
Bull. Nov. Comp. Center, Math. Model. in Geoph., 17 (2014), 35–45
c© 2014 NCC Publisher

On divergence representations of the Gaussian and
the mean curvature of surfaces and applications∗

A.G. Megrabov

Abstract. The new meaning or a property of the Gaussian and of the mean
curvature of surfaces forming a family in terms of the vector analysis has been
discovered. The divergence representations were found for the mean curvature H =
H(x, y, z) and the Gaussian curvature of K = K(x, y, z) of the surfaces Sα, given
either by the equation u(x, y, z) = α (α is a parameter, u is a scalar function) or
parametrically; or the surfaces Sτ that are described by some general properties.
The surfaces Sα and Sτ continuously fill the domain D, forming a family of {Sα}
or {Sτ} in D with the unit normal field τ = τ (x, y, z). Thus, the formulas of
the form H = divSH , K = divSK are obtained, and three-dimensional vector

fields SH , SK are expressed in terms of the normal field τ : SH = −1

2
τ , SK =

−1

2
S(τ ), S(τ ) = rot τ × τ − τ div τ and have a clear geometric meaning. In the

case when the surface is given by the graph z = f(x, y), the above formulas lead to
divergent representations for the mean and Gaussian curvatures obtained earlier.

The applications of these general geometric formulas to the equations of mathe-
matical physics: the eikonal equation, the Poisson equation, Euler’s hydrodynamic
equations are given. Furthermore, in the plane case a simple geometric interpreta-
tion of the conservation laws obtained earlier for a family of plane curves and for
solutions to the eikonal and Euler’s hydrodynamic equations is given.

This paper is a continuation and development of works [1–5].
Important characteristics of a surface in the classical differential geom-

etry [6–12] are: its unit normal τ , the principal directions l1 and l2, the

principal curvatures k1 and k2, the mean curvature H
def
= (k1 + k2)/2 and

the Gaussian curvature K
def
= k1k2, defined at each point (x, y, z) of a given

surface. The vector physical fields, described by the equations of mathe-
matical physics, have the vector lines Lτ (e.g., rays or stream lines) forming
the family of curves {Lτ} and continuously filling the domain D. The sur-
faces Sτ with the unit normal τ , which are orthogonal to these curves Lτ
(e.g., wave fronts), also form the family {Sτ}. Therefore, in this paper we
consider not only the properties of the fixed surface Sτ , but also the proper-
ties of the family surfaces {Sτ}, continuously filling some domain D in the
space with the Cartesian coordinates x, y, z. And the characteristics of τ ,
l1, l2, k1, k2, H, K of the surfaces Sτ are a three-dimensional vector and
scalar fields (the functions of x, y, z) in D.
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For the Gaussian curvature K of the surface two classical definitions
or meanings are known: 1) K is the product of the principal curvatures ––

K
def
= k1k2 [6–12]; 2) K is the limit of the ratio of the area of the spherical

mapping of the surface domain onto the area of the domain, when the domain
is contracted to the point [10]. For the mean curvature H of the surface,
we have the classical definition as half-sum of the principal curvatures ––

H
def
=

1

2
(k1 + k2) [6–12].

In this paper, we establish another meaning or a property of the Gaussian
and the mean curvature in terms of the vector analysis. It turns out that
if the surfaces form a family and continuously fill a certain domain in the
three-dimensional space, then with general conditions, the Gaussian K =
K(x, y, z), and the mean curvature H = H(x, y, z) of every surface of this
family at each point (x, y, z) is the divergence (the sources density in terms
of the field theory) of a vector field with a certain geometric sense. More
precisely, we obtain the divergence representations for the mean curvature H
and the Gaussian curvature K of the surfaces Sα, given by the equation
u(x, y, z) = α (α is a parameter) or, parametrically, and of the surfaces Sτ ,
which are described by some general properties. The surfaces Sα and Sτ
form the family {Sα} and {Sτ} in the domain D and have the field of
unit normals τ = τ (x, y, z). Thus, the formulas of the form H = divSH ,
K = divSK are obtained, and the three-dimensional vector fields SH , SK
are expressed in terms of the field of unit normals τ .

