Joint NCC & IIS Bull., Comp. Science, 13 (2000), 56-66
© 2000 NCC Publisher

Verification of pointer programs using symbolic method
for definite iterations*

V. A. Nepomniaschy

The symbolic method for verifying definite iterations over hierarchical data structures [15] is extended to allow
a restricted change of the structures by the iteration body and exit from the iteration body under a condition. A
transformation of definite iterations which use exit from the iteration bodies to the standard definite iterations is justified.
Programs over linear lists are considered as a case of study. A technique for proving verification conditions based on
both induction principles and notions related to the problem domain is developed. Examples which illustrate application
of the symbolic method to pointer program verification are considered.

1. Introduction

The axiomatic and functional styles of program verification include the following stages: program
annotation through construction of pre-, post-conditions and loop invariants or functions expressing
the loop effect; deriving verification conditions with the help of proof rules and proving them [6, 9].
In both approaches loop annotation is still a difficult problem [11, 16]. Difficulties of pointer program
verification have been noted for the axiomatic approach in [3]. Decidable logics have been proposed
to describe special properties of pointer programs [2, 8]. This allows a verification technique to be
developed for loopfree pointer programs [8] but does not simplify the loop annotation.

A natural method of attack on the verification problem is the use of definite iterations, for example,
Pascal for-loops. Although the reduction of for-loops to while-loops is often used for verification,
attempts to use the specific character of for-loops in the framework of the axiomatic approach should
be noted [1, 4, 5, 7]. In the framework of the functional approach, a general form of a definite iteration
as an iteration over all elements of a structure, such as list, set, file and tree, has been proposed in
[17].

A symbolic method for verifying for-loops with the statement of assignment to array elements as
the loop body has been proposed in [12, 13]. This method is based on using the symbols of invariants
instead of the invariants in verification conditions and a special technique for proving the conditions.
In [14] we extended the symbolic method to definite iterations over data structures without restrictions
on the loop bodies. The symbolic method has been developed for definite iterations over hierarchical
data structures in [15].

The purpose of this paper is to apply the symbolic method to pointer program verification. A
definite iteration over hierarchical data structures which allows for a restricted change of the struc-
tures by the iteration body, as distinct from [15], is described in Section 2. A definite iteration which
uses exit from the iteration body under a condition is defined in Section 3 where its reduction to the
standard definite iteration over suitable hierarchical data structures is justified. Proof rules without
invariants for generating verification conditions and induction principles for proving them are consid-
ered in Section 4. Definite iterations over linear lists are considered in Section 5 where notions for
annotating these programs and proof rules for Pascal pointer statements are discussed. Verification
of two programs which perform an in-situ reversal of a linear list and a search in a linear list with
reordering is exemplified in Section 6. In conclusion, results and prospects of the symbolic verification
method are discussed.

*This work is supported in part by RFBR grant 00-01-00909.

Verification of pointer programs using symbolic method for definite iterations 57

2. Definite iteration over hierarchical data structures

We introduce the following notation. Let {s1,...,s,} be a multiset consisting of elements s, ..., Sy,
Uy — Uj be the difference of multisets Uy and Uy, Uy U Us be the union of multisets, and |U| be the
power of a finite multiset U. Let [v1, ..., v,,] denote a vector consisting of elements v;(1 < i < m).
Let us remind the notion of a data structure [17]. Let memb(S) be a finite multiset of elements
of a structure S, empty(S) be a predicate "memb(S) is empty”, choo(S) be a function which returns
an element of memb(S), rest(S) be a function which returns a structure S’ such that memb(S’) =
memb(S) — {choo(S)}. The functions choo(S) and rest(S) will be undefined if and only if empty(S).
Let us remind a definition of useful functions related to the structure S in the case of —empty(S) and
memb(S) = {s1,...,5,} [14]. Let vec(S) denote a vector [si,...,s,] such that s; = choo(rest'~1(S))
(¢ = 1,...,n). Structures S; and Sy are recognized as equal if and only if vec(S1) = vec(S2). A
function head(S) returns a structure such that vec(head(S)) = [s1, ..., Sp—1] if vec(S) = [s1, ..., s and
n > 2. If n = 1, then empty(head(S)). Let last(S) be a partial function such that last(S) = s, if
vec(S) = [s1, ..., $n]. Let str(s) denote a structure S which contains the only element s. The functions
vec(S), head(S) and last(S) will be undefined in the case of empty(S). A concatenation operation
con (S, S2) is defined in [14] so that con(choo(S),rest(S)) = con(head(S),last(S)) = S if mempty(S).
We will use T'(S1, ..., Sy,) to denote a term constructed from data structures S; (i = 1,...,m) with
the help of the functions choo, last, rest, head, str,con. For a term T which represents a data structure,
we denote the function |memb(T')| by Ing(T'). The function can be calculated by the following rules:
Ing(S;) = |memb(S;)|, Ing(con(T1,T)) = Ing(T1) +Ing(T>), Ing(rest(T)) = Ing(head(T')) = Ing(T) —
1, Ing(str(s)) = 1.
Let a hierarchical data structure S = STR(S1,...,Sn) be defined by the functions choo(S) and
rest(S) constructed with the help of conditional i f —then—else, superposition and Boolean operations
from the following components:

