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Veri�
ation of pointer programs using symboli
 method

for de�nite iterations

�

V.A. Nepomnias
hy

The symboli
 method for verifying de�nite iterations over hierar
hi
al data stru
tures [15℄ is extended to allow

a restri
ted 
hange of the stru
tures by the iteration body and exit from the iteration body under a 
ondition. A

transformation of de�nite iterations whi
h use exit from the iteration bodies to the standard de�nite iterations is justi�ed.

Programs over linear lists are 
onsidered as a 
ase of study. A te
hnique for proving veri�
ation 
onditions based on

both indu
tion prin
iples and notions related to the problem domain is developed. Examples whi
h illustrate appli
ation

of the symboli
 method to pointer program veri�
ation are 
onsidered.

1. Introdu
tion

The axiomati
 and fun
tional styles of program veri�
ation in
lude the following stages: program

annotation through 
onstru
tion of pre-, post-
onditions and loop invariants or fun
tions expressing

the loop e�e
t; deriving veri�
ation 
onditions with the help of proof rules and proving them [6, 9℄.

In both approa
hes loop annotation is still a diÆ
ult problem [11, 16℄. DiÆ
ulties of pointer program

veri�
ation have been noted for the axiomati
 approa
h in [3℄. De
idable logi
s have been proposed

to des
ribe spe
ial properties of pointer programs [2, 8℄. This allows a veri�
ation te
hnique to be

developed for loopfree pointer programs [8℄ but does not simplify the loop annotation.

A natural method of atta
k on the veri�
ation problem is the use of de�nite iterations, for example,

Pas
al for-loops. Although the redu
tion of for-loops to while-loops is often used for veri�
ation,

attempts to use the spe
i�
 
hara
ter of for-loops in the framework of the axiomati
 approa
h should

be noted [1, 4, 5, 7℄. In the framework of the fun
tional approa
h, a general form of a de�nite iteration

as an iteration over all elements of a stru
ture, su
h as list, set, �le and tree, has been proposed in

[17℄.

A symboli
 method for verifying for-loops with the statement of assignment to array elements as

the loop body has been proposed in [12, 13℄. This method is based on using the symbols of invariants

instead of the invariants in veri�
ation 
onditions and a spe
ial te
hnique for proving the 
onditions.

In [14℄ we extended the symboli
 method to de�nite iterations over data stru
tures without restri
tions

on the loop bodies. The symboli
 method has been developed for de�nite iterations over hierar
hi
al

data stru
tures in [15℄.

The purpose of this paper is to apply the symboli
 method to pointer program veri�
ation. A

de�nite iteration over hierar
hi
al data stru
tures whi
h allows for a restri
ted 
hange of the stru
-

tures by the iteration body, as distin
t from [15℄, is des
ribed in Se
tion 2. A de�nite iteration whi
h

uses exit from the iteration body under a 
ondition is de�ned in Se
tion 3 where its redu
tion to the

standard de�nite iteration over suitable hierar
hi
al data stru
tures is justi�ed. Proof rules without

invariants for generating veri�
ation 
onditions and indu
tion prin
iples for proving them are 
onsid-

ered in Se
tion 4. De�nite iterations over linear lists are 
onsidered in Se
tion 5 where notions for

annotating these programs and proof rules for Pas
al pointer statements are dis
ussed. Veri�
ation

of two programs whi
h perform an in-situ reversal of a linear list and a sear
h in a linear list with

reordering is exempli�ed in Se
tion 6. In 
on
lusion, results and prospe
ts of the symboli
 veri�
ation

method are dis
ussed.

�
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2. De�nite iteration over hierar
hi
al data stru
tures

We introdu
e the following notation. Let fs

1

; :::; s

n

g be a multiset 
onsisting of elements s

1

; :::; s

n

;

U

1

� U

2

be the di�eren
e of multisets U

1

and U

2

, U

1

[ U

2

be the union of multisets, and jU j be the

power of a �nite multiset U . Let [v

1

; :::; v

m

℄ denote a ve
tor 
onsisting of elements v

i

(1 � i � m).

Let us remind the notion of a data stru
ture [17℄. Let memb(S) be a �nite multiset of elements

of a stru
ture S, empty(S) be a predi
ate "memb(S) is empty", 
hoo(S) be a fun
tion whi
h returns

an element of memb(S); rest(S) be a fun
tion whi
h returns a stru
ture S

0

su
h that memb(S

0

) =

memb(S)� f
hoo(S)g. The fun
tions 
hoo(S) and rest(S) will be unde�ned if and only if empty(S).

Let us remind a de�nition of useful fun
tions related to the stru
ture S in the 
ase of :empty(S) and

memb(S) = fs

1

; :::; s

n

g [14℄. Let ve
(S) denote a ve
tor [s

1

; :::; s

n

℄ su
h that s

i

= 
hoo(rest

i�1

(S))

(i = 1; :::; n): Stru
tures S

1

and S

2

are re
ognized as equal if and only if ve
(S

1

) = ve
(S

2

): A

fun
tion head(S) returns a stru
ture su
h that ve
(head(S)) = [s

1

; :::; s

n�1

℄ if ve
(S) = [s

1

; :::; s

n

℄ and

n � 2. If n = 1, then empty(head(S)). Let last(S) be a partial fun
tion su
h that last(S) = s

n

if

ve
(S) = [s

1

; :::; s

n

℄. Let str(s) denote a stru
ture S whi
h 
ontains the only element s. The fun
tions

ve
(S); head(S) and last(S) will be unde�ned in the 
ase of empty(S). A 
on
atenation operation


on(S

1

; S

2

) is de�ned in [14℄ so that 
on(
hoo(S); rest(S)) = 
on(head(S); last(S)) = S if :empty(S).

We will use T (S

1

; :::; S

m

) to denote a term 
onstru
ted from data stru
tures S

i

(i = 1; :::;m) with

the help of the fun
tions 
hoo; last; rest; head; str; 
on. For a term T whi
h represents a data stru
ture,

we denote the fun
tion jmemb(T )j by lng(T ). The fun
tion 
an be 
al
ulated by the following rules:

lng(S

i

) = jmemb(S

i

)j, lng(
on(T

1

; T

2

)) = lng(T

1

)+ lng(T

2

), lng(rest(T )) = lng(head(T )) = lng(T )�

1, lng(str(s)) = 1.