It is important that the vector fields SH and SK have a clear geometric
meaning, that is, SH and SK are expressed in terms of the normal τ by

the formulas SH = −1

2
τ , SK = −1

2
S(τ ), S(τ ) = rot τ × τ − τ div τ . The

geometric meaning of the vector SH is obvious, and the vector S(τ ) is the
sum of the three vectors of curvature of the three mutually orthogonal curves
(at each point (x, y, z) ∈ D): of the curvature vector of the vector line Lτ of
the normal field τ and of two curvature vectors of the two geodesic lines on
the surface Sα or Sτ , with any two mutually orthogonal directions at this
point. From these representations the relationships between the properties
of the surfaces and the properties of the fields τ , S(τ ) and some integral
formulas follow.

In the case when the surface is defined by the graph z = f(x, y), the
obtained formulas reduce to the divergence representations for the mean
curvature H(x, y) [7, p. 92] and the Gaussian curvature K(x, y) [1].

The applications of these general geometric formulas to the equations
of the mathematical physics –– the eikonal equation, Euler’s hydrodynamic
equations, and Poisson’s equation–– are obtained. In this consideration, the
role of the curves Lτ is played by the vector lines of the corresponding vector
fields (solutions of the equation), for example, the rays for solutions of the
eikonal equation, and the role of the surfaces Sα and Sτ is played by the
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surfaces which are orthogonal to these curves (e. g., the wave fronts for the
eikonal equation). The formulas for the mean and the Gaussian curvatures
of the surfaces generated by the solutions of these equations in terms of
these solutions are obtained. Furthermore, in the plane case, a simple geo-
metric interpretation of the conservation laws, obtained in [2–5] for a family
of plane curves and for the solutions to the eikonal equation and Euler’s
hydrodynamic equations is given.

The symbols (a ·b) and a×b denote the scalar and the vector product of
the vectors a and b, ∇ is the Hamiltonian operator, (v ·∇)a is the derivative
of the vector a in the direction of the unit vector v, ∆u = uxx + uyy + uzz;
i, j, k are the unit vectors along the axes x, y, z of the Cartesian coordinate
system.

1. In [2], there is obtained

Lemma 1. For any vector field v = v(x, y, z) = v1i+v2j+v3k = |v|τ with
the definition domain D, the components vk(x, y, z) ∈ C1(D), k = 1, 2, 3,
the modulus |v| 6= 0 in D and the direction τ = v/|v| (|τ | ≡ 1) in D the
following identity is valid :

T (v) = S(τ ), (1)

where

S(τ )
def
= rot τ × τ − τ div τ = (τ · ∇)τ − τ div τ , (2)

T (v)
def
= grad ln |v|+ {rotv × v − v div v}/|v|2. (3)

Also, S(τ ) = Kτ − τ div τ = kν − τ div τ , where Kτ
def
= kν = (τ · ∇)τ =

rot τ × τ is the curvature vector of the vector line Lτ of the field τ or v, k
and ν are its curvature and the unit principal normal.

First, we consider the case when the surface is given by the equation

u(x, y, z) = α. (4)

The surface defined by the graph z = f(x, y) corresponds to the case
u(x, y, z) = z − f(x, y). A set of the level surfaces Sα of the function
u(x, y, z) of the form (4) in its definition domain D forms the family {Sα}
with a real parameter α ∈ [α1, α2]. The tangent unit vector τ = τ (x, y, z) =
gradu/| gradu| (direction) of the vector lines of the field gradu is at the same
time the normal to the surface Sα, passing through the point (x, y, z) (under
condition (4)).

The direct calculation of the expressions for div τ and divS(τ ) leads to
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Lemma 2. Let the scalar function u(x, y, z) be defined in D, u(x, y, z) ∈
Ck(D) (below k = 2 or k = 3) | gradu| 6= 0 in D, τ = τ (x, y, z) =
gradu/| gradu| is the field direction of the field v = gradu. Then we have

in D: div τ = UH(u)
def
= | gradu|−3{(u2y + u2z)uxx + (u2x + u2z)uyy + (u2x +

u2y)uzz−2(uxuyuxy+uxuzuxz +uyuzuyz)} for k = 2; divS(τ ) = divT (u) =

UK(u)
def
= −2| gradu|−4{u2z(uxxuyy − u2xy) + u2y(uxxuzz − u2xz) + u2x(uyyuzz −

u2yz)+2[Uyuxy(uzuxz−uxuzz)+uxuxz(uyuyz−uzuyy)+uzuyz(uxuxy−uyuxx)]}
for k = 3; S(τ ) = T (u)

def
= grad ln | gradu| −∆u gradu/| gradu|2.

