
Bull. Nov. Comp. Center, Comp. Science, 33 (2012), 43–57
c© 2012 NCC Publisher

A technique for finding the second simple shortest
paths using associative parallel processors

A. S. Nepomniaschaya

Abstract. This paper proposes a technique to build the data structure for find-
ing the second simple shortest paths on a model of associative parallel processors
(the STAR-machine). It includes three associative parallel algorithms represented
on the STAR-machine as the corresponding procedures. We prove the correctness
of these procedures and evaluate their time complexity. Among these algorithms,
the new version of the Dijkstra algorithm and the associative parallel algorithm for
finding the matrix of tree paths can be used to solve other graph problems on the
STAR-machine.

1. Introduction

The problem of finding k shortest paths is a natural generalization of the
shortest paths problem when several shortest paths are to be determined.
Given a graph G with n vertices and m edges, two vertices s and t, and an
integer k, one has to enumerate k shortest paths from s to t in the order of
increasing their length.

For the problem of finding k simple (loopless) shortest paths, the fastest
O(k(m+n log n)) time algorithm for undirected graphs was proposed by Ka-
toh et al. [5] and the best O(kn(m + n log n)) time algorithms for directed
graphs were proposed independently by Yen [12] and Lawler [6]. Such es-
timations are obtained using the modern data structures for implementing
the classical Dijkstra algorithm [1]. For unweighted directed graphs and
for graphs with small integer weights, Roditty and Zwick [11] proposed
a randomized algorithm for finding k simple shortest paths that runs in
O(km

√
n log n) time. This estimation is obtained due to the use of their re-

placement paths algorithm. The authors also reduced the problem of finding
k simple shortest paths to O(k) computations of the second simple shortest
path each time in a different subgraph of G. Gotthilf and Lewenstein [4]
presented an O(k(mn + n2 log log n)) time algorithm for finding k simple
shortest paths from s to t in weighted directed graphs using the efficient so-
lution of the all-pairs shortest paths problem. In the case of directed graphs,
Eppstein [2] proposed an efficient O(m + n log n + kn) time algorithm for
finding k shortest paths (allowing cycles) from s to each vertex of G. This
algorithm builds an implicit representation of paths. The edges in any path
can be explicitly listed in the time proportional to the number of edges.

44 A. S. Nepomniaschaya

In [10], we proposed an efficient associative algorithm for finding the sec-
ond simple shortest paths from s to all vertices of a directed weighted graph.
Our model of computation (the STAR-machine) simulates running associa-
tive (content addressable) parallel systems of the SIMD type with vertical
processing. Following Foster [3], we assume that each elementary operation
of the model (its microstep) takes one unit of time. On the STAR-machine,
the associative algorithm for finding the second simple shortest paths from
s to all graph vertices was implemented as procedure SecondPaths, whose
correctness was proved. The procedure uses the graph representation as
a list of triples (edge endpoints and the weight) and the shortest paths
tree as a bit-column that saves positions of the tree edges. The procedure
SecondPaths returns a matrix TPaths[2], whose every ith column saves po-
sitions of edges belonging to the second simple shortest path from s to i.
We obtain that it takes O(r(log n+ deg+(G))) time, where r is the number
of non-tree edges that are really used for finding the second simple shortest
paths and deg+(G) is the maximum number of edges outgoing from graph
vertices.

In this paper, we propose special tools for finding the second simple
shortest paths on the STAR-machine. They include a new implementation
of the Dijkstra algorithm on the STAR-machine, the use of the Eppstein
function, and building a matrix of tree paths. We provide the corresponding
procedures and prove their correctness.

2. An associative parallel machine model

Our model is defined as a STAR-machine of the SIMD type with bit-serial
(vertical) processing and simple single-bit processing elements. Its descrip-
tion is given in [7]. Here, we first provide a few remarks and then recall a
group of operations and basic procedures to be used.

The input binary data are given in the form of two-dimensional tables,
where each data item occupies an individual row and is updated by a dedi-
cated processing element. In every matrix, the rows are numbered from top
to bottom and the columns–– from left to right.

To simulate data processing in the matrix memory, one uses data types
word, slice, and table. The types slice and word are used for the bit
column access and the bit row access, respectively, and the type table is
used for defining tabular data. For simplicity, let us call slice any variable
of the type slice.