Let a hierar
hi
al data stru
ture S = STR(S

1

; :::; S

m

) be de�ned by the fun
tions 
hoo(S) and

rest(S) 
onstru
ted with the help of 
onditional if�then�else, superposition and Boolean operations

from the following 
omponents:

| terms not 
ontaining S

1

; :::; S

m

;

| the predi
ate empty(S

i

) and the fun
tions 
hoo(S

i

); rest(S

i

); last(S

i

), head(S

i

) (i = 1; :::;m);

| terms of the form STR(T

1

; :::; T

m

) su
h that

P

m

i=1

lng(T

i

) <

P

m

i=1

lng(S

i

);

| an unde�ned element !.

Note that the unde�ned value ! of the fun
tions 
hoo(S) and rest(S) means empty(S). This de�nition

of hierar
hi
al stru
tures gives us more 
onvenient appli
ation of the indu
tion prin
iple 1 from Se
tion

4 to proving the properties of the stru
tures.

Let us 
onsider a de�nite iteration of the form

for x in S do v := body (v; x) end (1)

where S is a data stru
ture whi
h may be hierar
hi
al, x is a variable 
alled a loop parameter, v is a

data ve
tor of the loop body (x 62 v). The result of this iteration is an initial value v

0

of the ve
tor v if

empty(S). If :empty(S) and ve
(S) = [s

1

; :::; s

n

℄; the loop body v := body(v; x) iterates sequentially

for x de�ned as s

1

; :::; s

n

, and does not 
hange the stru
ture rest

i

(S) when x = s

i

for all i = 1; :::; n�1.

Therefore, ve
(S) = ve
(S

0

) where S

0

is an initial value of the stru
ture S.

3. De�nite iteration in
luding exit statement

De�nite iteration (1) is extended so that exit is allowed from the iteration body under a 
ondition.

Let us 
onsider the statement

for x in S do v := body

1

(v; x); if 
ond(v; x) then EXIT ; v := body

2

(v; x) end (2)
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where S is a data stru
ture whi
h may be hierar
hi
al, x is a loop parameter, v is a data ve
tor (x 62 v),

and EXIT is the statement of termination of the loop. The result of iteration (2) is an initial value v

0

of the ve
tor v if empty(S). If :empty(S) and ve
(S) = [s

1

; :::; s

n

℄, the loop body iterates sequentially

for x de�ned as s

1

; :::; s

n

while the 
ondition 
ond(body

1

(v; x); x) is false. When the 
ondition is �rst

true for x = s

i

, iteration (2) terminates by performing the statement v := body

1

(v; s

i

). The loop body

does not 
hange the stru
ture rest

i

(S) when x = s

i

and the 
ondition 
ond(body

1

(v; x); x) is false

(i = 1; :::; n � 1).

Our purpose is to eliminate the output statement from iteration (2) by its transformation to an

equivalent program whi
h in
ludes iteration (1). Su
h a transformation is realized in two stages: a


hange of the 
ondition 
ond(v; x) by the 
ondition 
ond(v

0

; x) in iteration (2); elimination of the exit

statement with the help of a hierar
hi
al stru
ture whi
h depends on v

0

, the 
ondition 
ond(v

0

; x) and

the stru
ture S.

At �rst, we will de�ne restri
tions to the iteration (2) whi
h allows us to eliminate the exit state-

ment. For a stru
ture S su
h that :empty(S) and ve
(S) = [s

1

; :::; s

n

℄, we use S

0

to denote a stru
ture

su
h that :empty(S

0

) and ve
(S

0

) = [(s

1

; 1); :::; (s

n

; n)℄. A fun
tion body(v; x) preserves a 
ondition


ond(v; x) with respe
t to a stru
ture S if in the 
ase of :empty(S); 
ond(body(v; x

0

); x) = 
ond(v; x)

for all v; x; x

0

, for whi
h there exist integers i; j su
h that j � i and (x; i); (x

0

; j) 2 memb(S

0

). A

fun
tion body(v; x) weakly preserves a 
ondition 
ond(v; x) with respe
t to a stru
ture S if in the 
ase

of :empty(S); 
ond(body(v; x

0

); x) = 
ond(v; x) for all v; x; x

0

, for whi
h there exist integers i; j su
h

that j < i and (x; i); (x

0

; j) 2 memb(S

0

). It should be noted that if all elements of a stru
ture S are

di�erent, then in these de�nitions the stru
ture S 
an be used instead of the stru
ture S

0

. In this 
ase

x; x

0

2 memb(S) and relations j � i; j < i are repla
ed by relations x

0

� x; x

0

< x, respe
tively, where

x

0

� x denotes that x

0

does not su

eed x in ve
(S), and x

0

< x denotes that x

0

pre
edes x in ve
(S).

Lemma 1. If the fun
tion body

1

(v; x) preserves and the fun
tion body

2

(v; x) weakly preserves the


ondition 
ond(v; x) with respe
t to the stru
ture S, then iteration (2) with an initial value v

0

of the

ve
tor v is equivalent to the iteration

for x in S dov := body

1

(v; x); if 
ond(v

0

; x) then EXIT ; v := body

2

(v; x) end: (3)

Proof. Lemma 1 is evident if empty(S). Let us suppose :empty(S) and ve
(S) = [s

1

; :::; s

n

℄. Let

v

2i�1

= body

1

(v

2i�2

; s

i

); v

2i

= body

2

(v

2i�1

; s

i

) (i = 1; :::; n). We use m to denote an integer su
h

that 1 � m � n and the body of iteration (2) is performed for x de�ned as s

1

; :::; s

m

. Two 
ases

are possible. In the �rst 
ase :
ond(v

2i�1

; s

i

) for all i = 1; :::; n and m = n. In the se
ond 
ase

:
ond(v

2i�1

; s

i

) for all i = 1; :::;m � 1 and 
ond(v

2m�1

; s

m

). Lemma 1 immediately follows from the


ondition 8j (1 � j � m ! 
ond(v

2j�1

; s

j

) = 
ond(v

0

; s

j

)): This 
ondition results from the following

more general 
ondition for i = j:

8j (1 � j � m! 8i (1 � i � j ! 
ond(v

2i�1

; s

j

) = 
ond(v

0

; s

j

))): (4)

To prove 
ondition (4), we use indu
tion on i = 1; :::; j for a �xed integer j (1 � j � m). The

fun
tion body

1

preserves the 
ondition 
ond with respe
t to the stru
ture S, and 1 � j holds for

(s

1

; 1); (s

j

; j) 2 S

0

. It follows from this that 
ond(v

1

; s

j

) = 
ond(body

1

(v

0

; s

1

); s

j

) = 
ond(v

0

; s

j

).