— terms not containing St, ..., Sp,;
— the predicate empty(S;) and the functions choo(S;), rest(S;),last(S;), head(S;) (1 =1,...,m);
— terms of the form STR(T,...,Ty,) such that >, Ing(T;) < 1%, Ing(S;);
— an undefined element w.
Note that the undefined value w of the functions choo(S) and rest(S) means empty(S). This definition
of hierarchical structures gives us more convenient application of the induction principle 1 from Section

4 to proving the properties of the structures.
Let us consider a definite iteration of the form

for z in S do v := body (v, z) end (1)

where S is a data structure which may be hierarchical, x is a variable called a loop parameter, v is a
data vector of the loop body (z & v). The result of this iteration is an initial value vy of the vector v if
empty(S). If mempty(S) and vec(S) = [s1, ..., Sn], the loop body v := body(v, x) iterates sequentially
for defined as s, ..., 5,,, and does not change the structure rest(S) when z = s; foralli = 1,...,n—1.
Therefore, vec(S) = vec(Sp) where Sy is an initial value of the structure S.

3. Definite iteration including exit statement

Definite iteration (1) is extended so that exit is allowed from the iteration body under a condition.
Let us consider the statement

for = in S do v := body, (v, x); if cond(v,z) then EXIT;v := bodysz(v,z) end (2)

58 V. A. Nepomniaschy

where S is a data structure which may be hierarchical, z is a loop parameter, v is a data vector (z & v),
and EXIT is the statement of termination of the loop. The result of iteration (2) is an initial value vgy
of the vector v if empty(S). If mempty(S) and vec(S) = [s1, ..., sn], the loop body iterates sequentially
for x defined as sq, ..., s, while the condition cond(body; (v, z),z) is false. When the condition is first
true for z = s;, iteration (2) terminates by performing the statement v := body; (v, s;). The loop body
does not change the structure rest’(S) when z = s; and the condition cond(body; (v,),) is false
G=1,..,n—1).

Our purpose is to eliminate the output statement from iteration (2) by its transformation to an
equivalent program which includes iteration (1). Such a transformation is realized in two stages: a
change of the condition cond(v, z) by the condition cond(vg, x) in iteration (2); elimination of the exit
statement with the help of a hierarchical structure which depends on v, the condition cond(vy, z) and
the structure S.

At first, we will define restrictions to the iteration (2) which allows us to eliminate the exit state-
ment. For a structure S such that —empty(S) and vec(S) = [s1, ..., Sn], we use S’ to denote a structure
such that —empty(S’) and vec(S") = [(s1,1), ..., (8p,n)]. A function body(v,z) preserves a condition
cond(v,z) with respect to a structure S if in the case of mempty(S), cond(body(v,z'),) = cond(v, x)
for all v,z,z’, for which there exist integers 4,j such that j < i and (z,7),(2',7) € memb(S’). A
function body(v, x) weakly preserves a condition cond(v, z) with respect to a structure S if in the case
of —empty(S), cond(body(v,z'),xz) = cond(v,z) for all v, z,z’, for which there exist integers 7, j such
that 7 < ¢ and (z,1), (2',7) € memb(S"). It should be noted that if all elements of a structure S are
different, then in these definitions the structure S can be used instead of the structure S’. In this case
z,2" € memb(S) and relations j < i,j < ¢ are replaced by relations 2’ < z,z’ < z, respectively, where
z' <z denotes that ' does not succeed z in vec(S), and z’ < z denotes that z’ precedes z in vec(S).

Lemma 1. If the function body;(v,x) preserves and the function bodys(v,x) weakly preserves the
condition cond(v,z) with respect to the structure S, then iteration (2) with an initial value vy of the
vector v is equivalent to the iteration

for z in S dowv := body; (v,z); if cond(vg,x) then EXIT; v := bodys(v,z) end. (3)

Proof. Lemma 1 is evident if empty(S). Let us suppose —empty(S) and vec(S) = [s1,...,sn]. Let
vi—1 = bodyy(ve;—2,8;), va; = bodys(ve;—1,s;) (i = 1,...,n). We use m to denote an integer such
that 1 < m < n and the body of iteration (2) is performed for z defined as sq,...,$,. Two cases
are possible. In the first case —cond(vg;—1,s;) for all i = 1,....,n and m = n. In the second case
—cond(ve;—1, ;) for all i = 1,...,m — 1 and cond(vam—1,Sm). Lemma 1 immediately follows from the
condition V5 (1 < j < m — cond(vzj—1,55) = cond(vo,s;)). This condition results from the following
more general condition for i = j:

Vi(1<j<m—=Vi(l<i<j— cond(vy-1,s5) = cond(vy,s;))). (4)

To prove condition (4), we use induction on 7 = 1,...,5 for a fixed integer j (1 < j < m). The
function body, preserves the condition cond with respect to the structure S, and 1 < j holds for
(s1,1),(s5,7) € S'. Tt follows from this that cond(vi,s;) = cond(bodyi(vy,s1),s;) = cond(vy, s;).
Therefore, condition (4) holds for i = 1. Let us consider the case i > 1. From the inductive hypothesis,
the premise of Lemma 1 and i < j, it follows that cond(vei—1,s;) = cond(bodyi(vai—2,5;),s;) =
cond(va;i—2,55) = cond(bodys(vai—3,si-1),5;) = cond(vai_3,5;) = cond(vg,s;). Therefore, condition
(4) holds.