Lemma 3. Let for the function u(x, y, z), which determines the surface Sα
by equation (4), the conditions of Lemma 2 be satisfied and u(x, y, z) ∈
C2(D). Let H and K be the mean and the Gaussian curvature at the point
(x, y, z) for the surface Sα passing through this point. Then H and K are
expressed in terms of the derivatives of the function u by the formulas H =

−1

2
UH(u), K = −1

2
UK(u), where the expressions UH(u), UK(u) are defined

in Lemma 2 and calculated at the same point (x, y, z).

Proof. In the case of the surface z = f(x, y) for the coefficients E, F , G
and L, M , N , respectively, of its first and the second quadratic form we have
the known formulas E = 1 + f2x , F = fxfy, G = 1 + f2y , L = fxx/

√
1 + g,

M = fxy/
√

1 + g, N = fyy/
√

1 + g, g = f2x + f2y [6–12]. Considering equa-
tion (4) as the implicit definition of the function z = f(x, y), i. e. as
the identity u(x, y, f(x, y)) = α, and differentiating it with respect to x
and y, we express the derivatives fx, fy, fxx, fxy, fyy in terms of the
derivatives of the function u(x, y, z), e. g. fx = −ux/uz, fy = −uy/uz,
fxx = −(u2zuxx−2uxuzuxz+u2xuzz)/u

3
z, etc. These formulas are independent

of α. Without loss of generality, we assume that uz 6= 0 since | gradu| 6= 0.
Substituting these expressions into the formulas for E, F , G, L, M , N and
applying the known formulas [6–12] H = 1

2(LG− 2MF +NE)/(EG− F 2),
K = (LN −M2)/(EG − F 2) for H, K, we obtain the expressions of the
lemma.

In the case of the surface z = f(x, y), the known formula [7, p. 90]
K = (fxxfyy − f2xy)/(1 + f2x + f2y )2 follows from Lemma 3. The comparison
of the expressions of Lemmas 2, 3 for div τ and H, divS(τ ) and K implies

Theorem 1. Let the scalar function u(x, y, z) be defined in D, u(x, y, z) ∈
Ck(D), | gradu| 6= 0 in D, τ = τ (x, y, z) = gradu/| gradu| is the vector field
of the unit normals to the surfaces Sα ∈ {Sα} of the form (4). Then, at
any point (x, y, z) ∈ D, the mean curvature H for k = 2 and the Gaussian
curvature K for k = 3 of the surface Sα of the form (4) passing through
this point are respectively the divergence (the sources density) of the vector
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field SH
def
= −τ/2 and the divergence of the vector field SK

def
= −S(τ )/2 =

−T (u)/2 at this point, where the vector fields S(τ ), T (u) are defined in (2)
and in Lemma 2. Thus, in D, the following identities hold :

H = −1

2
div τ , (5)

K = −1

2
divS(τ ) ⇔ (6)

K = −1

2
divT (u). (7)

If the values H, K in the left-hand side in (5)–(7) are defined on the fixed
surface Sα, then the quantities in the right-hand side are also calculated on
this surface Sα, i.e., under condition (4).

Corollary 1. In the case of the surface z = f(x, y) for its Gaussian cur-
vature K(x, y) from Theorem 1 follows the formula K = divV1, V1 =
−gS(τ0)/2(1 + g) = −gT0(f)/2(1 + g) [1 ], where g = f2x + f2y , τ0 =

grad f/g1/2 is the direction of the field grad f , T0 = T (f), and for the mean
curvature H(x, y) follows the formula H = div{grad f/(1+g)1/2} [7, p. 92 ].

Corollary 2. Let the surface Sα be defined by the parametric equations
r = r(u, v, α), where r = (x, y, z) is the radius vector, u and v are the
parameters for the surface Sα, (u, v) ∈ D′, D′ is a domain on the plane u, v,

and the surface Sα for any α ∈ I
def
= [α1, α2] is Ck-regular [12 ], so that

r(u, v, α) ∈ Ck(D′), ru × rv 6= 0; then the unit normal to Sα has the form
τ = (ru×rv)/|ru×rv|. Let the mapping (u, v, α)→ (x, y, z) be one-to-one in
I×D′, so that there is an inverse mapping u = u(x, y, z), v = v(x, y, z), α =
F (x, y, z) with the definition domain D. Then, for the mean curvature H
for k = 2 and for the Gaussian curvature K for k = 3 of the surface Sα
formulas (5)–(7) hold. The quantities div τ , divS(τ ), divT (F ) in it are
given by the formulas of Lemma 2 with the replacement of u by F .