Recall the main operations for slices.
Let X, Y be two slices and i be a variable of the type integer. We use

the following operations:

SET(Y) simultaneously sets all components of Y to ′1′;

A technique for finding the second simple shortest paths 45

CLR(Y) simultaneously sets all components of Y to ′0′;

Y (i) selects a value of the ith component of Y ;

FND(Y) returns the ordinal number i of the first (the uppermost) bit ′1′

of Y , i ≥ 0;

STEP(Y) returns the same result as FND(Y) and then resets the first found
′1′ to ′0′.

To carry out the data parallelism, the following bitwise Boolean opera-
tions are introduced in the usual way: X and Y , X or Y , not Y , X xor Y .
We also use the predicate SOME(Y) that results in true if there is at least
a single bit ′1′ in the slice Y . For simplicity, the notation Y 6= ∅ denotes
that the predicate SOME(Y) results in true.

Note that the predicate SOME(Y) and all operations for slices are also
performed for the type word. Moreover, for two variables v and w of the
type word the following operations are used:

ADD(v, w) performs addition of the binary strings v and w having the
same length. Its result is the arithmetical sum of v and w.

SUBT(v, w) performs subtraction of the binary string w from the binary
string v for the case when v > w and they have the same
length. Its result is the difference of these strings.

TRIM(i, j, w) cuts a substring of the string w from the ith through the jth
bits, where 1 ≤ i < j ≤ |w|.

Recall a group of basic procedures. They utilize a given slice X to indi-
cate with the bit ′1′ the row positions used in the corresponding procedure.
In [7], we have shown that these procedures take O(l) time each, where l is
the number of bit columns in the corresponding matrix.

The procedure MATCH(T,X, v, Z) simultaneously defines positions of
the matrix T rows which coincide with the given pattern v. It returns the
slice Z, where Z(i) = ′1′ if and only if ROW(i, T) = v and X(i) = ′1′.

The procedure MIN(T,X,Z) simultaneously defines positions of the ma-
trix T rows, where minimum entries are located. It returns the slice Z,
where Z(i) = ′1′ if and only if ROW(i, T) is the minimum entry of the ma-
trix T and X(i) = ′1′. To return the minimum entry of T , we define the
position of the first ′1′ in Z and then select the corresponding row of T .

The procedure SETMIN(T, F,X, Y) simultaneously defines the positions
of the matrix T rows being less than those of the matrix F . It returns
the slice Y , where Y (j) = ′1′ if and only if ROW(j, T) < ROW(j, F) and
X(j) = ′1′.

The procedure ADDC(T,X, v, F) simultaneously adds the binary word
v to the matrix T rows selected by ′1′ in X, and writes down the result into

46 A. S. Nepomniaschaya

the corresponding rows of the matrix F . The rows of F , which are selected
by ′0′ in X, consist of zeros.

The procedure ADDV(T, F,X,R) simultaneously writes the result of
adding rows of the matrices T and F selected by ones in the slice X into
the corresponding rows of the matrix R.

The procedure TMERGE(T,X, F) writes the matrix T rows selected by
ones in X into the matrix F . The rows of the matrix F selected by zeros in
X are not changed.

The procedure WCOPY(v,X, F) writes the binary word v into the ma-
trix F rows selected by ones in X. The rows of the matrix F selected by
zeros in X consist of zeros.

The procedure TCOPY1(T, j, h, F) writes h columns from a given ma-
trix T , starting with the (1 + (j − 1)h)th column, into the matrix F .

3. Preliminaries

Let G = (V,E) denote a digraph with n vertices and m directed edges (arcs).
We assume that V = {1, 2, . . . , n}. Let wt(e) denote a function that assigns
a weight to every edge e. We assume that wt(u, v) = ∞ if (u, v) /∈ E. We
also assume that the arcs belonging to the set E have a nonnegative weight.

An arc e directed from u to v is denoted by e = (u, v), where u = tail(e)
and v = head(e).

The infinity is implemented by the value
∑n

i=1 ci, where ci is the maxi-
mum weight of arcs outgoing from the vertex i. Let h be the number of bits
for representing this sum.

An adjacency matrix A for G is an n×n Boolean matrix, where aij = 1
if (vi, vj) ∈ E and aij = 0, otherwise.

The shortest path from s to vk is a finite sequence of vertices s =
v1, v2, . . . , vk, where (vi, vi+1) ∈ E (1 ≤ i < k), and the sum of weights
of the corresponding arcs is minimal. Let dist(s, vk) denote the length of the
shortest path from s to vk. If there is no path between these vertices, then
dist(s, vk) =∞.