Therefore, 
ondition (4) holds for i = 1. Let us 
onsider the 
ase i > 1. From the indu
tive hypothesis,

the premise of Lemma 1 and i � j, it follows that 
ond(v

2i�1

; s

j

) = 
ond(body

1

(v

2i�2

; s

i

); s

j

) =


ond(v

2i�2

; s

j

) = 
ond(body

2

(v

2i�3

; s

i�1

); s

j

) = 
ond(v

2i�3

; s

j

) = 
ond(v

0

; s

j

). Therefore, 
ondition

(4) holds.

Let us de�ne a hierar
hi
al stru
ture ET (S) from the stru
ture S, the 
ondition 
ond and the

initial value v

0

of the ve
tor v as
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(
hoo(ET (S)); rest(ET (S))) =

if empty(S) _ 
ond(v

0

; 
hoo(S)) then (!; !) else (
hoo(S); ET (rest(S))).

The following lemma des
ribes elementary properties of the stru
ture ET (S).

Lemma 2.

2.1. If :empty(ET (S)), then the ve
tor ve
(ET (S)) is an initial segment of the ve
tor ve
(S).

2.2. The 
ondition :
ond(v

0

; s) holds for all s 2 memb(ET (S)).

2.3. If ET (S) 6= S, ve
(S) = [s

1

; :::; s

n

℄ and k = jmemb(ET (S))j + 1, then the 
ondition 
ond(v

0

; s

k

)

holds.

2.4. If ET (S) 6= S, then ET (S) = ET (head(S)).

Proof. We will use indu
tion on n = jmemb(S)j. If n = 0, then empty(S), empty(ET (S)) and

Lemma 2 is evident. Let us suppose that n > 0 and Lemma 2 holds for jmemb(S)j < n. In the 
ase

of 
ond(v

0

; s

1

), it is evident that empty(ET (S)); k = 1, empty(ET (head(S))), and, therefore, Lemma

2 holds. Let us 
onsider the 
ase :
ond(v

0

; s

1

). Then ET (S) = 
on(s

1

; ET (rest(S))), and assertions

2.1, 2.2 of the lemma follow from the indu
tive hypothesis. If ET (S) 6= S, then n > 1; ET (rest(S)) 6=

rest(S), and it follows from the indu
tive hypothesis that 
ond(v

0

; s

k

) for ve
(rest(S)) = [s

2

; :::; s

n

℄

and k = jmemb(ET (rest(S)))j + 2 = jmemb(ET (S))j + 1. Therefore, assertion 2.3 of the lemma

holds. In the 
ase of ET (S) 6= S it follows from the indu
tive hypothesis that ET (rest(S)) =

ET (head(rest(S))), and, therefore, ET (S) = 
on(s

1

; ET (head(rest(S)))). To prove assertion 2.4 of

the lemma, it remains to noti
e that ET (head(S)) = 
on(s

1

; ET (rest(head(S)))) and head(rest(S)) =

rest(head(S)):

Lemma 3. Iteration (3) with the initial value v

0

of the ve
tor v is equivalent to the program

for x in ET (S) do v := body

1

(v; x); v := body

2

(v; x) end; if ET (S) 6= S then v := body

1

(v; s

k

) (5)

where k = jmemb(ET (S))j + 1 and ve
(S) = [s

1

; :::; s

n

℄.

Proof. We will use indu
tion on n = jmemb(S)j. If n = 0, then empty(S), ET (S) = S and Lemma

3 is evident. Let us suppose that n > 0 and Lemma 3 holds for jmemb(S)j < n. In the 
ase of

:
ond(v

0

; s

i

) for all i = 1; :::; n, Lemma 3 follows from Lemma 2.3 and ET (S) = S. Otherwise, let us

�x the least integer i (1 � i � n) su
h that 
ond(v

0

; s

i

). From Lemma 2 it follows that ET (S) 6= S

and ET (S) = ET (head(S)). Two 
ases are possible:

1. 1 � i � n� 1. Then iteration (3) is equivalent to the iteration

for x in head(S) do v := body

1

(v; x); if 
ond(v

0

; x) then EXIT ; v := body

2

(v; x) end

whi
h, by the indu
tive hypothesis, is equivalent to the program

for x in ET (head(S)) do v := body

1

(v; x); v := body

2

(v; x) end;

if ET (head(S)) 6= head(S) then v := body

1

(v; s

k

)

where k = jmemb(ET (head(S)))j+1. It remains to noti
e that ET (S) 6= head(S) follows from Lemma

2.2.

2. i = n. Then iteration (3) is equivalent to the program

for x in head(S) do v := body

1

(v; x); v := body

2

(v; x) end; v := body

1

(v; s

n

).

It remains to noti
e that n = jmemb(head(S))j + 1 and ET (S) = head(S) follows from Lemma 2.

The following theorem immediately follows from Lemmas 1, 3.

Theorem 1. If the fun
tion body

1

(v; x) preserves and the fun
tion body

2

(v; x) weakly preserves the


ondition 
ond(v; x) with respe
t to the stru
ture S, then iteration (2) with an initial value v

0

of the

ve
tor v is equivalent to program (5).
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Corollary 1. If the fun
tion body(v; x) weakly preserves the 
ondition 
ond(v; x) with respe
t to the

stru
ture S, then the iteration

for x in S do if 
ond(v; x) then EXIT ; v := body(v; x) end

with an initial value v

0

of the ve
tor v is equivalent to the iteration

for x in ET (S) do v := body(v; x) end.

