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On reliability of wireless ad hoc networks
with imperfect nodes

Denis Migov

Abstract. In this paper, we present a new network reliability measure that is
useful to evaluate performance of ad hoc networks with imperfect nodes and per-
fectly reliable links. An ad hoc network is modeled as undirected probabilistic
graph. A specific feature of our model is that a network contains initially excessive
amount of nodes to properly provide the functioning of the network. Thus, we con-
sider the networks which carry on operating acceptably even if some of the nodes
fail. The problem of calculation of the new reliability measure is NP-hard, just like
problems of computing other reliability parameters. The method for calculating a
new reliability measure has been obtained. It is shown that this method can be
used for the optimal sink nodes placement in networks in order to obtain the most
reliable version.

Introduction

The area of wireless ad hoc has received a lot of attention in the research
community over the past several years. Research into generic wireless ad hoc
networking is also ramified to special types of networking like wireless mesh
networks, wireless sensor networks, vehicular networks, radio frequency iden-
tification networks, etc. In this paper, we study at the problem of reliability
in these networks.

We consider ad hoc networks with imperfect nodes and perfectly reli-
able links. An operational probability is associated with every node. It is
assumed that the node failures are statistically independent.

Probabilistic graph models have been extensively used in the literature
for studying the network reliability problems, especially in the case of un-
reliable edges [1–12]. Case of unreliable nodes was also a subject for study-
ing [13, 14]. But as a rule, these studies do not take into account specific
features of ad hoc network. The reliability of sensors in wireless sensor net-
work was the subject of studying in [15,16]. In [17], the problem of reliability
of wireless distributed sensor networks is considered. Reliability is defined
as probability of existence of operating communication path between the
sink node (command node), and, at least, one operational sensor in a target
cluster.

A special feature of our model is that the network contains initially ex-
cessive amount of nodes to provide a proper functioning of the network.
The failure of one or more nodes can cause the operational data sources
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to be disconnected from the data sink nodes (command nodes). However,
operational nodes in the faulty nodes neighborhood may still be able to
communicate with end-users, although, through a larger number of hops
resulting in a larger delay of receiving information. For example, a wireless
sensor network may work acceptably even if a certain amount of nodes fails.
In other words, it works until there is a sufficient number of workable nodes
which are connected to any sink node. Another requirement for the network
operation is the connectivity of sink nodes through workable nodes. We de-
fine the reliability of such a network as probability of the proper functioning
in the above meaning.

The rest of the paper is organized as follows: in Section 1, the basic
notations and definitions are presented. Sections 2, 3 describe the method of
reliability calculation, Section 4 describes the numerical experiments which
demonstrate an optimal sink nodes placement in the network.

1. The basic definitions and notations

We represent the ad hoc network with an undirected probabilistic graph G =
(V,E), whose vertices are the nodes and whose edges represent the links.
We assume each node to succeed or to fail independently with an associated
probability. Further on, we refer to this probability as the node reliability.
We suppose the links to be perfectly reliable. We use the following notations
for the number of network elements: |V | = N , |E| = M . K is a specific set
of nodes that correspond to the sink nodes of the ad hoc network. We call
terminals the elements of this set. It is assumed that K contains at least
one element. As a rule, sink nodes are perfectly reliable. We have also an
integer T such that 1 ≤ T ≤ N−|K|. It is assumed that the ad hoc network
is functioning properly if sink nodes are connected with each other and, at
least, T nodes are workable and connected to any sink node.

Let us introduce some definitions.
An elementary event Q is a special realization of the graph defined by

the existence or absence of each node. By VQ we denote a set of all existing
nodes in Q that are not sink nodes.

The probability of an elementary event is equal to the product of prob-
abilities of the existence of operational nodes multiplied by the product of
probabilities of the absence of faulty nodes.

An elementary event Q is called successful if:

• all sink nodes are connected with each other by nodes from VQ;

• at least T nodes from VQ are connected to any sink node.

Otherwise, it is called unsuccessful.
An arbitrary event (an event is a union of elementary events) is called

successful if it consists of only successful elementary events.
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An event is called unsuccessful if it consists of only unsuccessful elemen-
tary events.