The shortest paths tree F with a root s is a connected acyclic subgraph of
G which includes all graph vertices, and for every vertex vj there is a unique
shortest path from s. A leaf in a tree is a vertex that has no outgoing arcs.
The height of a tree is the number of arcs in the longest path from the root
to a leaf.

The arcs of G that do not belong to F are called non-tree edges. For any
path p, let sidetracks(p) be a sequence of non-tree edges that belong to p.

For every arc (u, v) in G, Epstein [2] defines a function δ(u, v) =
wt(u, v) + dist(s, u) − dist(s, v). Informally, δ(u, v) shows how much a dis-
tance is lost if, instead of taking the shortest path from s to v, we first use
the shortest path from s to u and then take the arc (u, v). Clearly, for every

A technique for finding the second simple shortest paths 47

e ∈ G, δ(e) ≥ 0, and for every e ∈ T , δ(e) = 0. If δ(e) is considered to be
a weight function on the arcs of G, then the weight of every path p will be
equal to the sum of weights of the non-tree edges that appear in this path.
Therefore the problem of finding k shortest paths p can be stated as the
problem of computing k smallest values of

∑
(u,v)∈sidetracks(p) δ(u, v).

4. Data structure

In this section, we explain how to obtain the data structure used for finding
the second simple shortest paths from s to all vertices of a digraph on the
STAR-machine. We will use the following data structure:

• an n × hn matrix Weight that contains the arc weights as entries. It
consists of n fields having h bits each. Every ith field of this matrix
saves the weights of arcs outgoing from the vertex i;

• an n× hn matrix Weight1 that contains the arc weights as entries. It
consists of n fields having h bits each. Every jth field of this matrix
saves the weights of arcs entering the vertex j;

• an n× log n matrix Code, whose every ith row saves the binary repre-
sentation of the vertex i;

• an n×h matrix Dist, whose every ith row saves the shortest distance
from the vertex s to the vertex i;

• an association of m× log n matrices Left and Right that is built from
the matrix Weight as follows: we first write a group of arcs outgoing
from vertex 1, then we write a group of arcs outgoing from vertex 2,
and so on;

• a slice Tree that saves positions of arcs that belong to the shortest
paths tree;

• an m×n matrix TPaths, whose every ith column saves with bit ′1′ the
positions of arcs that belong to the shortest path from s to the vertex
vi;

• an m× h matrix Cost that saves the value of the function δ(u, v) for
every arc (u, v).

Note that initially a graph G is given as a matrix Weight that consists
of n fields. Such a representation is necessary both to find the matrix Dist
in the implementation of the Dijkstra algorithm on the STAR-machine and
to compute the matrix Cost that consists of m rows. Knowing the matrix
Weight, one can easily build the matrices Left and Right by means of
the method presented above. As soon as we obtain the matrices Dist and
Cost, we will further use the matrix Cost instead of the matrix Weight.
Therefore the associative algorithm for finding the second simple shortest

48 A. S. Nepomniaschaya

paths from s to all vertices of G will use a graph representation as association
of the matrices Left, Right, and Cost, where every arc (u, v) occupies an
individual row, u ∈ Left, v ∈ Right, and δ(u, v) ∈ Cost.

5. Special tools for finding the second simple shortest paths
on the STAR-machine

In this section, we first provide a special implementation of the classical
Dijkstra algorithm on the STAR-machine that allows us to simultaneously
obtain the distances and the shortest paths tree (SPT) given as a slice Tree.
Then we explain how to build the matrix Cost that computes the function
δ(u, v) for every arc (u, v). Finally, we build a matrix of tree paths TPaths,
whose every ith column saves the positions of arcs belonging to the shortest
path from s to the vertex i.

5.1. A new implementation of the Dijkstra algorithm on the
STAR-machine. The Dijkstra algorithm [1] assigns temporal labels l(v)
to each vertex v ∈ V so that l(v) ≥ dist(s, v). These labels are constantly
decreased by means of a certain iteration procedure, and at each step only a
unique temporal label becomes invariant. The algorithm constructs a set of
vertices F ⊆ V in such a way that the current shortest path from s to any
vertex of F passes only through vertices in F . Initially, F = {s}, l(s) = 0
and ∀v /∈ F l(v) = ∞. Let F consist of k vertices (1 ≤ k < n) and u be
the last vertex included into F . Then the (k + 1)th vertex for the set F is
defined as follows.