Let us obtain similar formulas for a family of surfaces given by some
general properties, which are formulated below.

Let {Sτ} be a family of the surfaces Sτ with the unit normal τ =
τ (x, y, z), continuously filling the domain D in the space x, y, z. In this
case, we will represent the principal direction by the unit vector li (i = 1, 2)
with the corresponding direction, and the vector li is the unit tangent vector
line of the curvature Li on Sτ . The vector li at the point (x, y, z) ∈ Sτ is
equal to the derivative of the radius vector r = r(x, y, z) of a point on the
surface Sτ along the principal direction at the point (x, y, z). Let:

(A) one and only one surface Sτ ∈ {Sτ} passes through each point
(x, y, z) ∈ D;
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(B) at each point (x, y, z) ∈ D, there exists the right system of the mutu-
ally orthogonal unit vectors τ , l1, l2, where τ is the unit normal, l1
and l2 are the principal directions on the surface Sτ , passing through
this point. For meeting this condition it is sufficient that each surface
Sτ ∈ {Sτ} be C2-regular [12]. At each point (x, y, z) ∈ Sτ of flatten-
ing or rounding we can take any two mutually orthogonal directions,
tangent to Sτ as l1, l2 [9–12]. Thus, three mutually orthogonal vector
fields of the unit vectors τ (x, y, z), l1(x, y, z), l2(x, y, z) are defined in
the domain D;

(C) τ ∈ Cn(D) (below n = 1 or 2), li ∈ C1(D), i = 1, 2.

Remark 1. The properties (A)–(C) are valid for the above cases under the
conditions of Theorem 1 and Corollary 2 (the role of Sτ is played by Sα).

Lemma 4. Let the family {Sτ} of the surfaces Sτ with the unit normal
τ = τ (x, y, z) satisfy conditions (A)–(C) for n = 1 in D. Then

(l1 · rot l1) = (l2 · rot l2), (8)

(τ · rot τ ) = 0 in D, (9)

τ = gradu/| gradu| and the surface Sτ can be represented as u(x, y, z) =
const, where u is a scalar function.

Proof. Using the general formulas [8 , § 17] rot [a×b] = (b·∇)a−(a·∇)b+
adiv b−bdiva, grad (a·b) = (b·∇)a+(a·∇)b+[b×rota]+[a×rot b], taking
into account the equalities l1 = l2 × τ , l2 = τ × l1, (τ · l1) = 0, (τ · l2) = 0
and the Rodriguez formula [6–12], written in the form (l1 · ∇)τ = −k1l1,
(l2 · ∇)τ = −k2l2, for the two cases a = l2, b = τ and a = τ , b = l1, we
obtain rot l1 = (2k2 + div τ )l2 − τ div l2 + rot τ × l2 + rot l2 × τ , rot l2 =
−(2k1 + div τ )l1 + τ div l1 + l1 × rot τ + τ × rot l1. Multiplying scalarly
the latter equalities, respectively, by l1 and l2, we obtain the equalities
(rot l1 · l1) = (rot l2 · l2)− (rot τ ·τ ) and (rot l2 · l2) = (rot l1 · l1)− (rot τ ·τ ).
After adding and subtracting them we obtain (8), (9).

Now we apply to the obtained equality (τ · rot τ ) = 0 the following
theorem from Task 136 in [8, §17, P. 199]: the necessary and sufficient
condition for a variable vector a could be represented in the form a =
ϕ gradu, where ϕ and u are variable scalar functions, consists in performing
the equality (a · rota) = 0. Hence, taking into consideration the identity
|τ | = 1, we obtain τ = gradu/| gradu|, i.e., τ is the unit normal of the
surface u(x, y, z) = const.