Let us define a hierarchical structure ET(S) from the structure S, the condition cond and the
initial value vy of the vector v as

Verification of pointer programs using symbolic method for definite iterations 59

(choo(ET(S)),rest(ET(S))) =
if empty(S) V cond(vy, choo(S)) then (w,w) else (choo(S), ET(rest(S))).

The following lemma describes elementary properties of the structure ET'(S).

Lemma 2.

2.1. If mempty(ET(S)), then the vector vec(ET(S)) is an initial segment of the vector vec(S).

2.2. The condition —cond(vg, s) holds for all s € memb(ET(S)).

2.3. If ET(S) # S, vec(S) = [s1, ..., $n] and k = |memb(ET(S))| + 1, then the condition cond(vy, si)
holds.

2.4. If ET(S) # 8, then ET(S) = ET(head(S)).

Proof. We will use induction on n = |memb(S)|. If n = 0, then empty(S), empty(ET(S)) and
Lemma 2 is evident. Let us suppose that n > 0 and Lemma 2 holds for |memb(S)| < n. In the case
of cond(vy, 1), it is evident that empty(ET(S)),k = 1, empty(ET (head(S))), and, therefore, Lemma
2 holds. Let us consider the case —cond(vg, s1). Then ET(S) = con(s1, ET (rest(S))), and assertions
2.1, 2.2 of the lemma, follow from the inductive hypothesis. If ET(S) # S, then n > 1, ET(rest(S)) #
rest(S), and it follows from the inductive hypothesis that cond(vo, si) for vec(rest(S)) = [s2, ..., Sn]
and k = |memb(ET (rest(S)))| + 2 = |memb(ET(S))| + 1. Therefore, assertion 2.3 of the lemma
holds. In the case of ET(S) # S it follows from the inductive hypothesis that ET(rest(S)) =
ET(head(rest(S))), and, therefore, ET(S) = con(s1, ET (head(rest(S)))). To prove assertion 2.4 of
the lemma, it remains to notice that ET (head(S)) = con(s1, ET (rest(head(S)))) and head(rest(S)) =
rest(head(S)).

Lemma 3. Iteration (3) with the initial value vy of the vector v is equivalent to the program
for z in ET(S) do v := body, (v, z);v := bodys(v,z) end;if ET(S) # S then v := body; (v, sx) (5)

where k = |memb(ET(S))| + 1 and vec(S) = [s1, ..., Sn]-

Proof. We will use induction on n = |memb(S)|. If n = 0, then empty(S), ET(S) = S and Lemma
3 is evident. Let us suppose that n > 0 and Lemma 3 holds for |memb(S)| < n. In the case of
—cond(vy, s;) for all i = 1,...,n, Lemma 3 follows from Lemma 2.3 and ET(S) = S. Otherwise, let us
fix the least integer 7 (1 < 4 < n) such that cond(vg, s;). From Lemma 2 it follows that ET(S) # S
and ET(S) = ET(head(S)). Two cases are possible:

1. 1 <4 <n—1. Then iteration (3) is equivalent to the iteration
for z in head(S) do v := body, (v, x); if cond(vy,) then EXIT; v := bodys(v,) end
which, by the inductive hypothesis, is equivalent to the program

for z in ET (head(S)) do v := body, (v, z); v := bodys(v,) end;
if ET(head(S)) # head(S) then v := body; (v, si)

where k = |[memb(ET (head(S)))|+1. It remains to notice that ET(S) # head(S) follows from Lemma
2.2.

2. i =n. Then iteration (3) is equivalent to the program
for z in head(S) do v := body, (v, x); v := bodys (v, z) end; v := body; (v, sp).
It remains to notice that n = |memb(head(S))| + 1 and ET(S) = head(S) follows from Lemma 2.

The following theorem immediately follows from Lemmas 1, 3.

Theorem 1. If the function body; (v, z) preserves and the function bodys (v, z) weakly preserves the
condition cond(v,z) with respect to the structure S, then iteration (2) with an initial value vy of the
vector v is equivalent to program (5).

60 V. A. Nepomniaschy

Corollary 1. If the function body(v, z) weakly preserves the condition cond(v,z) with respect to the
structure S, then the iteration

for z in S do if cond(v,z) then EXIT; v := body(v,z) end
with an initial value vy of the vector v is equivalent to the iteration
for z in ET(S) do v := body(v, r) end.

Notice that Corollary 1 extends the theorem Th 7 [15].

