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Divergent formulas (conservation laws) in
the differential geometry of plane curves∗

A.G. Megrabov

Abstract. In this paper, it is discovered that in the differential geometry of ar-
bitrary smooth plane curves there exists a solenoidal vector field S∗, i.e., the field
with a property divS∗ = 0 (in a certain area D), having the following geometric
meaning. Let {Lτ} be a set of arbitrary smooth non-intersecting plane curves Lτ

with the Frene unit vectors τ = τ (x, y), ν = ν(x, y) (τ is the unit tangent vector, ν
is the unit normal of a curve Lτ ), and {Lν} be a set of orthogonal to them curves Lν

with the Frene unit vectors ν and η = −τ . The set {Lτ} fills by the continuous
image some area D and satisfies some general conditions. The vector field S∗ is
expressed in terms of the Frene unit vectors τ , ν of the curves Lτ and equals the
sum of the curvature vector dτ/ds = (τ · ∇)τ = kν of the curve Lτ ∈ {Lτ} and
the curvature vector dν/dsν = (ν · ∇)ν = kνη = −kντ of the curve Lν ∈ {Lν}.
Here s and sν are natural parameters, i.e., the length of a curve being counted from
its certain point along Lτ and Lν , respectively, k = k(x, y) and kν = kν(x, y) are
curvatures of the curves Lτ and Lν , respectively. The symbol (a · ∇)a denotes a
derivative of the vector a in the direction a. This property can be interpreted as
existence in the differential geometry of plane curves of a conservation law (for the
vector field S∗ or for vector fields of unit vectors). A number of equivalent repre-
sentations of the field S∗ and equivalent forms of a conservation law divS∗ = 0 is
obtained.

1. Introduction

The given paper is an extension of papers [1–3].
First we will consider the basic geometric elements in terms of which the

formulas obtained express: the Frene unit vectors τ and ν (unit vectors of
the tangent and the normal of the plane curve Lτ ) and the curvature vector
of a curve.

An important place in the classical differential geometry of curves is
occupied by the Frene equations, which for a plane smooth regular curve
Lτ , look like [4–6]

dτ

ds
= kν,

dν

ds
= −kτ . (1)

Here and below τ = τ (s) is a unit tangential vector (the velocity vector)
of the curve Lτ (|τ | ≡ 1), ν = ν(s) is a unit vector of a normal (|ν| ≡ 1),
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k = k(s) is a curvature of the curve Lτ , s is the length curve (a natural
parameter), calculated from its certain point, dτ

ds
= τs = (τ · ∇)τ and

dν

ds
= νs = (τ · ∇)ν are derivatives of the vectors τ and ν in the direction

τ . The vector τs = kν is called the curvature vector of a curve Lτ [5, 6]
or the vector of acceleration, a pair of unit vectors (τ ,ν) is the Frene basis
(frame). Equations (1) describe changing of the Frene unit vectors (τ ,ν)
along an arbitrary smooth regular fixed curve Lτ .

In this paper, we consider not the properties of a fixed curve Lτ , but
properties of a set {Lτ} of the curves Lτ with the Frene basis (τ ,ν), filling
some area D with a continuous image in the plane with rectangular co-
ordinates x, y. Concerning a set {Lτ} to be low everywhere, we will assume
that the following conditions are satisfied:

(A) one and only one curve Lτ ∈ {Lτ} passes at any point (x, y) ∈ D, so
the curves Lτ do not intersect at any point (x, y) ∈ D [2].

(B) at any point (x, y) of any curve Lτ ∈ {Lτ}, there exists a Frene basis
(τ ,ν), so that the Frene unit vectors τ and ν are one-valued vector
functions of the variables x, y in the area D: τ = τ (x, y), ν = ν(x, y).
Thus, in D, two mutually orthogonal vector fields of the unit vectors
τ and ν are defined. We consider the unit vectors i, j to be along
the axes of co-ordinates x, y and unit vectors τ , ν to form the right
system of vectors.

(C) at any point (x, y) ∈ D, there exist quantities div τ , rot τ , div ν, rotν,
i.e., the vector fields τ (x, y), ν(x, y) being smooth enough.