Noti
e that Corollary 1 extends the theorem Th 7 [15℄.

Corollary 2. If the fun
tion body(v; x) preserves the 
ondition 
ond(v; x) with respe
t to the stru
ture

S, then the iteration

for x in S do v := body(v; x); if 
ond(v; x) then EXIT end

with an initial value v

0

of the ve
tor v is equivalent to the program

for x in ET (S) do v := body(v; x) end; if ET (S) 6= S then v := body(v; s

k

)

where k = jmemb(ET (S))j + 1 and ve
(S) = [s

1

; :::; s

n

℄.

4. Generating and proving veri�
ation 
onditions

Let R(y  exp) be a result of substitution of an expression exp for all o

urren
es of a variable

y into a formula R. Let R(ve
  vexp) denote the result of a syn
hronous substitution of the


omponents of an expression ve
tor vexp for all o

urren
es of 
orresponding 
omponents of a ve
tor

ve
 into a formula R. The proof rule rl1 [10℄ for de�nite iteration (1) uses the repla
ement operation

rep(v; S; body) where body is the fun
tion asso
iated with the right side of the iteration body. The

repla
ement operation presents the e�e
t of iteration (1) [14℄. Theorem 6 [14℄ 
laims that iteration (1)

is equivalent to the multiple assignment v := rep(v; S; body). The rule rl1 repla
es the post-
ondition

Q by Q(v  rep(v; S; body)). To prove the veri�
ation 
onditions in
luding the repla
ement operation

rep(v; S; body) with the hierar
hi
al stru
ture S, we present two indu
tion prin
iples.

Let prop(STR(S

1

; :::; S

m

)) denote a property expressed by a �rst-order logi
 formula only with

free variables S

1

; :::; S

m

. The formula is 
onstru
ted from fun
tional symbols, variables and 
on-

stants by means of Boolean operations and �rst-order quanti�ers. The fun
tional symbols in
lude

memb; empty; ve
; 
hoo; rest; last; head; str; 
on.

The following prin
iple is easily proved by indu
tion on k =

P

m

i=1

lng(S

i

).

Indu
tion prin
iple 1. The property prop(STR(S

1

; :::; S

m

)) holds for all stru
tures S

1

; :::; S

m

if

there exists an integer 
 � 0 su
h that the following 
onditions hold:

(1) for all stru
tures S

1

; :::; S

m

su
h that

P

m

i=1

lng(S

i

) � 
, the property prop(STR(S

1

; :::; S

m

))

holds;

(2) for all stru
tures S

1

; :::; S

m

su
h that

P

m

i=1

lng(S

i

) > 
, there exist terms T

1

; :::; T

m

for whi
h

P

m

i=1

lng(T

i

) <

P

m

i=1

lng(S

i

) and prop(STR(T

1

; :::; T

m

))! prop(STR(S

1

; :::; S

m

)).

Let prop(rep(v; S; body)) denote a property expressed by a �rst-order logi
 formula with the only

free variable S. The formula is 
onstru
ted from the repla
ement operation rep(v; S; body), fun
tional

symbols, variables and 
onstants by means of Boolean operations, �rst-order quati�ers and substitution

of 
onstants for variables from v.

The following prin
iple is easily proved by indu
tion on k = lng(S).

Indu
tion prin
iple 2. The property prop(rep(v; S; body)) holds for ea
h stru
ture S if there

exists an integer 
 � 0 su
h that the following 
onditions hold:

(1) for ea
h stru
ture S su
h that lng(S) � 
, the property prop(rep(v; S; body)) holds;
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(2) for ea
h stru
ture S su
h that lng(S) > 
, there exists a term T (S) for whi
h lng(T (S)) < lng(S)

and prop(rep(v; T (S); body)) ! prop(rep(v; S; body)).

Noti
e that indu
tion prin
iples [14, 15℄ are the spe
ial 
ases of the prin
iples when 
 = 0.

5. Case of study: programs over linear lists

Let us 
onsider Pas
al pointer programs. We will use the method from [10℄ to des
ribe axiomati


semanti
s of these programs. Let L be a set of elements to whi
h pointers 
an refer. An element

to whi
h a pointer p refers is denoted by p" in programs or by �p� in spe
i�
ations, or by L�p�

in spe
i�
ations when it belongs to the set L. We will denote the predi
ate �p�2 L as pnto(L; p).

Let upd(L;�p�; e) be a set resulted from the set L by repla
ing its element to whi
h the pointer p

refers with the value of the expression e. In the 
ase when the set L 
onsists of re
ords with the �elds

k

i

(i = 1; :::;m), we use upd(L;�p�; (k

1

; :::; k

m

); (e

1

; :::; e

m

)) to denote a set resulted from the set L

by repla
ing its element to whi
h the pointer p refers with an element su
h that its �eld k

i

is the

previously 
al
ulated value of the expression e

i

(i = 1; :::;m), and the other �elds are not 
hanged.

To generate veri�
ation 
onditions for programs whi
h 
ontain statements over the set L, su
h

as q":= e; new(p); dispose(r), we use their equivalent forms: L := upd(L;�q�; e) when pnto(L; q),

L := L [ f�p�g when :pnto(L; p), L := L � f�r�g when pnto(L; r), respe
tively. Let us extend

Pas
al programs by a statement q":(k

1

; :::; k

m

) := (e

1

; :::; e

m

) whi
h is de�ned when pnto(L; q) and

is equivalent to the statement L := upd(L;�q�; (k

1

; :::; k

m

); (e

1

; :::; e

m

)). This statement realizes the

syn
hronous assignment of the values of expressions e

1

; :::; e

m

to the 
orresponding �elds k

1

; :::; k

m

of

the element �q�. In the 
ase of m = 1, the statement has the form q":k := e whi
h is equivalent to

the statement L := upd(L;�q�; k; e).