Corollary 2. If the function body(v, x) preserves the condition cond(v, z) with respect to the structure
S, then the iteration

for z in S do v := body(v, x); if cond(v,r) then EXIT end

with an initial value vy of the vector v is equivalent to the program

for z in ET(S) do v := body(v,z) end; if ET(S) # S then v := body(v, s)
where k = |memb(ET(S))| + 1 and vec(S) = [s1, ..., $p]-

4. Generating and proving verification conditions

Let R(y < exp) be a result of substitution of an expression ezp for all occurrences of a variable
y into a formula R. Let R(vec < wexp) denote the result of a synchronous substitution of the
components of an expression vector vezp for all occurrences of corresponding components of a vector
vec into a formula R. The proof rule 71 [10] for definite iteration (1) uses the replacement operation
rep(v, S, body) where body is the function associated with the right side of the iteration body. The
replacement operation presents the effect of iteration (1) [14]. Theorem 6 [14] claims that iteration (1)
is equivalent to the multiple assignment v := rep(v, S, body). The rule ri1 replaces the post-condition
Q by Q(v + rep(v, S, body)). To prove the verification conditions including the replacement operation
rep(v, S, body) with the hierarchical structure S, we present two induction principles.

Let prop(STR(S4,...,Sm)) denote a property expressed by a first-order logic formula only with
free variables St,...,Sp,. The formula is constructed from functional symbols, variables and con-
stants by means of Boolean operations and first-order quantifiers. The functional symbols include
memb, empty, vec, choo, rest,last, head, str, con.

The following principle is easily proved by induction on k = >_7", Ing(S;).

Induction principle 1. The property prop(STR(S, ..., Sm)) holds for all structures Sy, ..., Sp, if
there exists an integer ¢ > 0 such that the following conditions hold:

(1) for all structures S, ..., Sy, such that Y ;" Ing(S;) < ¢, the property prop(STR(S\, ..., Sm))
holds;

(2) for all structures Si, ..., Sy, such that Y. Ing(S;) > ¢, there exist terms T1, ..., T, for which
Yo ing(T;) < Y- Ing(S;) and prop(STR(Th, ..., T)) — prop(STR(S, ..., Sm))-

Let prop(rep(v, S,body)) denote a property expressed by a first-order logic formula with the only
free variable S. The formula is constructed from the replacement operation rep(v, S, body), functional
symbols, variables and constants by means of Boolean operations, first-order quatifiers and substitution
of constants for variables from v.

The following principle is easily proved by induction on k£ = Ing(S).

Induction principle 2. The property prop(rep(v,S,body)) holds for each structure S if there
exists an integer ¢ > 0 such that the following conditions hold:

(1) for each structure S such that Ing(S) < ¢, the property prop(rep(v, S, body)) holds;

Verification of pointer programs using symbolic method for definite iterations 61

(2) for each structure S such that ing(S) > ¢, there exists a term 7'(S) for which Ing(T'(S)) < Ing(S)
and prop(rep(v, T(S), body)) — prop(rep(v, S, body)).

Notice that induction principles [14, 15] are the special cases of the principles when ¢ = 0.

5. Case of study: programs over linear lists

Let us consider Pascal pointer programs. We will use the method from [10] to describe axiomatic
semantics of these programs. Let L be a set of elements to which pointers can refer. An element
to which a pointer p refers is denoted by p1 in programs or by CpD in specifications, or by LCpD
in specifications when it belongs to the set L. We will denote the predicate CpD€ L as pnto(L,p).
Let upd(L,CpD,e) be a set resulted from the set L by replacing its element to which the pointer p
refers with the value of the expression e. In the case when the set L consists of records with the fields
ki (i =1,..,m), we use upd(L, CpD, (k1,...,km), (e1,...,em)) to denote a set resulted from the set L
by replacing its element to which the pointer p refers with an element such that its field k; is the
previously calculated value of the expression e; (i = 1,...,m), and the other fields are not changed.

To generate verification conditions for programs which contain statements over the set L, such
as qT:= e,new(p), dispose(r), we use their equivalent forms: L := upd(L,CqD,e) when pnto(L,q),
L := LU{CpD} when —pnto(L,p), L := L —{CrD} when pnto(L,r), respectively. Let us extend
Pascal programs by a statement ¢1.(k1,...,kn) = (e1,...,enp) which is defined when pnto(L, q) and
is equivalent to the statement L := upd(L,CqD, (k1,...,km), (€1,...,emn)). This statement realizes the
synchronous assignment of the values of expressions ey, ..., e, to the corresponding fields k1, ..., kp, of
the element C¢D. In the case of m = 1, the statement has the form ¢t.k := e which is equivalent to
the statement L := upd(L, CgD, k,e).

In the rest of this paper we assume that the set L consists of records with the fields key, count
and next. The key field contains the identification name for an element, and, therefore, the names are
different for different elements. The count field containing a positive integer is used for calculation of
the number of identical elements belonging to input data. The count field can be omitted. The next
field contains a pointer or nil.