We first define all arcs (u, vi), where vi /∈ F . Then for every vertex
vi /∈ F , we determine the label l(vi) = dist(s, u) + wt(u, vi). After that,
among the vertices vi /∈ F being adjacent with a vertex from F , we select
such a vertex v whose label has the minimum value and include it into the
set F . The label l(v) is minimized as follows. If l(u) +wt(u, v) < l(v), then
l(v) := l(u) + wt(u, v). On terminating the algorithm, l(vi) is the weight of
the shortest path from s to vi for all vi ∈ V .

To select simultaneously the distances and the shortest paths tree given
as the slice Tree, we make use of the following idea.

By means of the method used in the procedure DistPaths [8], we first
define the current vertex vk, which is included into SPT F , and the distance
from s to vk. Then we define such a vertex vi from F , which is next to
the last one in the shortest path from s to vk. Further, we determine the
position of the arc (vi, vk) and include it into the slice Tree.

The associative parallel algorithm is given as procedure TreeDist, which
uses the following parameters: the matrices Left, Right, Weight, Weight1,
and Code, the source vertex s, the number of graph vertices n, the binary
representation of infinity inf, and the number of bits h for representing

A technique for finding the second simple shortest paths 49

infinity. The procedure returns both the matrix Dist and the slice Tree.
The associative parallel algorithm performs the following steps:

Step 1. Define the position of the current vertex vk, which is included into
SPT F , and the distance from s to vk.

Step 2. By means of a slice, say X, save positions of those vertices vj from F ,
for which there is an arc entering vk. Then compute in parallel the
weights of paths from s to vk selected with the bit ′1′ in the slice X.

Step 3. Select the position of such a vertex vi from F , for which dist(s, vi)+
wt(vi, vk) = minj{dist(s, vj) +wt(vj , vk)}. After that determine the
position of the arc (vi, vk) and include it into the slice Tree.

Note that the procedure TreeDist uses the auxiliary procedure Adj pre-
sented in [8] that returns the adjacency matrix A for the specified matrix
Weight1.

Consider the procedure TreeDist.

procedure TreeDist(Left,Right: table; Weight,Weight1: table;
Code: table; s,h,n: integer; inf: word(Weight);
var Tree: slice(Left); var Dist: table);

var i,j,k: integer;
U,X,Z: slice(Weight); Y,Y1,Y2: slice(Left);
v: word(Dist); v1,v2: word(Code);
A,R1,R2: table;

Begin Adj(Weight1,h,n,inf,A);1.

SET(Y); CLR(Tree); SET(U); U(s):=’0’;2.

WCOPY(inf,U,Dist); k:=s;3.

/* Here k saves the last vertex included into F . */
while SOME(U) do4.

begin5.

/* The first stage. */
TCOPY1(Weight,k,h,R1);6.

MATCH(R1,U,inf,X);7.

X:=X xor U;8.

/* Positions of vi /∈ F forming an arc vk → vi are marked with ′1′

in the slice X. */
v:= ROW(k,Dist);9.

ADDC(R1,X,v,R2);10.

/* Here, l(vk) + wt(vk, vi) is written in every row of R2 marked with ′1′

in the slice X. */
SETMIN(R2,Dist,X,Z);11.

TMERGE(R2,Z,Dist);12.

50 A. S. Nepomniaschaya

/* Here l(vi) is decreased to l(vk) + wt(vk, vi) in every ith row of Dist
marked by ′1′ in Z. */

MIN(Dist,U,X); k:=FND(X);13.

U(k):=’0’;14.

/* A new vertex is included into F . */

/* The second stage. */
X:=COL(k,A);15.

X:=X and (not U);16.

/* Positions of vertices from F , for which there is an arc entering vk,
are marked with ′1′ in X. */

X(k):=’0’;17.

TCOPY1(Weight1,k,h,R1);18.

/* The kth field of Weight1 is stored in R1. */
ADDV(R1,Dist,X,R2);19.

/* The weights of paths from s to vk, selected by ′1′ in X, are saved
in the corresponding rows of R2. */

/* The third stage. */
MIN(R2,X,Z); i:=FND(Z);20.