To a given set of the curves {Lτ} in D there corresponds a set {Lν} of
the curves Lν , orthogonal to the curves Lτ . The tangent unit vector of the
curve Lν coincides with the normal unit vector ν of the curve Lτ , and the
normal unit vector η of the curve Lν coincides with a tangent unit vector τ
of the curve Lτ to within a sign. Sets of the curves {Lτ} and {Lν} will be
called mutually orthogonal. For a curve Lν ∈ {Lν} the Frene equations look
like

dν

dsν
= kνη,

dη

dsν
= −kνν,

where sν is a natural parameter (a variable length) of a curve Lν , dν

dsν
=

(ν · ∇)ν and dη

dsν
= (ν · ∇)η are derivatives of the vectors ν and η in the

direction ν, kν and kνη are the curvature and the curvature vector of a curve
Lν . The curves Lτ are vector lines of the vector field τ , and the curves Lν
are vector lines of the vector field of normals ν of the curves Lτ .

In the given paper, it is revealed that for any set {Lτ} of smooth plane
curves Lτ with the Frene unit vectors τ , ν with the specified properties
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(A)–(C) or for any two mutually orthogonal sets of smooth curves {Lτ} and
{Lν} with such properties, we have the divergent identity (in D):

divS∗ = 0 ⇔ S∗ = rotA, (2)

where
S∗ =

dτ

ds
+
dν

dsν
= (τ · ∇)τ + (ν · ∇)ν = kν + kνη, (3)

η = −τ , A is a vector field. Identity (2) means that for such a set of curves
{Lτ} there always exists a vector field S∗(τ ) = kν + kνη, representing the
sum of the vector field of the curvature vector kν of a curve Lτ ∈ {Lτ} and
the vector field of the curvature vector kνη of an orthogonal curve Lν ∈ {Lν}
which is solenoidal. This property can be interpreted as existence in the
differential geometry of plane curves of a conservation law for the vector
field S∗(τ ), having the differential form (2). (As for any smooth vector
field a, the identity diva = 0 is a differential conservation law with the
integral form for the flux (in the plane case)

∫
S

(a ·n) dS = 0, where S is an
arbitrary piecewise smooth closed curve in the plane x, y, dS is an element
of the length S, n is a unit normal to S).

Thus, the differential conservation law for an arbitrary set of smooth
plane curves Lτ in the differential form (2), (3) in terms of the Frene unit vec-
tors τ , ν or curvature vectors is discovered. We notice that this conservation
law can be expressed in terms of only one curvature vector τs = (τ ·∇)τ = kν
of curves Lτ as the normal unit vector ν can be expressed by the known
formula ν = τs/|τs| (|τs| = k). Therefore the vector S∗ in formulas (2), (3)
can be expressed (see note 1 below) only in terms of one curvature vector
τs = kν by the formula

S∗ = τs + {(τs · ∇)τs − τs(grad ln |τs| · τs)}/|τs|2. (4)

In addition, for the field S∗, the following expressions are obtained: only in
terms of one unit vector τ :

S∗ = −{τ div τ + τ × rot τ};

only in terms of one unit vector ν:

S∗ = −{ν div ν + ν × rotν};

other expressions are obtained in terms of τ , ν.
Obviously, it is possible to consider as initial geometric object not a set

of the plane curves {Lτ}, and an arbitrary vector field τ = τ (x, y) of the
unit vectors τ in the plane x, y. Then formulas (2), (3) give a differential
conservation law for an arbitrary vector field of the unit vectors τ with the
vector lines Lτ .
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Identity (2) is purely geometric in its meaning. However, it can be
translated “to a physical language” in the case when the set {Lτ} is a set of
vector lines of some smooth vector field v = v(x, y) = |v|τ with the modulus
|v| and a direction τ (|τ | ≡ 1) and with a property |v| 6= 0. In [12], it is
established that identity (2) in terms of such a field v is equivalent to the
identity

div
{v div v + v × rotv

|v|2
− 1

2
grad ln |v|2

}
= 0, (5)

representing a differential conservation law for the above-mentioned arbi-
trary field v(x, y). Formula (5) is found in [7] by means of the group analy-
sis for a potential plane field v = gradu(x, y), and in [2] –– for an arbitrary
smooth plane field v(x, y).