The predicate reach(L, p,q) means that the element CgD is reached from the element CpD in the
set L [10]. Let p = root(L) be a pointer to a head element of the set L, i.e. such an element from
which other elements of the set L can be reached. Thus, the relation p = root(L) is defined by the
formula pnto(L, p) A Vq(pnto(L,q)\ CqgD#CTpD— reach(L,p,q)). Let | = last(L) be such an element
of the set L that the field [.next contains nil or a pointer to an element which does not belong to the
set L. The predicate linset(L) means that the set L is linear, i.e. L is a nonempty set for which there
exists a pointer p = root(L) and an element [= [ast(L). Notice that there exists the only pointer
root(L) and the only element last(L) for the linear set L.

Let us define several useful operations over linear sets. A linear set which contains the only
element [is denoted by set(l). Let us assume that L; and Lo are disjoint linear sets such that if
the field last(Ls).next contains a pointer p, then —pnto(Ly,p). We define their concatenation as a
linear set L = con(Li, Ls) such that L = Ly U Ly, root(L) = root(Ly), last(L) = last(Ls), and
the pointer root(Ls) is in the field last(Lq).next. We consider con(L,l) and con(l, L) to be a short
form for con(L, set(l)) and con(set(l), L), respectively. A linear set con(con(Ly, Ls), L3) is denoted by
con(Ly, Lo, L3). A sequence which is the projection of the linear set L on the key field is denoted by
L.key. Let mset(L) be the multiset Ul.count -l.key which consists of elements [.key for [€ L, and the
element [.key appears in the multiset [.count times.

The predicate linlist(L) means that a set L is a linear list, i.e. L is a linear set and last(L).next =
nil. For a linear list L presented by a data structure, we define a hierarchical data structure pn(L)
which represents a sequence of pointers to consecutive elements of the linear list L as

(choo(pn(L)),rest(pn(L))) = if empty(L) then (w,w) else if empty(rest(L)) then

62 V. A. Nepomniaschy

(root(set(choo(L))),pn(rest(L))) else (root(head(L)),pn(rest(L))).

Notice that this definition corresponds to the definition of hierarchical structures from Section 2 which
forbids the use of the notion root(L), although in this case the definition of pn(L) can be simplified.

6. Examples

Example 1. Reversal of a linear list.

To specify a program for an in-situ reversal of a linear list, we introduce a reversal function rev
which is defined for nonempty sequences. Let rev([a]) = a, rev(con(seq,a)) = con(a,rev(seq)), where
[a] is a sequence which consists of the only element a, and also con(a, seq) and con(seq,a) are the
concatenation operations for the sequence seq and the element a.

The following annotated program inverts an initial value Ly of a linear list I by the change of next
fields of its elements.

{P}y :=nil; for z in pn(L) do zt.next :=y; y:=z end {Q}

where P : linlist(Lo) A L = Lo, Q : linlist(L) A L.key = rev(Lg.key).

The iteration body is represented as (L,y) := body(L,y,x), where
body(L,y,z) = (upd(L,CxD,next,y),x). Let S = pn(L) and vec(S) = [s1,...,8,]. Notice that the
iteration body changes the only element LCxD of the linear list L for z = s;, and, therefore, does not
change the structure rest'(S) (i = 1,...,n — 1). Thus, this iteration satisfies the definition of iteration
semantics from Section 2. Projections of pairs body(L,y, x) and rep((L,y), S, body) on the i-th element
are denoted by body;(L,y,z) and rep;((L,y), S, body), respectively (i = 1,2).

The following verification condition is generated with the help of the proof rule ri1 [14].

VC.P — Q(L < repi((L,nil), S, body)).

To prove VC, we connect L and S. Let LCSD be a set of such elements of L to which pointers
from memb(S) refer. In the case of empty(S) we assume that LCSD is empty. It follows from this
that L = LCSD for S = pn(L). We consider rep;(S) to be a short form for rep;((LCSD, nil), S, body)
(i=1,2).

Claim 1. In the case of =empty(S) the following properties hold :

1.1. reps(S) = last(S),
1.2. repa((LCSD, nil), head(S), body) = repa(head(S)).

Proof. By Theorem 5 [14], property 1.1 follows from bodys (L, y, z) = x. In the case of empty(head(S))
both parts of the equality 1.2 are equal to nil. Let us consider the case —empty(head(S)). Then
repz(head(S)) = last(head(S)). It remains to notice that, by Theorem 5 [14],

repe((LCSD, nil), head(S), body) = last(head(S)).
Claim 2. In the case of —empty(S),
rep1 ((LCSD, nil), head(S), body) = repi(head(S)) U {LClast(S)D}.
Proof. Notice that LCSD= LChead(S)D U{LClast(S)D}. If empty(head(S)), then
rep1((LCSD, nil), head(S), body) = LCSD= {LClast(S)D}

and the set rep;(head(S)) is empty. Claim 2 follows from this.
Let us consider the case —empty(head(S)). By definition, the set rep ((LCSD, nil), head(S), body)
is calculated with the help of body;. Among the elements of LCSD, body; changes the elements of the

Verification of pointer programs using symbolic method for definite iterations 63

form LCxD for x € head(S). It remains to notice that, by Claim 1, the result of the change is defined
by the structure head(S).
The verification condition V' C' immediately follows from the property

prop(rep1(S)) = (linset(LCSD) — linlist(repi(S)) A root(repi(S))
= last(S) A rep1(S).key = rev(LCSD .key)).