/* The minimum weight of arcs included into F is attained for the vertex vi. */
v1:=ROW(i,Code); v2:=ROW(k,Code);21.

MATCH(Left,Y,v1,Y1);22.

MATCH(Right,Y1,v2,Y2);23.

j:=FND(Y2);24.

Tree(j):=’1’;25.

end;26.

End;27.

Theorem 1. Let the matrices Left, Right, Weight, Weight1, and Code be
given. Let the integers s, h, n and the binary word inf be also given. Then
the procedure TreeDist returns the slice Tree that saves the positions of
arcs belonging to the shortest paths tree, and the matrix Dist, whose every
ith row saves the distance from s to vi. It takes O(nmax(h, log n)) time.

Since the procedure TreeDist determines the matrix Dist in the same
manner as the procedure DistPaths [8], we only have to check that the
procedure TreeDist returns the slice Tree.

Proof. (Sketch.) We prove this by induction on the number of arcs q
included into the SPT F .

Basis is proved for q = 1. After performing the initialization (lines
1–3), the slice Tree consists of zeros, and the root s is included into the
SPT F . After performing lines 6–12, the weights of arcs outgoing from the

A technique for finding the second simple shortest paths 51

root s are written in the corresponding rows of the matrix Dist. After
performing lines 13–14, we determine the head vk of the arc outgoing from s
with the minimum weight and include vk into the SPT F . After performing
lines 15–17, there is a single bit ′1′ in the slice X, that is, X(s) = ′1′.
After performing lines 18–19, we obtain the weight of the arc (s, k) because
Dist(s) = 0. After performing lines 21–25 of the third stage, we determine
the position of the first arc (vi, vk) and include it into the slice Tree.

Step of induction. Let the assertion be true for q ≥ 1. We will prove this
when the positions of q + 1 arcs will be included into the slice Tree.

By the inductive assumption after including the first q vertices into the
shortest paths tree F , the positions of the corresponding arcs will be marked
with ′1′ in the slice Tree. Let k be the last vertex included into F . Since
the slice U is non-empty, we start to perform the first stage. Further we
use the same reasoning as for the basis. After performing the first stage, we
determine the (q + 1)th vertex for including into F . Its position is marked
with ′0′ in the slice U . After performing the second stage, we determine the
weights of different paths from the root to the (q + 1)th vertex and write
them in the corresponding rows of the matrix R2. Really, the tails of arcs
entering the (q + 1)th vertex have been already included into the shortest
paths tree F . Therefore the matrix Dist saves the corresponding weights of
the shortest paths from the root. After performing line 20 of the third stage,
we determine the tail of the arc entering the (q+1)th vertex and having the
minimum weight. After fulfilling lines 21–25, we determine the position of
this arc being the last one included into the slice Tree.

Let us evaluate the time complexity of this procedure. We first observe
that the execution of lines 1–3 takes O(hn) time in view of the auxiliary
procedure Adj. Inside the cycle, the basic procedures MATCH(Left,Y,v1,Y1)
and MATCH(Right,Y1,v2,Y2) (lines 22–23) take O(log n) time each, while
the other basic procedures take O(h) time each. Since the cycle is executed
n times, the procedure TreeDist takes O(nmax(h, log n)) time.

5.2. Finding new weights using the Eppstein function. Here, we
provide an associative parallel algorithm for representing the Eppstein func-
tion and its implementation on the STAR-machine. Note that the Eppstein
function must be implemented after performing the procedure TreeDist.

Let the matrices Left, Right, Weight, Dist, and Code, and the slice
Tree be given. The associative parallel algorithm performs the following
steps:

Step 1. Define the position l of the current non-tree arc, say γ, in the asso-
ciation of the matrices Left and Right. Determine the endpoints
of γ. Let γ = (i, j), where i = tail(γ) and j = head(γ).

52 A. S. Nepomniaschaya

Step 2. Save the weight of γ and distances from the root to its endpoints.
Let w1 = wt(γ), s1 = dist(s, i) and s2 = dist(s, j).

Step 3. Compute δ(i, j) = w1 + s1− s2 and write the result into the lth row
of the matrix Cost.

Step 4. Simultaneously write a string consisting of h zeros in the rows of
the matrix Cost that correspond to positions of the bit ′1′ in the
slice Tree.