In the rest of this paper we assume that the set L 
onsists of re
ords with the �elds key; 
ount

and next. The key �eld 
ontains the identi�
ation name for an element, and, therefore, the names are

di�erent for di�erent elements. The 
ount �eld 
ontaining a positive integer is used for 
al
ulation of

the number of identi
al elements belonging to input data. The 
ount �eld 
an be omitted. The next

�eld 
ontains a pointer or nil.

The predi
ate rea
h(L; p; q) means that the element �q� is rea
hed from the element �p� in the

set L [10℄. Let p = root(L) be a pointer to a head element of the set L, i.e. su
h an element from

whi
h other elements of the set L 
an be rea
hed. Thus, the relation p = root(L) is de�ned by the

formula pnto(L; p) ^ 8q(pnto(L; q)^ �q�6=�p�! rea
h(L; p; q)). Let l = last(L) be su
h an element

of the set L that the �eld l:next 
ontains nil or a pointer to an element whi
h does not belong to the

set L. The predi
ate linset(L) means that the set L is linear, i.e. L is a nonempty set for whi
h there

exists a pointer p = root(L) and an element l = last(L). Noti
e that there exists the only pointer

root(L) and the only element last(L) for the linear set L.

Let us de�ne several useful operations over linear sets. A linear set whi
h 
ontains the only

element l is denoted by set(l). Let us assume that L

1

and L

2

are disjoint linear sets su
h that if

the �eld last(L

2

):next 
ontains a pointer p, then :pnto(L

1

; p). We de�ne their 
on
atenation as a

linear set L = 
on(L

1

; L

2

) su
h that L = L

1

[ L

2

, root(L) = root(L

1

), last(L) = last(L

2

), and

the pointer root(L

2

) is in the �eld last(L

1

):next. We 
onsider 
on(L; l) and 
on(l; L) to be a short

form for 
on(L; set(l)) and 
on(set(l); L), respe
tively. A linear set 
on(
on(L

1

; L

2

); L

3

) is denoted by


on(L

1

; L

2

; L

3

). A sequen
e whi
h is the proje
tion of the linear set L on the key �eld is denoted by

L:key. Let mset(L) be the multiset [l:
ount � l:key whi
h 
onsists of elements l:key for l 2 L, and the

element l:key appears in the multiset l:
ount times.

The predi
ate linlist(L) means that a set L is a linear list, i.e. L is a linear set and last(L):next =

nil. For a linear list L presented by a data stru
ture, we de�ne a hierar
hi
al data stru
ture pn(L)

whi
h represents a sequen
e of pointers to 
onse
utive elements of the linear list L as

(
hoo(pn(L)); rest(pn(L))) = if empty(L) then (!; !) else if empty(rest(L)) then
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(root(set(
hoo(L))); pn(rest(L))) else (root(head(L)); pn(rest(L))).

Noti
e that this de�nition 
orresponds to the de�nition of hierar
hi
al stru
tures from Se
tion 2 whi
h

forbids the use of the notion root(L), although in this 
ase the de�nition of pn(L) 
an be simpli�ed.

6. Examples

Example 1. Reversal of a linear list.

To spe
ify a program for an in-situ reversal of a linear list, we introdu
e a reversal fun
tion rev

whi
h is de�ned for nonempty sequen
es. Let rev([a℄) = a; rev(
on(seq; a)) = 
on(a; rev(seq)), where

[a℄ is a sequen
e whi
h 
onsists of the only element a, and also 
on(a; seq) and 
on(seq; a) are the


on
atenation operations for the sequen
e seq and the element a.

The following annotated program inverts an initial value L

0

of a linear list L by the 
hange of next

�elds of its elements.

fPg y := nil; for x in pn(L) do x":next := y; y := x end fQg

where P : linlist(L

0

) ^ L = L

0

; Q : linlist(L) ^ L:key = rev(L

0

:key).

The iteration body is represented as (L; y) := body(L; y; x); where

body(L; y; x) = (upd(L;�x�; next; y); x). Let S = pn(L) and ve
(S) = [s

1

; :::; s

n

℄. Noti
e that the

iteration body 
hanges the only element L�x� of the linear list L for x = s

i

, and, therefore, does not


hange the stru
ture rest

i

(S) (i = 1; :::; n� 1). Thus, this iteration satis�es the de�nition of iteration

semanti
s from Se
tion 2. Proje
tions of pairs body(L; y; x) and rep((L; y); S; body) on the i-th element

are denoted by body

i

(L; y; x) and rep

i

((L; y); S; body), respe
tively (i = 1; 2).

The following veri�
ation 
ondition is generated with the help of the proof rule rl1 [14℄.

V C:P ! Q(L rep

1

((L; nil); S; body)):

To prove V C, we 
onne
t L and S. Let L�S� be a set of su
h elements of L to whi
h pointers

from memb(S) refer. In the 
ase of empty(S) we assume that L�S� is empty. It follows from this

that L = L�S� for S = pn(L). We 
onsider rep

i

(S) to be a short form for rep

i

((L�S�; nil); S; body)

(i = 1; 2).

Claim 1. In the 
ase of :empty(S) the following properties hold :

1.1. rep

2

(S) = last(S);

1.2. rep

2

((L�S�; nil); head(S); body) = rep

2

(head(S)):

Proof. By Theorem 5 [14℄, property 1.1 follows from body

2

(L; y; x) = x. In the 
ase of empty(head(S))

both parts of the equality 1.2 are equal to nil. Let us 
onsider the 
ase :empty(head(S)). Then

rep

2

(head(S)) = last(head(S)). It remains to noti
e that, by Theorem 5 [14℄,

rep

2

((L�S�; nil); head(S); body) = last(head(S)):

Claim 2. In the 
ase of :empty(S),

rep

1

((L�S�; nil); head(S); body) = rep

1

(head(S)) [ fL�last(S)�g:

Proof. Noti
e that L�S�= L�head(S)� [fL�last(S)�g. If empty(head(S)), then

rep

1

((L�S�; nil); head(S); body) = L�S�= fL�last(S)�g

and the set rep

1

(head(S)) is empty. Claim 2 follows from this.