If the vector field v is a model of a physical field and satisfies a differential
equation (E) of the mathematical physics, then we obtain an additional
(as compared to (5)) differential relation (E) for the field v. Using it, with
the help of (5) it is possible to obtain conservation laws for the physical field
v. In this connection, in [2], new conservation laws for a plane movement
of an ideal liquid (solutions of the Euler’s hydrodynamic equations [8]) are
found, and in [3], conservation laws for a time field τ (the eikonal equation
solutions) in the kinematic seismics (geometric optics) are discovered. In
paper [12], the proof of these conservation laws for the time field τ is given
and by means of formula (2) their geometric interpretation from the point
of view of the differential geometry in terms of curvature vectors of vector
lines (rays) of the corresponding physical field grad τ and orthogonal to them
curves (fronts) is given.

Let (a ·b) and a×b denote scalar and a vector products of the vectors a
and b, ∇ be the Hamiltonian operator (”a nabla“), (v · ∇)a be a derivative
of the vector a in the vector v direction, ∆u = uxx + uyy.

2. Conservation law for an arbitrary field of unit vectors

Assume D to be a domain in the plane x, y; i, j, k is the right-hand side
system of unit vectors along the axes x, y, z of the rectangular coordinates;
{Lτ} is a set of the curves Lτ , defined in D, with the Frene unit vectors
τ = τ (x, y), ν = ν(x, y) with a natural parameter s and with properties
(A)-(C). The role of the binormal β of the curve Lτ is played by the unit
vector k. The vectors τ , ν and the curvature k of the curve Lτ can be
represented as [5, p. 104]

τ = τ1(x, y)i+ τ2(x, y)j = τ (α) = cosα i+ sinα j, (6)

ν = − sinα i+ cosα j, (7)

k =
dα

ds
= (gradα · τ ) = k(x, y). (8)
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Here α = α(x, y) is the angle the vector τ makes with the axis Ox, so that
cosα = τ1, sinα = τ2, i.e., α(x, y) is the polar angle of a point (ξ = τ1,
η = τ2) in the plane ξ, η:

α
def= arctan

τ2
τ1

+ (2k + δ)π, k ∈ Z, (9)

δ = 0 and δ = 1 in quadrants I, IV and II, III of the plane ξ, η, respectively;
owing to the definition of the operation rot [9] we have rot {α(x, y)k} =
αyi−αxj. The angle the vector ν makes with the axis Ox is αν = α+π/2.
In [2, Theorem 3] we have obtained

Theorem 1 (Conservation law for an arbitrary vector field of unit vec-
tors). For any vector field of the unit vectors τ = τ (x, y) (|τ | ≡ 1) with
components,

τj(x, y) ∈ C2(D) (j = 1, 2) (10)

we have the identity
divS(τ ) = 0, (11)

where

S(τ ) def= τ div τ+τ×rot τ = τ div τ−kν = −{(τ ·∇)τ+(τ×∇)×τ}, (12)

moreover
S(τ ) = rot{α(x, y)k}, (13)

rotS(τ ) = −(∆α)k. (14)

Proof. Let us present it, as in [2] the statement is given without proof.
Using formulas (6), (7) for τ , ν, we obtain:

div τ = (cosα)x + (sinα)y = − sinα αx + cosα αy = (ν · gradα);

τ × rot τ = −τs = −(cosα i+ sinα j)s = −(− sinα αsi+ cosα αsj)
= −αs(− sinα i+ cosα j) = −(gradα · τ )ν ⇒

S(τ ) = τ div τ + τ × rot τ = τ (ν · gradα)− ν(gradα · τ )
= gradα× (τ × ν) = gradα× k = rot(αk).

We used the known formula [9, §17]: grad{|a|2/2} = (a · ∇)a + a × rota.
From it, with a = τ and |τ | ≡ 1 follows τ × rot τ = −τs = −kν. Also,
we have applied formula [9, §7] for the double vector product a× (b× c) =
b(a · c)− c(a · b). Formula (13) has been obtained. From it follow identities
(11) and (14).
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Corollary 1. For the Frene unit vectors τ , ν of the set {Lτ} of curves with
properties (A)–(C) and (10), we have identities divS(τ ) = 0, divS(ν) = 0,
where S(ν) def= ν div ν + ν × rotν.