Consider the implementation of this algorithm on the STAR-machine.

procedure Recount(Left,Right: table; Weight: table;
Code: table; Dist: table; Tree: slice(Left);
h: integer; var Cost: table);

var X,X1: slice(Left); Y,Z: slice(Code);
w: word(Code); s1,s2,v1,w1,w2,w3: word(Dist);
v: word(Weight); i,j,l: integer;

Begin SET(Y); CLR(w3); X:= not Tree;1.

while SOME(X) do2.

begin l:=STEP(X);3.

/* We select the position l of the non-tree arc in the association of
the matrices Left and Right. */

w:=ROW(l,Left);4.

MATCH(Code,Y,w,Z); i:=FND(Z);5.

/* We determine the tail of the non-tree arc from the lth row of
the graph representation. */

w:=ROW(l,Right);6.

MATCH(Code,Y,w,Z); j:=FND(Z);7.

/* We determine the head of the non-tree arc from the lth row of
the graph representation. */

s1:=ROW(i,Dist); s2:=ROW(j,Dist);8.

/* Here s1 (respectively, s2) saves the distance from the root
to the vertex i (respectively, j). */

v:=ROW(j,Weight);9.

w1:=TRIM(1+(i-1)h,ih,v);10.

/* Here w1 saves the weight of the arc (i, j). */
v1:=ADD(s1,w1); w2:=SUBT(v1,s2);11.

ROW(l,Cost):=w2;12.

/* We write δ(i, j) in the lth row of Cost. */
end;13.

WMERGE(w3,Tree,Cost);14.

A technique for finding the second simple shortest paths 53

/* In the matrix Cost, we set to zero the weights of arcs from
the shortest paths tree. */

End;15.

Theorem 2. Let the matrices Left, Right, Weight, Dist, and Code, and
the slice Tree be given. Then the procedure Recount returns the matrix Cost,
which saves the arc weights obtained by means of the Eppstein function.

Proof. (Sketch.) We prove this by contradiction. Let all assumptions of
Theorem 2 be true. However, there is such an arc, say γ, whose new weight
is not equal to δ(γ) after performing the procedure Recount. We will prove
that this contradicts the execution of our procedure.

To this end, we first analyze the update of the non-tree arc γ. Initially,
after performing line 1 of the procedure Recount, the slice X saves positions
of all non-tree arcs in the association of the matrices Left and Right. Since
the position of any current non-tree arc is determined by means of the
operation STEP(X), we will consider the case when the position of γ is
deleted from X. After performing line 3, we determine the position l, where
the arc γ is located in the association of matrices Left and Right. After
performing lines 4–7, we obtain γ = (i, j), that is, i = tail(γ) and j =
head(γ). Knowing the endpoints of γ and the matrix Dist, we determine
the distances s1 and s2 to the vertices i and j, respectively (line 8). After
performing lines 9–10, we determine the weight of the non-tree arc γ, that
is, wt(i, j). Finally, after performing lines 11–12, we compute the Eppstein
function δ(i, j) and write it in the corresponding row of the matrix Cost.
This contradicts our assumption.

Consider the case when γ ∈ T . Then after performing line 14, δ(γ)
consisting of zeros is written in the corresponding rows of the matrix Cost.
This also contradicts our assumption.

Let us evaluate the time complexity of the procedure Recount. This
procedure runs in O(rmax(h, log n)) time because the cycle while SOME(X)
do (line 2) is performed r times, where r is the number of non-tree arcs,
the basic procedure MATCH takes O(log n) time and the basic procedure
WMERGE takes O(h) time.

5.3. Finding the matrix of tree paths. Here, we first present an asso-
ciative parallel algorithm for finding the matrix of tree paths TPaths, whose
every ith column saves the positions of tree edges belonging to the short-
est path from the root to the vertex i. Then we propose the procedure
TreePaths to implement this algorithm on the STAR-machine. Finally, we
prove the correctness of this procedure and evaluate its time complexity.

54 A. S. Nepomniaschaya

Let a graph be given as association of matrices Left and Right. Let its
shortest paths tree be given as a slice Tree. Since V = {1, 2, . . . , n}, let us
agree that the vertex v1 is the root of the tree.

Let P (r) denote the shortest path from v1 to the vertex r. The associative
parallel algorithm uses the following idea proposed in [9]. Assume we know
positions of arcs included into P (l). Then we construct a tree path for such
a vertex vk which is the head of the arc (vl, vk) in the shortest paths tree,
and P (k) has not been defined yet. The shortest path P (k) is obtained by
including the position of the arc (vl, vk) into P (l).