Let us 
onsider the 
ase :empty(head(S)). By de�nition, the set rep

1

((L�S�; nil); head(S); body)

is 
al
ulated with the help of body

1

. Among the elements of L�S�; body

1


hanges the elements of the
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form L�x� for x 2 head(S). It remains to noti
e that, by Claim 1, the result of the 
hange is de�ned

by the stru
ture head(S).

The veri�
ation 
ondition V C immediately follows from the property

prop(rep

1

(S)) = (linset(L�S�)! linlist(rep

1

(S)) ^ root(rep

1

(S))

= last(S) ^ rep

1

(S):key = rev(L�S� :key)):

Claim 3. The property prop(rep

1

(S)) holds.

Proof. We apply indu
tion prin
iple 2 for 
=1 and T (S) = head(S). When the set L�S� 
onsists

of the only element, :empty(S) and empty(head(S)) hold. By Theorem 5 [14℄, rep

1

(S) = body

1

(L�

S�; nil; last(S)) = upd(fL�last(S)�g;�last(S)�; next; nil). Therefore, the property prop(rep

1

(S))

holds. Let us suppose :empty(head(S)) and linset(L�S�). From the indu
tive hypothesis for

head(S), linset(L�head(S)�), Claims 1, 2 and Theorem 5 [14℄ it follows that

rep

1

(S) = body

1

(rep

1

(head(S)) [ fL�last(S)�g; last(head(S)); last(S))

= upd(rep

1

(head(S)) [ fL�last(S)�g;�last(S)�; next; last(head(S)))

= rep

1

(head(S)) [ upd(fL�last(S)�g;�last(S)�; next; last(head(S)))

= 
on(L�last(S)�; rep

1

(head(S))):

Therefore, linlist(rep

1

(S)) and root(rep

1

(S)) = last(S). It remains to noti
e that

rep

1

(S):key = 
on(L�last(S)�:key; rep

1

(head(S)):key)

= 
on(L�last(S)�:key; rev(L�head(S)�:key))

= rev(
on(L�head(S)�:key; L�last(S)�:key))

= rev(
on(L�head(S)�; L�last(S)�):key) = rev(L�S�:key):

Example 2. Sear
h in a linear list with reordering.

Let us 
onsider a program for a sear
h of a key k in a linear list L with reordering. The program

s
ans elements of the linear list L and stores the previous element. Two 
ases are possible. If the

key k has been dete
ted, the 
ount �eld of the 
orresponding element is in
reased by 1. When this

element is not �rst, it is transfered to the head of the list L by 
hanging next �elds. If the key k has

not been dete
ted, a new element with the key k and 1 in the 
ount �eld is added to the head of the

list L. To spe
ify the program, we introdu
e a fun
tion seq=a whi
h denotes a sequen
e resulted from

the sequen
e seq by elimination of the �rst o

urren
e of the element a. If a does not belong to seq,

then seq=a = seq.

The annotated program prog1 is represented in the form:

fPg y := nil; r := root(L); for x in pn(L) do

body

1

(L; y; x); if x":key = k then EXIT ; body

2

(L; y; x) end fQg;

where

body

1

(L; y; x) : if x":key = k then begin x":
ount := x":
ount+ 1;

if y 6= nil then begin y":next := x":next; x":next := r end end;

body

2

(L; y; x) : if x":next = nil then begin new(z); z":(key; 
ount; next) := (k; 1; r) end

else y := x,

P : L = L

0

^ linlist(L

0

), Q : linlist(L) ^ L:key = 
on(k; L

0

:key=k) ^mset(L) = mset(L

0

) [ fkg.

Let S = pn(L) and ve
(S) = [s

1

; :::; s

n

℄. Noti
e that when s

i

" :key 6= k, the statement body

2


an 
hange the only variable y. Therefore, the iteration body does not 
hange the stru
ture rest

i

(S)

(i = 1; :::; n � 1). Thus, this iteration satis�es the de�nition of iteration semanti
s from Se
tion 2.

We apply Theorem 1 to eliminate the exit statement EXIT. Conditions of Theorem 1 hold sin
e

the statement body

1

(L; y; x) does not 
hange the �eld x " :key, and when x

0

< x, the statement
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body

2

(L; y; x

0

) does not 
hange this �eld be
ause x

0

":next 6= nil. By Theorem 1, program prog1 with

an initial value L

0

of the variable L is equivalent to the following program prog2 :

fPg y := nil; r := root(L); for x in ET (S) do body

1

(L; y; x);

body

2

(L; y; x) end; if ET (S) 6= S then body

1

(L; y; s

t

) fQg

where t = jmemb(ET (S))j + 1 and ET (S) is de�ned from S;L

0

, 
ond(L

0

; x) = (L

0

�x�:key = k).

By Lemma 2.2, L

0

�x�:key 6= k for all x 2 ET (S). Therefore, the statement body

1

does not 
hange

L = L

0

in the iteration body. The statement body

2


an 
hange L for x = last(ET (S)) only. Hen
e,

the statement body

1

does not 
hange the values of the variables in the iteration body from whi
h body

1


an be eliminated. Thus, program prog2 is equivalent to the following program prog3:

fPg y := nil; r := root(L); for x in ET (S) do body

2

(L; y; x) end;

if ET (S) 6= S then body

1

(L; y; s

t

) fQg.

To simplify veri�
ation 
onditions, we 
onsider two 
ases. When ET (S) = S, :empty(ET (S)) and

program prog3 is equivalent to the following program prog4:

fPg y := nil; r = root(L); for x in head(S) do body

2

(L; y; x) end; body

2

(L; y; last(S)) fQg.

From L

0

�x�:next 6= nil for all x 2 head(S) it follows that the iteration 
an 
hange the variable y

only. As last(S)":next = nil, the statement body

2

(L; y; last(S)) has the following form:

new(z); z":(key; 
ount; next) := (k; 1; r).

Thus, veri�
ation of the program prog4 is redu
ed to proving the following veri�
ation 
ondition:

V C1: P ^ET (S) = S ! Q(L upd(L [ f�z�g;�z�; (key; 
ount; next); (k; 1; root(L)))).