Lemma 1. Let a set of plane curves {Lτ} with the Frene unit vectors τ ,
ν have in the area D the properties (A)–(C), τj(x, y) ∈ C1(D) (j = 1, 2),
{Lν} is a set of the curves Lν , orthogonal to the curves Lτ , with the Frene
unit vectors ν, η. Then in D, the following identities take place:

div τ = (ν · gradα), rot τ = (τ · gradα)k, (15)

div ν = −(τ · gradα), rotν = (ν · gradα)k. (16)

For the unit normal vector η of a curve Lν ∈ {Lν}, its curvature kν and the
curvature k of a curve Lτ ∈ {Lτ}, we have formulas

η = −τ , kν = div τ = (ν · gradα), (17)

k = −div ν = (τ · gradα) ⇒ rot τ = kk, rotν = kνk, (18)

τ div τ = −kνη, τ × rot τ = −τs, (19)

explaining the geometric meaning of the quantities entering expression (12).

Proof. Formulas (15), (16) follow from (6), (7). As the angle, the vector
ν makes with the axis Ox, is αν = α + π/2, the curvature kν of the curve
Lν with the tangential unit vector ν is

kν
def=

dαν
dsν

= (ν · gradαν) = (ν · gradα) = div τ .

For the vector dν

dsν
from (6), (7), we come to

dν

dsν
= −ν × rotν = −(gradα · ν)τ = −kντ .

Comparing this equality to the Frene equation for the curve Lν of the form

dν

dsν
= kνη,

for the unit normal vector η of the curve Lν we obtain η = −τ . Moreover,
the curvature k of the curve Lτ with the tangential unit vector τ owing to
(8) is

k =
dα

ds
= (τ · gradα) = −div ν.
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Corollary 2. Under conditions of Lemma 1 for the vector fields of the
Frene unit vectors τ = τ (x, y) and ν = ν(x, y) and for the vector field S(τ )
of the form of (12), in the area D the following identities hold :

S(τ ) = S(ν) = ν div ν + ν × rotν, (20)

S(τ ) = Sdiv
def= τ div τ + ν div ν, (21)

S(τ ) = Srot
def= τ × rot τ + ν × rotν ⇒ (22)

Sdiv = Srot,

S(τ ) = −S∗ ⇒ (23)

divS(τ ) = −divS∗, (24)

where the vector field S∗ is defined by formula (3). Formulas (12), (20)–(22)
give various representations for the field S(τ ). Hence, the vector field S∗ is
expressed in terms of the unit vectors τ and (or) ν from any of the formulas:

S∗ = −(τ div τ + τ × rot τ ) = −τ div τ + kν, (25)

S∗ = −(τ div τ + ν div ν), (26)

S∗ = −(τ × rot τ + ν × rotν), (27)

S∗ = −(ν div ν + ν × rotν), (28)

S∗ = − rot{α(x, y)k} = −(αy i− αx j). (29)

Formula (25) gives representations of the field S∗ only in terms of one
Frene tangential unit vector τ = τ (x, y), and formula (28) –– only in terms
of one normal unit vector ν. Formula (29) expresses the field S∗ in terms
of the inclination angle α of the vector τ to the axis Ox.

Remark 1. The vector field S∗ of the form of (3) can also be expressed in
terms of one curvature vector τs = kν of the curves Lτ from formula (4).
Really, owing to the general vector analysis formula [9, §17] of the form of
(v · ∇)ϕa = a(v · gradϕ) + ϕ(v · ∇)a with v = τs/k, a = τs, ϕ = 1/k we
have

dν

dsν
= (ν · ∇)ν =

(τs
k
· ∇
)τs
k

= τs

(τs
k
· grad

1
k

)
+

1
k

(τs
k
· ∇
)
τs

=
1
k2

{
(τs · ∇)τs − τs(grad ln k · τs)

}
.

With allowance for k = |τs| and (3), obtain (4). Substituting formula (4)
into (2) gives one more form of conservation law (2) in terms of one vector
of curvature τs = kν.
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3. Conservation law for an arbitrary set of smooth curves
and its equivalent forms

Theorem 1 and Corollary 2 follows

Theorem 2 (A conservation law for a set of curves). Let conditions of
Lemma 1 and condition (10) be satisfied. Then in the area D identity (2) is
valid for the vector field S∗ of the form (3), i.e., the sum S∗ of the curvature
vectors kν and kνη = −kντ of the two plane curves Lτ and Lν from mutually
orthogonal sets of the curves {Lτ} and {Lν} is a solenoidal vector field in
D, moreover, S∗ = − rot {α(x, y)k}, and in (2) we have A = −α(x, y)k.
The given statement is equivalent to the following.