We define the reliability of the ad hoc network as the probability of the
event consisting of all successful events and of them only. We denote it by
RK,T (G). Further on, under the network reliability we assume this index,
unless otherwise stated. In other words, the introduced reliability index is
the probability that sink nodes are connected with each other and at least
T nodes are workable and connected to any sink node.

2. The factoring method for network reliability calculation

The calculation of RK,T (G) may be done by the well-known factoring method
[1,5,7] which for this purpose has been modified. This technique partitions
the probability space into two sets, based on the success or failure of one of
the network particular elements (a node or a link). The chosen element is
called a factored element. Thus, we obtain two subgraphs, in one of them
factored element is absolutely reliable ( branch of contraction) and in second
one, a factored element is absolutely unreliable, that is, is absent (a branch
of removal). The probability of the first event is equal to the reliability of a
factored element; the probability of the second event is equal to the failure
probability of the factored element. Thereafter, the subgraphs obtained are
subject to the same procedure. The total probability law gives an expres-
sion for the network reliability. In the general case, for the system S with
unreliable elements it takes the following form:

R(S) = reR(S | eworks) + (1− re)R(S | efails),

where R(S) is the reliability of S, R(S | eworks) is the reliability of the system
S when the element e is in operation, and R(S | efails) is the reliability of
the system S when the element e is not in operation, re is the reliability of
the element e.

Figure 1 illustrates the factoring method
for the all-terminal reliability of the graph
G with unreliable edges. The corresponding
formula takes the following form:

R(G) = peR(G∗
e) + (1− pe)R(G \ e),

where pe is the reliability of the edge e, G∗
e

is the graph obtained by contracting the
Figure 1

edge e from G, G\ e is the graph obtained by deleting e from G. Recursions
continue until either a disconnected graph is obtained, or until a graph for
which the probabilistic connectivity can be calculated directly is obtained:
this can be a graph of a special type or a small-dimensional graph [9].
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The calculation of RK,T (G) is performed in the same way, but it is more
complicated because of the need to fulfil the two conditions: the connectiv-
ity of terminals and the availability of a sufficient number of other nodes
attached to them. It is convenient to choose as a factoring element one
of the nodes adjacent to any terminal or the node adjacent to any already
passed one with reliability 1. Thus, we can accumulate the number of nodes
connected to a chosen terminal. We keep the name “branch of contraction”
and “branch of removal” despite the fact that the process of contraction in
a graph is optional, as well as the process of removal. Let us separately con-
sider the branch of contraction and the branch of removal of such a process.

Branch of contraction. In this branch, the number of nodes attached
to the terminal is increasing. If its number reaches T , it is necessary to
check the connectivity of all terminals via absolutely reliable nodes. If the
check is successful, then the final subgraph is obtained which corresponds
to a successful event. If the check is unsuccessful, then further factoring
procedure continues only in order to ensure the connectivity of the terminals.
In other words, we calculate the probability of terminals connectivity in
a graph with unreliable nodes. To this end, it is convenient to use the
method [13].

Branch of removal. In this branch, the number of nodes which in
the process of further factoring could potentially be absolutely reliable is
decreasing. Therefore, the event corresponding to the graph obtained by
this branch can be authentically unsuccessful due to the disconnection of
terminals or impossibility of reaching the required number of nodes attached
to the terminals. It is suitable to initially check the first condition, that
is, to check whether the terminals are connected via non-zero reliability
nodes. If the check is successful, then we should check the second condition:
the number of pending nodes (with the reliability of 0 up to 1) should be
sufficient to achieve the required number of nodes attached to the terminals,
that is, the number T . If the number of pending nodes is just sufficient to
ensure this condition, they all become absolutely reliable. Thus, a successful
sub-event fully stands out from the considered event. It remains only to take
into account the fact that in order to obtain the probability of this event
it is required to multiply the value obtained by the reliability of pending
nodes.