Claim 3. The property prop(repi(S)) holds.

Proof. We apply induction principle 2 for ¢=1 and T'(S) = head(S). When the set LCSD consists
of the only element, —empty(S) and empty(head(S)) hold. By Theorem 5 [14], repi(S) = body: (LC
SO, nil,last(S)) = upd({LClast(S)D}, Clast(S)D, next,nil). Therefore, the property prop(repi(S))
holds. Let us suppose —empty(head(S)) and linset(L C S D). From the inductive hypothesis for
head(S), linset(LChead(S)D), Claims 1, 2 and Theorem 5 [14] it follows that

rep1(S) = bodyi (rep1(head(S)) U {LClast(S)D},last(head(S)),last(S))
= upd(repi (head(S)) U {LClast(S)D}, Clast(S)D, next, last(head(S)))
= repi(head(S)) Uupd({LClast(S)D}, Clast(S)D, next, last(head(S)))
= con(LClast(S)D, repi(head(S))).

Therefore, linlist(repi(S)) and root(repi(S)) = last(S). It remains to notice that

rep1(S).key = con(LClast(S)D.key, repi(head(S)).key)
(LClast(S)D.key, rev(LChead(S)D.key))
(

(

con

rev(con(LChead(S)D.key, LClast(S)D.key))

rev(con(LChead(S)D, LClast(S)D).key) = rev(LCSD.key).

Example 2. Search in a linear list with reordering.

Let us consider a program for a search of a key k in a linear list L with reordering. The program
scans elements of the linear list L and stores the previous element. Two cases are possible. If the
key k£ has been detected, the count field of the corresponding element is increased by 1. When this
element is not first, it is transfered to the head of the list L by changing next fields. If the key k£ has
not been detected, a new element with the key k and 1 in the count field is added to the head of the
list L. To specify the program, we introduce a function seq/a which denotes a sequence resulted from
the sequence seq by elimination of the first occurrence of the element a. If a does not belong to seq,
then seq/a = seq.

The annotated program progl is represented in the form:

{P}y :=nil; r := root(L); for z in pn(L) do
bodyi(L,y, z); if xT.key = k then EXIT; bodys(L,y,z) end {Q},

where

bodyi(L,y, z) : if xT.key = k then begin zt.count := zf.count + 1;

if y #£ nil then begin yf.next := zt.next; zt.next :=r end end,

bodys(L,y,) : if xT.next = nil then begin new(z); z1.(key, count,next) := (k,1,r) end

else y := x,

P : L = Ly Alinlist(Ly), Q : linlist(L) A L.key = con(k, Lo.key/k) A mset(L) = mset(Loy) U {k}.

Let S = pn(L) and vec(S) = [s1,...,Sn]- Notice that when s;1.key # k, the statement bodys
can change the only variable y. Therefore, the iteration body does not change the structure rest(S)
(1 =1,...,m —1). Thus, this iteration satisfies the definition of iteration semantics from Section 2.

We apply Theorem 1 to eliminate the exit statement EXIT. Conditions of Theorem 1 hold since
the statement body;(L,y,z) does not change the field z 1 .key, and when z’' < z, the statement

64 V. A. Nepomniaschy

bodys(L,y,z") does not change this field because z't.next # nil. By Theorem 1, program progl with
an initial value Ly of the variable L is equivalent to the following program prog?2 :

{P}y :=nil; r :==root(L); for z in ET(S) do body,(L,y, x);

bodys(L,y,z) end; if ET(S) # S then body,(L,y,s;) {Q}

where t = |memb(ET(S))| + 1 and ET(S) is defined from S, Ly, cond(Lg, z) = (LoCzD.key = k).

By Lemma 2.2, LoCxzD.key # k for all z € ET(S). Therefore, the statement body; does not change
L = Ly in the iteration body. The statement bodys can change L for = = last(ET(S)) only. Hence,
the statement body; does not change the values of the variables in the iteration body from which body
can be eliminated. Thus, program prog2 is equivalent to the following program prog3:

{P}y :=nil; r := root(L); for z in ET(S) do bodyz(L,y,z) end;
if ET(S) # S then body,(L,y, s;) {Q}.

To simplify verification conditions, we consider two cases. When ET'(S) = S, —empty(ET(S)) and

program prog3 is equivalent to the following program prog4:

{P}y :=nil; r = root(L); for z in head(S) do bodys(L,y,x) end; bodys(L,y,last(S)) {Q}.

From LoCzD.next # nil for all z € head(S) it follows that the iteration can change the variable y
only. As last(S)f.next = nil, the statement bodys(L,y,last(S)) has the following form:

new(z); z1.(key, count, next) := (k,1,r).

Thus, verification of the program prog4 is reduced to proving the following verification condition:
VC1.PAET(S) =S — Q(L + upd(L U {CzD}, C2D, (key, count, next), (k,1,root(L)))).