Under conditions of the theorem for any set {Lτ} of plane smooth curves
Lτ with the Frene unit vectors τ = τ (x, y), ν = ν(x, y), the sum S∗ of the
curvature vectors kν and kνη of the vector lines Lτ of a vector field of
tangential unit vectors τ (x, y) and of the vector lines Lν of a vector field of
the normals ν(x, y) satisfies in D identity divS∗ = 0, i.e., S∗ is a solenoidal
vector field in D, thus S∗ = − rot (αk), rotS∗ = (∆α)k.

For the vector field S∗ we have anyone of representations (3), (4), and
(25)–(29).

The following statement explains the geometric meaning of vector lines
of the field S∗.

Corollary 3. Under conditions of Lemma 1, we have (S∗ ·gradα) = 0, i.e.,
vector lines of the vector field S∗ of the form of (3) coincide with the level
lines of the scalar field of the inclination angles α(x, y) of the unit vectors
τ (x, y) to the axis Ox.

The proof results from the identity (rot(αk) · gradα) = 0.
From the Frene equations (1) and formulas (11)–(13) follows

Theorem 3. Let conditions of Lemma 1, condition (10) be satisfied and
|k| = |τs| 6= 0 in D. Then for any set of curves {Lτ} with the Frene unit
vectors τ = τ (x, y), ν = ν(x, y) and the curvature k = k(x, y) in D, we
have the identity

Q∗ def=
ν div τs − τ div νs

k
=
Q0

k2
= grad ln |k|+ rot(αk)

= grad ln |k| − S∗ ⇒ (30)

div τs = ([grad ln |k|+ rot(αk)] · τs),
rot τs = [grad ln |k|+ rot(αk)]× τs,

(31)
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where Q0
def= τs div τs + τs × rot τs = νs div νs + νs × rotνs. Formulas (30)

give an explicit expansion of the vector field Q∗ in the potential (grad ln |k|)
and the rotational (solenoidal) (rot(αk) = −S∗) components, and formulas
(31), i.e., expressions for the source and vortex intensities of the vector field
of the curvature vector τs = kν. Also, the formulas resulting from (31) are
valid that are obtained by replacing τs for νs everywhere.

Proof. Applying to each of the Frene equations (1) the operation div,
multiplying the first of the obtained scalar equalities by ν, the second – by
τ , subtracting and dividing by k, we arrive at:

ν div τs − τ div νs
k

= ν div ν + τ div τ +
grad k
k

= S(τ) + grad ln |k| = −S∗ + grad ln |k|.

From this point on, owing to (13) or (29) follows formula (30). Formulas
(31) are obtained as a result of scalar and vector multiplication of equality
(30) by the vector τs = kν.

Corollary 4. Let conditions of Theorem 3 be satisfied and τj(x, y) ∈ C3(D)
(j = 1, 2). Then identities (2) and (11) can be represented in the form of
an equivalent identity (i is an imaginary unit)

div{Q∗ − grad ln |k|} = 0 ⇔ divQ∗ = ∆ ln |k|.

In addition,

rotQ∗ = −(∆α)k ⇒ ∆ Ln{|k| e±iα} = divQ∗ ∓ i(rotQ∗ · k).

Remark 2. In all the above formulas the vector ν can be expressed in
terms of the vector τ under the formula ν = τs/|τs| = τs/k or ν = −(τ ×
rot τ )/|τ × rot τ | owing to τs = (τ · ∇)τ = −(τ × rot τ ) and k = |τs| =
|τ × rot τ |.

4. On the way of deriving conservation laws (2) and (11)

The presented proofs of conservation law (11) for a vector field of unit vectors
and conservation law (2) for a set of plane curves are fairly simple. However,
as is known, to find (to formulate) a theorem and to prove it in mathematics,
generally speaking, are different tasks. The author doesn’t know yet, how
it would be possible to think with the keep of only vector analysis and
differential geometry about the existence of a conservation law of the form
of (11) for an arbitrary field τ of unit vectors (or the Frene unit vectors τ and
ν) or of the conservation law of the form of (2) for the field S∗ (the sum of
curvature vectors of curves from the two mutually orthogonal sets of curves)
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which is equivalent. Actually, the author has come to formulas (2) and (11)
through the group analysis of the following sequence of operations (group
terms are understood in the sense of [11]).

