, the position j of the deleted edge e, the slice Z mentioned above
and a new slice Q to save the positions of the replacing edges. Initially,
the slice Q consists of zeroes and the slice Z saves the positions of edges
that have been deleted from the graph G after constructing the minimum
spanning forest. The algorithm performs the following steps.

Step 1. Write zeroes into the slice Q. By means of a variable of the type
word, save the j-th row of the matrix TPaths.

Step 2. While Z ̸= ∅, perform the following actions:

• select the position l of the uppermost edge (say, γ) in the slice Z. Then
write zero into the l-th bit of this silce;

• determine both end-points of the edge γ written as decimal numbers;

• verify whether only a single end-point of the edge γ belongs to the
subtree with the root p. If this is true, then γ is a replacement for the
edge e. Therefore write the bit ′1′ into the l-position of the slice Q.

On the STAR–machine this algorithm is implemented as a procedure
EXCHANGE.

procedure EXCHANGE(Left,Right: table; Code: table; TPaths: table;

j: integer; var Z,Q: slice(Left));

var v,v1,v2: word(TPaths);

Z1: slice(Left);

X.X1: slice(Code);

l,k1,k2: integer;

1. Begin CLR(Q); SET(X);

2. v:=ROW(j,TPaths);

/* The row v saves the numbers of vertices that

belong to the subtree with the root p. */
3. while SOME(Z) do

4. begin l:=STEP(Z);

5. v1:=ROW(l,Left); v2:=ROW(l,Right);

6. MATCH(Code,X,v1,X1); k1:=FND(X1);

7. MATCH(Code,X,v2,X1); k2:=FND(X1);

/* The edge (k1, k2) is written in the l-th row of
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the graph representation. */

8. if v(k1)=’0’ and v(k2)=’1’ then Q(l):=’1’;

9. if v(k1)=’1’ and v(k2)=’0’ then Q(l):=’1’;

10. end;

11. End.

In [8], the associative version of the Gabow algorithm is represented
as the main procedure SSTEQ written in the language STAR. Taking into
account the improvement of the auxiliary procedure EXCHANGE, it is nec-
essary to change the list of formal parameters of the main procedure SSTEQ
and to include the execution of the procedure MatrixPaths immediately be-
fore performing the procedure EXCHANGE in the body of the procedure
SSTEQ. The modified procedure SSTEQ uses the following parameters: the
matrices Left, Right, Weight, TPaths, and Code, a variable node to save
the binary code of the selected vertex r, a variable n to save the number of
graph vertices, a variable k to save the degree of the vertex r and a variable
t to save the degree constraint of r. The procedure returns a slice R that
saves the positions of edges belonging to the smallest spanning tree.

In [8], we showed that the procedure SSTEQ takes O(n log n) time cor-
responding to the time of performing the procedure of finding the minimum
spanning tree on the STAR–machine.

7. Conclusions

We have selected a group of constructions that are used to represent on the
STAR–machine the classical graph algorithms of Prim–Dijkstra, Kruskal
and Gabow along with the method of finding paths with respect to a given
spanning tree. These algorithms take into account the main advantages of
vertical processing systems such as access data by contents, data parallelism
at the base level, and the use of simple data structures given as 2D tables
consisting of binary strings. As shown in [11], associative versions of the
Prim–Dijkstra and Kruskal algorithms use only the binary representation of
vertices. The new associative version of the Gabow algorithm applies the
representation of vertices in binary and decimal codes due to the use of the
method for finding tree paths in undirected graphs.

The selected constructions can be used to solve other problems on vertical
processing systems.

We are planning to select constructions that are used to represent other
classical graph algorithms on the STAR–machine.
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