The associative parallel algorithm performs the following steps:

Step 1. Write zeros in the first column of the matrix TPaths.

Step 2. By means of a slice, say X, save positions of tree edges outgoing
from the root.

Step 3. While the slice X is nonempty, perform the following actions:

• select the position i of the uppermost tree edge, say γ, and mark
it with zero in the slice X;

• determine the endpoints of γ. Let k = tail(γ) and j = head(γ);
• by means of a slice, say Z, save the kth column of the matrix

TPaths, then include the position of the tree edge γ into Z;
• write this result into the jth column of the matrix TPaths;
• mark the position of the tree edge γ as an updated one in the

slice Tree;
• determine positions of tree edges outgoing from head(γ) and

include them into the slice X.

Consider the procedure TreePaths.

procedure TreePaths(Left,Right: table; Code: table;
Tree: slice(Left); var TPaths: table);

var U,U1: slice(Code); X,Y,Z: slice(Left);
node1,node2: word(Code);
i,j,k: integer;

Begin SET(U); Y:=Tree;1.

CLR(X); COL(1,TPaths):=X;2.

/* We write zeros in the first column of TPaths. */
node1:=ROW(1,Code);3.

/* Here node1 saves the binary code of the root. */
MATCH(Left,Y,node1,Z); X:=Z;4.

/* By means of the slice X, we save positions of tree edges
outgoing from the root. */

A technique for finding the second simple shortest paths 55

while SOME(X) do5.

begin i:=STEP(X);6.

node1:=ROW(i,Left);7.

/* Here, node1 saves the binary code of the vertex
for which the tree path has been obtained. */

node2:=ROW(i,Right);8.

/* Here node2 saves the binary code of the vertex
for which the tree path has not been obtained yet. */

MATCH(Code,U,node1,U1); k:=FND(U1);9.

MATCH(Code,U,node2,U1); j:=FND(U1);10.

Z:=COL(k,TPaths); Z(i):=’1’;11.

COL(j,TPaths):=Z;12.

/* We have obtained the tree path to the vertex vj . */
Y(i):=’0’;13.

/* We mark the edge from the ith position of the tree as an updated one. */
MATCH(Left,Y,node2,Z); X:=X or Z;14.

end;15.

End;16.

Theorem 3. Let the matrices Left, Right, and Code and the slice Tree

be given. Then the procedure TreePaths returns the matrix TPaths, whose
every ith column saves the positions of edges belonging to the tree path from
v1 to the vertex vi.

Proof. (Sketch.) We prove this by induction on the height r of the shortest
paths tree.

Basis is proved for r = 1, that is, the shortest paths tree only consists
of arcs outgoing from v1. Let us consider the execution of this procedure.
After performing lines 1–4, the first column of the matrix TPaths consists of
zeros, and the slice X saves positions of tree edges outgoing from v1. After
performing line 6, we determine the position of the uppermost arc, say γ,
outgoing from v1 in the association of the matrices Left and Right. After
fulfilling lines 7–10, we determine end-points of γ. Since node1 is the binary
code of v1 (line 3), we obtain γ = (1, j). After performing lines 11–12, the
jth column of TPaths saves the position of γ in the association of matrices
Left and Right, that is, the shortest path to the vertex j. Then the position
of γ in the shortest paths tree is replaced with zero (line 13). After fulfilling
line 14, none of new arcs is included into the slice X. In the same manner,
we update other tree arcs outgoing from v1. As soon as the slice X consists
of zeros, we go to the end of the procedure.

Step of induction. Let the assertion be true for the shortest paths trees
of the height r ≥ 1. We prove this for the trees of the height r+1. Consider
the update of a sequence of tree edges γ1γ2 . . . γrγr+1. By the inductive

56 A. S. Nepomniaschaya

assumption, after updating every edge γi (1 ≤ i ≤ r) of this sequence, the
column of the matrix TPaths, whose number is head(γi), saves the positions
of all edges belonging to the shortest path from v1 to head(γi).