First, a certain differential relation or connection (this is equality (5) in
[7]) between differential invariants of the Lie group G was obtained when
seeking for a basis of differential invariants of a group G in [10]. The group
G has been found and investigated [10] as the equivalence group, assumed
by the wave equation uxx + uyy = n2(x, y)utt, by the eikonal equation u2

x +
u2
y = n2(x, y) and by other differential equations of mathematical physics

in the space of the five variables t, x, y, u1 = u, u2 = n2; the solution
u1 = u1(t, x, y) and a variable parameter of the equation u2 = n2(x, y)
being thus considered to be equivalent variables. It was possible to present
this differential relation [7] in a compacter form as

K(x, y) = J11 def=
1
2

∆ lnJ7

n2
−A2H − J7H2; (32)

we also have the equality

J16 def=
∆α
n2

= −A3H, (33)

where

J7 def=
u2
x + u2

y

n2
, H

def=
J4

J7
, J4 def=

∆u
n2

, J11 def= −1
2

∆ lnn2

n2
= K(x, y),

A2
def=

1
n2

{
ux

∂

∂x
+ uy

∂

∂y

}
, A3

def=
1
n2

{
uy

∂

∂x
− ux

∂

∂y

}
,

for any functions u(x, y) ∈ C3(D), n(x, y) ∈ C2(D).
As is known in the differential geometry [4, P. 83; 13, P. 113], the quantity

J11 = K(x, y) = −(∆ lnn2)/(2n2) is the Gaussian curvature of the surface in
the 3D Euclidean space with a linear element (metric) dl2 = n2(x, y)(dx2 +
dy2).

The expressions J j and Ai have the following group content, formulated
in the form of theorems in [10].

Theorem 4. Let G be an infinite group of point transformations of the
space of the five variables t, x, y, u1 = u, u2 = n2, such that the Lie algebra
of infinitesimal operators X of its one-parameter subgroups has the form
X = Φ(x, y) ∂/∂x+ Ψ(x, y) ∂/∂y − 2Φx(x, y)u2 ∂/∂u2, where Φ, Ψ are any
conjugate harmonic functions. The expressions J4, J7, J11 = K(x, y) are
functionally independent differential invariants of the group G, contained
in its universal second order differential invariant J2. The invariant J2
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consists of 15 scalar differential invariants J j, whose explicit forms are given
in [10]. The basis of differential invariants of the group G is formed by the
invariants J1 = t and J2 = u. The operators A1 = ∂/∂t, A2, A3 are
invariant differentiation operators of the group G.

Corollary 5. The group meaning of equality (32) is that this equality ex-
presses the differential invariant J11 = K(x, y) (the Gaussian curvature),
which is determined by only one function u2 = n2, in terms of other differ-
ential invariants of the group G, which are determined by the two functions
u1 = u, u2 = n2. The expressions (∆ lnJ7)/n2 and ∆α/n2 in (32), (33) are
also differential invariants of the group G (of third order).

Thus, equalities (32) and (33) represent relations (connections) between
differential invariants of the Lie group G, defined in Theorem 4.

Further it appeared possible to establish (in [7]) that formula (32) can
be written down in the form of the vector differential identity

1
n2

div
{1

2
grad ln

| gradu|2

n2
− ∆u
| gradu|2

gradu
}

= K(x, y), (34)

whence formula (5) follows for the case of a potential vector field v = gradu,
looking like the differential identity

div
{ ∆u
u2
x + u2

y

gradu− 1
2

grad ln (u2
x + u2

y)
}

= 0, (35)

which holds for any smooth scalar function u = u(x, y) with the property
| gradu| 6= 0⇔ u2

x+u2
y 6= 0. The analysis of identity (35) has allowed finding

formulas divS(τ ) = 0 and S(τ ) = rot (αk) [1, 2]. Then these formulas were
generalized [2] to the case of an arbitrary vector field v.

Therefore, conservation law (5) can be considered to be a generalization
of corollary (35) from divergent form (34) of formula (32), expressing the
Gaussian curvature K(x, y) = J11 in terms of other invariants J j of the
group G, and conservation laws (2), (11)–– the forms of this generalization.

After identity (11) has been already revealed, it it is possible to prove
it in a simpler way, not using the group analysis, for example, by means of
formulas of the vector analysis and the differential geometry, as is shown in
this paper.

Thus, the search for relations between differential invariants of the Lie
group, for example, the group of equivalence of some differential equations,
can be a source of the new differential identities and formulas of vector
analysis and differential geometry.
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