3. Algorithm

We use the following notations for the algorithm description. All the graphs
arising in the factoring processes are presented as the array of probabilities
P , where P [i] is the probability that the node i is operational. The reliabil-
ity of such a graph is denoted as R(P ). The array of the nodes reliabilities
corresponds to the initial graph G. Let us denote it as P0. Let us introduce
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for each graph arised when factoring the value x, that is, the amount of
the considered nodes and the value y, that is, the amount of nodes reliably
connected to any terminal. We need the function RK(P ) for calculating
the probability of connectivity of K terminals (the calculation method pro-
posed is in [13]). Also, we need, a boolean function Connectivity(P ) for
checking the connectivity of terminals via nodes with nonzero probability.
Let S = |V/K|.

We assume that the terminals are absolutely reliable. Otherwise, at a
preliminary step the terminals become absolutely reliable, and the finally
obtained value of the network reliability should be multiplied by the initial
values of the reliability of the terminals.

A recursive procedure Factoring(P, x, y) is a factoring algorithm for cal-
culating the reliability of the graph corresponding to the array P . The values
of x and y depend on P , however, to avoid recovering each time with use
of P , they are present as individual parameters. Rel is a local variable for
storing an intermediate outcome of the Factoring(P, x, y) procedure, that
is a private variable Rel created for every start of this procedure. Result
variable is used to store the final result of the procedure.

The Factoring(P, x, y) algorithm:

1. Choose a node v, such that P [v] > 0 and v has the adjacent node j,
such that P [j] = 1. Let p = P [v];

2. Branch of contraction. Assign the values: P [v] = 1, x = x + 1, y =
y + 1.

If y = T then Rel = p ∗RK(P ) else Rel = p ∗ Factoring(P, x, y);

3. Branch of removal. Assign the values: P [v] = 0, y = y − 1.

If Connectivity(P ) then

if S − x + y = T then Rel = Rel + (1− p) ∗
∏

P [i]>0 P [i]

else Rel = Rel + (1− p) ∗ Factoring(P, x, y);

4. Result = Rel.

Finally, RK,T (G) = Factoring(P0, 0, 0).

4. The results of numerical experiments

Let us show how the proposed algorithm works. The test problem was
the problem of the optimal sink nodes placement in an ad hoc network with
unreliable nodes in order to obtain the most reliable version. Figure 2 shows
a 5×5 grid network topology that we have analyzed, supposing that all sink
nodes are perfectly reliable and reliabilities of the other nodes are equal to
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Figure 2

each other. Our objective is to place in the nodes of
this grid three sink nodes to maximize the probabil-
ity of access to sinks for at least T of other nodes in
the network provided the sinks are connected to each
other. Three values for the indicator T were consid-
ered: 10, 15, and 20. For each value of T , the solution
was sought for three values of node reliability: 0.1,
0.5, and 0.9.

a b

Figure 3. Optimal sink nodes place-
ments for T = 15 for p = 0.1, 0.5 (a),
and 0.9 (b)

a b

Figure 4. Optimal sink nodes place-
ments for T = 20 (a) and 10 (b)

If T = 15, we have obtained different optimal sink nodes placements for
different values of node reliability (Figure 3). If T = 10, 20, optimal sink
nodes placements were not different for different values of node reliability
(Figure 4).

It is obvious that any sink nodes placement, which is isomorphic to
optimal, is optimal, too.

Conclusion

This study proposes a new reliability index, which is applicable to the anal-
ysis of ad hoc networks, in particular wireless sensor networks. The classical
reliability index (k-terminal network reliability) was taken as a basis of the
proposed reliability index. At the same time, important features typical of
ad hoc networks were taken into account: unreliable nodes and their excess
amount for the network operation.

The index proposed could be used as the basis for other reliability in-
dices, which describe the subject areas more completely. For example, the
restriction on diameter of a network makes such a reliability index be more
interesting from the point of view of practical applications, but also makes
it more difficult to calculate. We can remove the requirement for the sink
nodes connectivity. The lack of this requirement is typical of the networks
in which sink nodes are able to connect with the base station directly and
independently. The methods for calculating the reliability with mentioned
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changes will not be radically different from the method proposed in this
paper. The problem of precise computing these characteristics will be NP-
hard. However, with the help of the method from [4,9] it is possible within a
reasonable time to obtain the lower and the upper network reliability bounds
and to make a decision about the reliability (or unreliability) of the network
with respect to a given threshold. This allows us to solve some optimiza-
tional problems, such as the sink nodes location in ad hoc networks.
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