When ET(S) # S, LoCxD.next # nil and LCzD= LyCxD for all z € ET(S). Therefore, the
statement bodys(L,y,z) has the form y := z in program prog3. If —empty(ET(S)), then the loop
from prog3 is represented as iteration over the structure head(ET(S)) with the body y := z, followed
by the statement y := last(ET(S)). This iteration can be eliminated. Notice that by Lemma 2.3,
LoCsiD.key = k. Tt follows from this that s;t.key = k, and body; (L, y, s;) can be simplified in prog3.
Thus, program prog3 is equivalent to the following program prog5:

{P}y :=nil; r :=root(L); if —mempty(ET(S)) then y :=last(ET(S)); sit.count := s;t.count + 1;
if y # nil then begin yf.nert := sif.next; s;fnext :=r end {Q}.

If empty(ET(S)), then t = 1. Otherwise, ¢t > 1 last(ET(S)) = s;—1. Verification of the program
progb is reduced to proving the following verification conditions:

VC2.P ANempty(ET(S)) — Q(L < upd(L,Cs1D, count, Cs1D.count + 1)),
VC3.P A —empty(ET(S)) ANET(S) # S — Q(L «+ L')

where

L' = upd(upd(upd(L, Cs;D, count, Cs;D.count + 1), Csy_1D, next, Cs;D.next), CsyD, next,root(L)).
Claim 4. The verification condition V' C'1 holds.

Proof. Let L' = upd(L U{CzD}, CzD, (key, count,next), (k,1,root(L))). Then L' = con(CzD, L)

since CzD.next = root(L). Tt follows from this that linlist(L'). By Lemma 2.2, LyCzD.key # k for
all z € S. Therefore, k & Ly.key. It follows from the condition P that L = Ly. Hence,

L' key = con(CzD.key, L.key) = con(k, Lo.key) = con(k, Ly.key/k) and mset(L') = mset(Ly) U {k}.
Claim 5. The verification condition V' C2 holds.

Proof. Let L' = upd(L,Cs1D,count, Cs;D.count + 1). Then linlist(L"). Two cases are possible.
If empty(head(S)), then L consists of the only element LCs1D. By Lemma 2.3, LoCsiD.key = k.
Therefore, Lg.key/k is an empty sequence and L'.key = L.key = con(k, Lo.key/k). Tt is evident that
mset(L') = {L'Cs1D.key} - L' Cs1D.count = {k} - (LCsyD.count + 1) = mset(L) U {k}, where
{b}-m denotes a multiset consisting of the element b which occurs m times. When —empty(head(S)),

Verification of pointer programs using symbolic method for definite iterations 65

the linear list L is represented as L = con(L Cs1D,Ly) where Ly = rest(L). It follows from this
that L' = con(L'Cs1D,Ly). Therefore, L'.key = con(L' C sy D.key, Li.key) = con(k, L.key) and
Lo.key/k = con(LCs1D.key, Ly .key)/k = Ly.key. It remains to notice that

mset(L') = {L'CsiD.key} - L'Cs1D.count Umset(L;)
= {LCs1D.key} - (LCs1D.count + 1) Umset(L;)
= mset(L) U {k}.

Claim 6. The verification condition VC3 holds.

Proof. Two cases are possible: t =n or 1 <t < n. In the case of ¢ = n, the linear list L is represented
as L = con(Ly,LCs;1D,LCs;D) for a suitable linear set Li. If empty(Ly), then similar reasoning
can be developed. Notice that the set L' is represented as L' = con(L'Cs;D, Ly, L' Csy_1D), since
L'CsiD.next = root(L) = root(Ly), L'Cs;—1D.next = LCsyD.next = nil. Therefore, linlist(L').

By Lemma 2.3, L'Cs;D.key = LCs;D.key = LoCs;D.key = k. By Lemma 2.2, k & con(L;.key,
LCs;1D.key). Therefore,

L'.key = con(L'Cs;D.key, Li.key, L'Cs; 1D.key)
= con(k, Ly.key, LCs;—1D.key)
= con(k, L.key/k)

and

mset(L') = {L'Cs;D.key} - L'Cs;D.count Umset(Ly) U{L'Csy_1D.key} - L'Cs;y_1D.count
= {LCsiD.key} - (LCsiD.count + 1) Umset(L1) U{LCs;_1D.key} - LCs¢—1D.count
= mset(L) U{k}.

In the case of 1 < t < n, the linear list L is represented as L = con(Ly, LCs;D, Le) for a suitable
linear set L; and a linear list Lo. Therefore, the set L' is represented as L' = con(L'Cs;D, Ly, Ls). Tt
follows from this that linlist(L'). By Lemma 2, k &€ L;.key and L'Cs;D.key = LCs;D.key = k. Hence,
L' .key = con(k, L .key, Ly.key) = con(k, L.key/k). Tt remains to notice that

mset(L') = {L'CsD.key}- L'Cs;D.count Umset(L) Umset(Ls)
= {LCsiD.key} - (LCsiD.count + 1) Umset(L1) U mset(Ls)
= mset(L) U {k}.