Consider the update of the tree edge γr+1. In this case, the uppermost
bit ′1′ in the slice X corresponds to the position of γr+1 in the association of
the matrices Left and Right. Here, we make use of the same reasoning as
in the case of the basis. After performing lines 6–10, we first determine the
position i of the tree edge γr+1 and replace it with zero. Then we define its
end-points, that is, γr+1 = (k, j), where k = tail(γr+1) and j = head(γr+1).
Since the shortest path from v1 to k consists of r edges, the vertex k belongs
to the shortest paths tree of the height not exceeding r. By the inductive
assumption, the kth column of the matrix TPaths saves the positions of edges
belonging to the shortest path from v1 to k. After performing lines 11–12,
we first include the position of the edge γr+1 into the shortest path from v1
to k and then write the result into the jth column of the matrix TPaths.
After fulfilling lines 13–14, we first mark the edge γr+1 as an updated one
in the shortest paths tree. Then the positions of edges outgoing from j
in the current shortest paths tree are included into the slice X. Since the
jth column of the matrix TPaths saves the shortest path from v1 to j, in
future one can determine the shortest path from v1 to the head of every
edge outgoing from j in the current shortest paths tree.

Obviously, the procedure TreePaths runs in O(n log n) time.

6. Conclusion

We have proposed a technique to build the data structure for finding the
second simple shortest paths on associative parallel processors. This data
structure can also be used for finding k simple shortest paths from the
root to other graph vertices. Unlike the previous implementations of the
Dijkstra algorithm on the STAR-machine, the proposed one uses a graph
representation as a list of edges. The corresponding procedure returns the
shortest paths tree in the form of a slice that saves the positions of tree
edges. This version of the Dijkstra algorithm along with the associative
algorithm for finding the matrix of tree paths can be used, in particular, to
solve the replacement paths problem on the STAR-machine.

We are planning to present the associative parallel algorithm for finding
k simple shortest paths from the root to other graph vertices using the
technique proposed in this paper.

References

[1] Dijkstra E.W. A note on two problems in connection with graphs // Nu-
merische Mathematik. –– 1959.–– No. 1. –– P. 269–271.

A technique for finding the second simple shortest paths 57

[2] Eppstein D. Finding the k shortest paths // SIAM J. of Computing.–– 1998.––
Vol. 28. –– P. 652–673.

[3] Foster C.C. Content Addressable Parallel Processors. –– New York: Van Nos-
trand Reinhold Company, 1976.

[4] Gotthilf Z., Lewenstein M. Improved algorithms for the k simple shortest
paths and the replacement paths problems // Information Processing Let-
ters. –– Elsevier, 2009. –– Vol. 109. –– P. 352–355.

[5] Katoh N., Ibaraki T., Mine H. An efficient algorithm for k shortest simple
paths // Networks. –– 1982.–– Vol. 12. –– P. 411–427.

[6] Lawler E.L. A procedure for computing the k best solutions to discrete opti-
mization problems and its application to the shortest path problem // Man-
agement Science. –– 1972.–– Vol. 18. –– P. 401–405.

[7] Nepomniaschaya A.S., Dvoskina M.A. A simple implementation of Dijkstra’s
shortest path algorithm on associative parallel processors // Fundamenta In-
formaticae. –– Amsterdam: IOS Press, 2000. –– Vol. 43. –– P. 227–243.

[8] Nepomniaschaya A.S. Simultaneous finding the shortest paths and distances
in directed graphs using associative parallel processors // Proc. Intern. Conf.
“Information Visualization”.–– Los Alamitos: IEEE Computer Society, 2003.––
P. 665–670.

[9] Nepomniaschaya A.S. Associative parallel algorithms for computing functions
defined on paths in trees // Proc. Intern. Conf. on Parallel Computing in
Electrical Engineering (PARELEC 2002). –– Los Alamitos: IEEE Computer
Society, 2002. –– P. 399–404.

[10] Nepomniaschaya A.S. Efficient associative algorithm for finding the second
simple shortest paths in a digraph // Proc. 11th Intern. Conf. on Parallel Com-
puting Technologies (PaCT-2011). –– Berlin: Springer, 2011. –– P. 182–191. ––
(LNCS; 6873).

[11] Roditty L., Zwick U. Replacement paths and k simple shortest paths in un-
weighted directed graphs // Proc. Intern. Conf. on Automata, Languages and
Programming (ICALP 2005).–– Berlin: Springer, 2005.–– P. 249–260.–– (LNCS;
3580).

[12] Yen J.Y. Finding the k shortest loopless paths in a network // Management
Science. –– 1971. –– Vol. 17, No. 11. –– P. 712–716.

58