Lemma 4 and Theorem 1 imply
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Theorem 2. Let the family {Sτ} of the surfaces Sτ with the unit normal
τ = τ (x, y, z) in D satisfy the conditions (A)–(C). Then, at each point
(x, y, z) ∈ D, the mean curvature H for n = 1 and the Gaussian curvature K
for n = 2 of the surface Sτ passing through this point have the divergence
representations (5), (6). Moreover, for the principal (normal) curvatures k1,
k2 and the quantities rot l1, rot l2 (l1 and l2 are the principal directions),
the following formulas are valid :

k1 = −(rot l1 · l2), k2 = (rot l2 · l1), (10)

rot l1 = −τ div l2 + (k2 − k1)l2 + (rot τ × l2) + (rot l2 × τ ), (11)

rot l2 = τ div l1 + (k2 − k1)l1 + l1 × rot τ + τ × rot l1. (12)

Remark 2. From formulas (10), a brief and simple proof of the represen-

tation H = −1

2
div τ can be obtained, which does not use Lemma 4 and

Theorem 1 (in contrast to Theorem 2). In fact, div τ = div(l1 × l2) =
(rot l1 · l2) − (rot l2 · l1) = −k1 − k2 = −2H (we use the general formula

[8, § 17] div(a×b) = (rota ·b)− (rot b ·a)). The formula K = −1

2
divS(τ )

can also be obtained by an other way with the extremal property of the
principal directions.

2. The geometric meaning of the fields S(τ ) and T (v) (or T (u)) is explained
by

Theorem 3. Let τ = τ (x, y, z) be the field of the unit vectors in D; the
family {Lτ} of the vector lines Lτ of the field τand the family {Sτ} of the
surfaces Sτ with the normal τ are mutually orthogonal in D. For example,
τ is the direction field of a vector field v = |v|τ , |v| 6= 0 in D. Let the
conditions (A)–(C) hold for n = 1 in D. Then the field S(τ )of the form (2)
at any point (x, y, z) ∈ D is the sum of the three curvature vectors: S(τ ) =
Kτ + Kg1 + Kg2 = Kτ + 2Hτ . Here Kτ = (τ · ∇)τ = rot τ × τ is the
curvature vector of the vector line Lτ of the field τ at the point (x, y, z);
Kg1 = kg1τ and Kg2 = kg2τ are the curvature vectors (at the same point)
of the two geodesic lines with the curvatures kg1 and kg2 on the surface
Sτ , passing through the point (x, y, z) ∈ Sτ in any two mutually orthogonal
directions. According to identity (1) the same geometric meaning under the
same conditions has the field T (v) (the field T (u) in the case of v = gradu).

3. The following relationship between the properties of surfaces and the
properties of the vector fields τ and S(τ ) follows from Theorem 2.

Corollary 3. With the conditions and notations of Theorem 2 for the
surface of Sτ be minimal (H = 0 on Sτ ) or developable (K = 0 on Sτ ),
it is necessary and sufficient that the condition div τ = 0 or divS(τ ) = 0,
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respectively, should hold on Sτ . For all the surfaces Sτ ∈ {Sτ} be minimal
(developable), it is necessary and sufficient that the field τ (the field S(τ )) be
solenoidal in D: div τ = 0 (divS(τ ) = 0). The sign of the mean curvature H
(the Gaussian curvature K) at each point of the surface is opposite to that
of the value div τ (the value of divS(τ )) at this point.

From Theorem 2 and the Ostrogradskii–Gauss formula, we obtain for
integrals of H and K

Corollary 4. With the conditions and notations of Theorem 2∫∫∫
D

H dxdy dz =
1

2

∫∫
SD

(τ · η) dS,

∫∫∫
D

K dxdy dz =
1

2

∫∫
SD

(S(τ ) · η) dS,

where SD is the piecewise smooth boundary of D, dS is its element, η is the
inner unit normal to SD. If SD ∈ {Sτ}, then (for η = τ )∫∫∫

D

H dxdy dz =
1

2
S,

∫∫∫
D

K dxdy dz =
1

2

∫∫
SD

H dS,

where S is the area of the boundary SD.

Remark 3. By virtue of Remark 1 the assertions of Theorems 2, 3 and
Corollaries 2–4 are valid for the family {Sα} under the conditions of Theo-
rem 1 or Corollary 2 (with replacing Sτ by Sα).

Let us reformulate Theorems 1, 2 in terms of the vector field v.