7. Conclusion

The development of the symbolic method for verification of definite iterations over hierarchical data
structures aimed to apply it to pointer programs is described in the paper. When compared to [14,
15], the method is generalized in two aspects allowing for a restricted change of the structure by the
iteration body and exit from the iteration body under a condition. This generalization substantially
extends the field of application of the symbolic method since definite iterations with exit from their
bodies allow us to represent important cases of while-loops.

In the first stage of verification, definite iterations with exit from their bodies are transformed to
standard definite iterations over hierarchical data structures. Theorem 1 justifies correctness of this
transformation, and Lemma, 2 describes useful properties of hierarchical structures which are used by
this transformation. In the second stage, verification conditions which can contain the replacement
operation are generated. In the third stage, verification conditions are proved with the help of both
a universal technique based on the induction principles and a problem-oriented technique based on

66 V. A. Nepomniaschy

notions related to the problem domain. The notions for programs over linear lists are described in
Section 5.

Instead of loop invariants, the symbolic method uses properties of both hierarchical structures and
the replacement operation. These properties, as a rule, are simpler than loop invariants, and new
notions are not necessary for representation of the properties. The induction principles 1 and 2 are
rather flexible and allow us to use different induction strategies for proving the properties. The use of
properties of hierarchical data structures simplifies presentation of the properties of the replacement
operation as well as proving verification conditions.

Partial verification of a program for reversal of a linear list has been described in [2] but the basic
property of the program has not been proved in [2]. N. Wirth has considered a program for a search
in a linear list with reordering as a challenge for verification [10]. This program has been considered
in [10] where its partial verification has been described. It should be noted that the programs from [2]
and [10] use while- and repeat-loops which are attended with invariants. The symbolic method allows
us to perform the complete verification of such programs which are represented by definite iterations
over hierarchical data structures. Verification of the program (see example 2) similar to that from
[10] is performed without loop invariants and the replacement operation owing to Theorem 1 and
elementary transformations for the loop elimination.

We suggest to extend the symbolic method to a new kind of definite iterations over tuples of data
structures for the purpose of a natural representation of loops with several input data structures.

References

[1] S.K. Basu, J. Misra, Some classes of naturally provable programs, Proc. 2nd Intern. Conf. on Software Engineering,
IEEE Press, 1976, 400-406.

[2] M. Benedikt, T. Reps, M. Sagiv, A decidable logic for describing linked data structures, Proc. ESOP/ETAPS’99,
Lect. Notes Comput. Sci., 1576, 1999, 2-19.

[3] P.Fradet, R. Gaugne, D. Le. Metayer, Static detection of pointer errors: an axiomatisation and a checking algorithm,
Proc. ESOP’96, Lect. Notes Comput. Sci., 1058, 1996, 125-140.

[4] D. Gries, N. Gehani, Some ideas on data types in high-level languages, Comm. ACM, 20, No 6, 1977, 414-420.

E.C.R. Hehner, A.M. Gravell, Refinement semantics and loop rules, Proc. FM’99, Lect. Notes Comput. Sci., 1709,
1999, 1497-1510.

C.A.R. Hoare, An axiomatic basis of computer programming, Comm. ACM, 12, No 10, 1969 576-580.
C.A.R. Hoare, A note on the for statement, BIT, 12, No 3, 1972, 334-341.

J.L. Jensen, M.E. Jorgensen, N. Klarlund, M.I. Schwartzbach, Automatic verification of pointer programs using
monadic second-order logic, ACM SIGPLAN Notices, 32, No 5, 1997, 226-234.

[9] R.C. Linger, H.D. Mills, B.I. Witt, Structured Programming: Theory and Practice, Addison-Wesley, Reading, MA,
1979.

[10] D.C. Luckham, N. Suzuki, Verification of array, record and pointer operations in Pascal, ACM Trans. on Program-
ming Languages and Systems, 1, No 2, 1979, 226-244.

[11] H.D. Mills, Structured programming: Retrospect and prospect, IEEE Software, 3, No 6, 1986, 58—67.

[12] V.A. Nepomniashy, Loop invariant elimination in program verification, Programming and Comput. Software, No 3,
1985, 129-137 (English translation of Russian Journal ”Programmirovanie”).

o

CIREEN

[13] V.A. Nepomniaschy, On problem-oriented program verification, Programming and Comput. Software, No 1, 1986,
1-9.

[14] V.A. Nepomniaschy, Symbolic verification method for definite iteration over data structures, Information Processing
Letters, No 69, 1999, 207-213.

[15] V.A. Nepomniaschy, Verification of definite iteration over hierarchical data structures, Proc. FASE/ETAPS’99, Lect.
Notes Computer Sci., 1577, 1999, 176-187.

[16] J. Stark, A. Ireland, Invariant discovery via failed proof attempts, Proc. LOPSTR’98, Lect. Notes Comput. Sci.,
1559, 1999, 271-288.

[17] A.M. Stavely, Verifying definite iteration over data structures, IEEE Trans. Software Engineering, 21, No 6, 1995,
506-514.