When ET (S) 6= S, L

0

�x�:next 6= nil and L�x�= L

0

�x� for all x 2 ET (S). Therefore, the

statement body

2

(L; y; x) has the form y := x in program prog3. If :empty(ET (S)), then the loop

from prog3 is represented as iteration over the stru
ture head(ET (S)) with the body y := x, followed

by the statement y := last(ET (S)). This iteration 
an be eliminated. Noti
e that by Lemma 2.3,

L

0

�s

t

�:key = k. It follows from this that s

t

":key = k, and body

1

(L; y; s

t

) 
an be simpli�ed in prog3.

Thus, program prog3 is equivalent to the following program prog5:

fPg y := nil; r := root(L); if :empty(ET (S)) then y := last(ET (S)); s

t

":
ount := s

t

":
ount+ 1;

if y 6= nil then begin y":next := s

t

":next; s

t

":next := r end fQg.

If empty(ET (S)), then t = 1. Otherwise, t > 1 last(ET (S)) = s

t�1

. Veri�
ation of the program

prog5 is redu
ed to proving the following veri�
ation 
onditions:

V C2: P ^ empty(ET (S))! Q(L upd(L;�s

1

�; 
ount;�s

1

�:
ount+ 1));

V C3: P ^ :empty(ET (S)) ^ET (S) 6= S ! Q(L L

0

)

where

L

0

= upd(upd(upd(L;�s

t

�; 
ount;�s

t

�:
ount+ 1);�s

t�1

�; next; �s

t

�:next);�s

t

�; next; root(L)):

Claim 4. The veri�
ation 
ondition V C1 holds.

Proof. Let L

0

= upd(L [ f�z�g;�z�; (key; 
ount; next); (k; 1; root(L))): Then L

0

= 
on(�z�; L)

sin
e �z�:next = root(L). It follows from this that linlist(L

0

). By Lemma 2.2, L

0

�x�:key 6= k for

all x 2 S. Therefore, k 62 L

0

:key. It follows from the 
ondition P that L = L

0

. Hen
e,

L

0

:key = 
on(�z�:key; L:key) = 
on(k; L

0

:key) = 
on(k; L

0

:key=k) and mset(L

0

) = mset(L

0

) [ fkg.

Claim 5. The veri�
ation 
ondition V C2 holds.

Proof. Let L

0

= upd(L;�s

1

�; 
ount;�s

1

�:
ount + 1). Then linlist(L

0

). Two 
ases are possible.

If empty(head(S)), then L 
onsists of the only element L�s

1

�. By Lemma 2.3, L

0

�s

1

�:key = k.

Therefore, L

0

:key=k is an empty sequen
e and L

0

:key = L:key = 
on(k; L

0

:key=k). It is evident that

mset(L

0

) = fL

0

�s

1

� :keyg � L

0

�s

1

� :
ount = fkg � (L�s

1

� :
ount + 1) = mset(L) [ fkg; where

fbg �m denotes a multiset 
onsisting of the element b whi
h o

urs m times. When :empty(head(S)),
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the linear list L is represented as L = 
on(L�s

1

�; L

1

) where L

1

= rest(L). It follows from this

that L

0

= 
on(L

0

�s

1

�; L

1

). Therefore, L

0

:key = 
on(L

0

�s

1

� :key; L

1

:key) = 
on(k; L

1

:key) and

L

0

:key=k = 
on(L�s

1

�:key; L

1

:key)=k = L

1

:key. It remains to noti
e that

mset(L

0

) = fL

0

�s

1

�:keyg � L

0

�s

1

�:
ount [mset(L

1

)

= fL�s

1

�:keyg � (L�s

1

�:
ount+ 1) [mset(L

1

)

= mset(L) [ fkg:

Claim 6. The veri�
ation 
ondition V C3 holds.

Proof. Two 
ases are possible: t = n or 1 < t < n. In the 
ase of t = n, the linear list L is represented

as L = 
on(L

1

; L�s

t�1

�; L�s

t

�) for a suitable linear set L

1

. If empty(L

1

), then similar reasoning


an be developed. Noti
e that the set L

0

is represented as L

0

= 
on(L

0

�s

t

�; L

1

; L

0

�s

t�1

�), sin
e

L

0

�s

t

�:next = root(L) = root(L

1

); L

0

�s

t�1

�:next = L�s

t

�:next = nil. Therefore, linlist(L

0

).

By Lemma 2.3, L

0

�s

t

�:key = L�s

t

�:key = L

0

�s

t

�:key = k. By Lemma 2.2, k 62 
on(L

1

:key;

L�s

t�1

�:key): Therefore,

L

0

:key = 
on(L

0

�s

t

�:key; L

1

:key; L

0

�s

t�1

�:key)

= 
on(k; L

1

:key; L�s

t�1

�:key)

= 
on(k; L:key=k)

and

mset(L

0

) = fL

0

�s

t

�:keyg � L

0

�s

t

�:
ount [mset(L

1

) [ fL

0

�s

t�1

�:keyg � L

0

�s

t�1

�:
ount

= fL�s

t

�:keyg � (L�s

t

�:
ount+ 1) [mset(L

1

) [ fL�s

t�1

�:keyg � L�s

t�1

�:
ount

= mset(L) [ fkg:

In the 
ase of 1 < t < n, the linear list L is represented as L = 
on(L

1

; L�s

t

�; L

2

) for a suitable

linear set L

1

and a linear list L

2

. Therefore, the set L

0

is represented as L

0

= 
on(L

0

�s

t

�; L

1

; L

2

). It

follows from this that linlist(L

0

). By Lemma 2, k 62 L

1

:key and L

0

�s

t

�:key = L�s

t

�:key = k: Hen
e,

L

0

:key = 
on(k; L

1

:key; L

2

:key) = 
on(k; L:key=k). It remains to noti
e that

mset(L

0

) = fL

0

�s

t

�:keyg � L

0

�s

t

�:
ount [mset(L

1

) [mset(L

2

)

= fL�s

t

�:keyg � (L�s

t

�:
ount+ 1) [mset(L

1

) [mset(L

2

)

= mset(L) [ fkg:

7. Con
lusion

The development of the symboli
 method for veri�
ation of de�nite iterations over hierar
hi
al data

stru
tures aimed to apply it to pointer programs is des
ribed in the paper. When 
ompared to [14,

15℄, the method is generalized in two aspe
ts allowing for a restri
ted 
hange of the stru
ture by the

iteration body and exit from the iteration body under a 
ondition. This generalization substantially

extends the �eld of appli
ation of the symboli
 method sin
e de�nite iterations with exit from their

bodies allow us to represent important 
ases of while-loops.