Theorem 4. Let v = v(x, y, z) = |v|τ be the vector field with the modulus
|v| 6= 0 and the direction τ in D. Assume that the family {Sτ} of the
surfaces Sτ with the normal τ , which are orthogonal to the vector lines Lτ
of the field v, satisfy the conditions of Theorem 2. Then from the condition
v ∈ Ck(D) follows τ ∈ Ck(D). Then the identities H = −div {v/|v|}/2,
K = −divT (v)/2 hold in D, where H and K are the mean and the Gaussian
curvatures of the surface Sτ at the point (x, y, z) ∈ D, the field T (v) being
defined in Lemma 1. In this case, (τ · rot τ ) = 0 ⇔ (v · rotv) = 0 ⇔
v = ϕ gradu, where ϕ and u are some scalar functions. In the case of a
potential field v = gradu, we have T (v) = T (u), where the field T (u) is
defined in Lemma 2.
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4. Let us apply these general geometric formulas to the equations of math-
ematical physics for calculating the mean and the Gaussian curvature of the
surfaces, which are defined by the solutions to these equations, in terms of
these solutions.

Corollary 5. Let τ = τ(x, y, z) be the solution (the time field) of the
eikonal equation τ2x + τ2y + τ2z = n2(x, y, z) in D, τ ∈ C3(D), the refractive

index n ∈ C2(D). In Theorems 1, 2, 4 we have v = grad τ , the role of
the surfaces Sα and Sτ is played by the wave fronts τ(x, y, z) = const, the
role of the curves Lτ be the rays (the vector lines of the field grad τ). Then
for the mean curvature H and the Gaussian curvature K of the front Sτ
we have in D: H = −div{grad τ/n}/2, K = −divT (τ)/2, where T (τ) =
grad lnn−∆τ grad τ/n2.

Corollary 6. Let u = u(x, y, z) be the solution of Poisson equation ∆u =
−4πρ(x, y, z) in D, the potential u ∈ C3(D), the density ρ ∈ C1(D). In
Theorems 1, 2 or 4 the role of the surfaces Sα or Sτ is played by the equipo-
tential surfaces u(x, y, z) = const, the role of the curves Lτ be the vector
lines (lines of force) of the field v = gradu. Then for the mean cur-
vature H and the Gaussian curvature K of the equipotential surfaces Sτ
we have in D: H = −div{gradu/| gradu|}/2, K = −divT (u)/2, T (u) =
grad ln | gradu|+ 4πρ gradu/| gradu|2.

Corollary 7. Let v = v(x, y, z) = vτ be the velocity in Euler’s hydrody-
namic equations vt+grad v2/2−v×rotv = F −grad p/ρ, which can be writ-

ten as G = −T (v)(= −S(τ )), where G
def
= {vt +v div v+ grad p/ρ−F }/v2

in D; v
def
= |v|, v ∈ C2(D), the pressure p ∈ C2(D), the density ρ ∈ C1(D),

body force per unit of mass F ∈ C1(D). Then for the mean curvature H and
the Gaussian curvature K of the surfaces Sτ orthogonal to the streamlines Lτ
(vector lines of the field v at t = const), we have in D: H = −div{v/v}/2,
K = divG/2.

5. The formulas obtained in Theorems 1–4 allow us to give a simple geo-
metric interpretation of the conservation laws derived in [2–4].

Corollary 8. The conservation law divS∗ = 0 ⇔ divS(τ ) = 0 for a
family {Lτ} of the plane curves Lτ on the plane x, y, where S∗ is the sum
of the curvature vectors of the curves Lτ and the curves Lν , orthogonal
to them, which is obtained in [4 ], is equivalent to the vanishing Gaussian
curvature K of the cylindrical surfaces with the directive curves Lν and the
generating lines orthogonal to the plane x, y.
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Corollary 9. The geometric meaning of the law of conservation divT (τ) =
0 obtained in [3 ] for the time field τ = τ(x, y) (for the solutions of the eikonal
equation τ2x + τ2y = n2(x, y)), where T (τ) = S∗ is the sum of the curvature
vectors of the rays Lτ and of the fronts Lν , orthogonal to them, is that the
Gaussian curvature K of the cylindrical surfaces with the directive curves Lν
and the generating lines orthogonal to the plane x, y, is zero. The geometric
meaning of the conservation law divG = 0 obtained in [2 ] in the plane case
for solutions of Euler’s hydrodynamic equations, where the field (−G) = S∗

is the vector sum of the curvature vectors of the stream lines Lτ and the
curves Lν , orthogonal to them, is that the Gaussian curvature K of the
cylindrical surfaces Sτ with the direction lines Lν and the generating lines
orthogonal to the plane x, y vanishes.
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