In the �rst stage of veri�
ation, de�nite iterations with exit from their bodies are transformed to

standard de�nite iterations over hierar
hi
al data stru
tures. Theorem 1 justi�es 
orre
tness of this

transformation, and Lemma 2 des
ribes useful properties of hierar
hi
al stru
tures whi
h are used by

this transformation. In the se
ond stage, veri�
ation 
onditions whi
h 
an 
ontain the repla
ement

operation are generated. In the third stage, veri�
ation 
onditions are proved with the help of both

a universal te
hnique based on the indu
tion prin
iples and a problem-oriented te
hnique based on
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notions related to the problem domain. The notions for programs over linear lists are des
ribed in

Se
tion 5.

Instead of loop invariants, the symboli
 method uses properties of both hierar
hi
al stru
tures and

the repla
ement operation. These properties, as a rule, are simpler than loop invariants, and new

notions are not ne
essary for representation of the properties. The indu
tion prin
iples 1 and 2 are

rather 
exible and allow us to use di�erent indu
tion strategies for proving the properties. The use of

properties of hierar
hi
al data stru
tures simpli�es presentation of the properties of the repla
ement

operation as well as proving veri�
ation 
onditions.

Partial veri�
ation of a program for reversal of a linear list has been des
ribed in [2℄ but the basi


property of the program has not been proved in [2℄. N. Wirth has 
onsidered a program for a sear
h

in a linear list with reordering as a 
hallenge for veri�
ation [10℄. This program has been 
onsidered

in [10℄ where its partial veri�
ation has been des
ribed. It should be noted that the programs from [2℄

and [10℄ use while- and repeat-loops whi
h are attended with invariants. The symboli
 method allows

us to perform the 
omplete veri�
ation of su
h programs whi
h are represented by de�nite iterations

over hierar
hi
al data stru
tures. Veri�
ation of the program (see example 2) similar to that from

[10℄ is performed without loop invariants and the repla
ement operation owing to Theorem 1 and

elementary transformations for the loop elimination.

We suggest to extend the symboli
 method to a new kind of de�nite iterations over tuples of data

stru
tures for the purpose of a natural representation of loops with several input data stru
tures.

Referen
es

[1℄ S.K. Basu, J. Misra, Some 
lasses of naturally provable programs, Pro
. 2nd Intern. Conf. on Software Engineering,

IEEE Press, 1976, 400{406.

[2℄ M. Benedikt, T. Reps, M. Sagiv, A de
idable logi
 for des
ribing linked data stru
tures, Pro
. ESOP/ETAPS'99,

Le
t. Notes Comput. S
i., 1576, 1999, 2{19.

[3℄ P. Fradet, R. Gaugne, D. Le. Metayer, Stati
 dete
tion of pointer errors: an axiomatisation and a 
he
king algorithm,

Pro
. ESOP'96, Le
t. Notes Comput. S
i., 1058, 1996, 125{140.

[4℄ D. Gries, N. Gehani, Some ideas on data types in high-level languages, Comm. ACM, 20, No 6, 1977, 414{420.

[5℄ E.C.R. Hehner, A.M. Gravell, Re�nement semanti
s and loop rules, Pro
. FM'99, Le
t. Notes Comput. S
i., 1709,

1999, 1497{1510.

[6℄ C.A.R. Hoare, An axiomati
 basis of 
omputer programming, Comm. ACM, 12, No 10, 1969 576{580.

[7℄ C.A.R. Hoare, A note on the for statement, BIT, 12, No 3, 1972, 334{341.

[8℄ J.L. Jensen, M.E. Jorgensen, N. Klarlund, M.I. S
hwartzba
h, Automati
 veri�
ation of pointer programs using

monadi
 se
ond-order logi
, ACM SIGPLAN Noti
es, 32, No 5, 1997, 226{234.

[9℄ R.C. Linger, H.D. Mills, B.I. Witt, Stru
tured Programming: Theory and Pra
ti
e, Addison-Wesley, Reading, MA,

1979.

[10℄ D.C. Lu
kham, N. Suzuki, Veri�
ation of array, re
ord and pointer operations in Pas
al, ACM Trans. on Program-

ming Languages and Systems, 1, No 2, 1979, 226{244.

[11℄ H.D. Mills, Stru
tured programming: Retrospe
t and prospe
t, IEEE Software, 3, No 6, 1986, 58{67.

[12℄ V.A. Nepomniashy, Loop invariant elimination in program veri�
ation, Programming and Comput. Software, No 3,

1985, 129{137 (English translation of Russian Journal "Programmirovanie").

[13℄ V.A. Nepomnias
hy, On problem-oriented program veri�
ation, Programming and Comput. Software, No 1, 1986,

1{9.

[14℄ V.A. Nepomnias
hy, Symboli
 veri�
ation method for de�nite iteration over data stru
tures, Information Pro
essing

Letters, No 69, 1999, 207{213.

[15℄ V.A. Nepomnias
hy, Veri�
ation of de�nite iteration over hierar
hi
al data stru
tures, Pro
. FASE/ETAPS'99, Le
t.

Notes Computer S
i., 1577, 1999, 176{187.

[16℄ J. Stark, A. Ireland, Invariant dis
overy via failed proof attempts, Pro
. LOPSTR'98, Le
t. Notes Comput. S
i.,

1559, 1999, 271{288.

[17℄ A.M. Stavely, Verifying de�nite iteration over data stru
tures, IEEE Trans. Software Engineering, 21, No 6, 1995,

506{514.


