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Automata noise
in diffusion cellular-automata models∗

Yu. Medvedev

Abstract. Two new cellular-automata models of the diffusion process are pro-
posed. They are based on integer states of cells instead of Boolean ones in the known
models: asynchronous naive diffusion by Toffolli and block-synchronous Margolus
diffusion. Computing experiments have been carried out with these models; they
demonstrate a good correlation with this physical phenomenon. A dependence of
a maximum state value of the multi-particle model on the averaging radius of the
Boolean one with equal automaton noise level is obtained. The main advantages
of the proposed models are (i) low automata noise and (ii) variable diffusion rate.

1. Introduction

Following the common practice, the diffusion process is represented by the
differential equation. Usually, computers solve this equation because its
analytical solution cannot be obtained. But computers operating with real
numbers accumulate round-off errors. In addition, complicated boundary
conditions cause certain difficulties.

Since the end of the last century cellular automata have been used for
the diffusion process simulation. One of them is an asynchronous cellular
automaton of naive diffusion, proposed by Tomasso Toffolli [1]. Another
one is a block-synchronous cellular automaton that was offered by Norman
Margolus [1]. Both of them operate over the Boolean alphabet, therefore no
round-off errors are available.

A noise is aperiodic oscillating of a certain physical quantity. A noise
which is caused by the influence of discrete nature of cellular automata, we
call the automaton noise.

In this paper, an attempt to eliminate the problem of noise in Boolean-
valued cellular-automata simulation is undertaken. For each of the referred
Boolean models an analog, which operates over integers, is proposed. Com-
puter experiments with the proposed models are executed, their behavior
is investigated, and a dependence of a maximum state value of the multi-
particle model on the averaging radius of the Boolean one with an equal
automaton noise level is obtained.
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2. Main definitions

2.1. Boolean models. A 2D cellular automaton of diffusion has the cel-
lular array W = {wij : i ∈ [1, I], j ∈ [1, J ]}; |W | = I ·J being the cardinality
of the array. The cells wij ∈W are arranged in the Cartesian plane accord-
ing to Figure 1. Each cell wij ∈ W has a state s(wij) ∈ {0, 1}. A value

j
i 1 2 3 4 5

1 w11 w12 w13 w14 w15

2 w21 w22 w23 w24 w25

3 w31 w32 w33 w34 w35

4 w41 w42 w43 w44 w45

5 w51 w52 w53 w54 w55

Figure 1

of the state s(wij) shows which of two sub-
stances (let us call them “zero” and “one”)
is present in the cell wij . A set of the
states s(wij) of all cells wij ∈ W at the
same instant t is called a global state σ(t) =
{s(wij) : i ∈ [1, I], j ∈ [1, J ]} of the cel-
lular automaton. In a cellular automaton
with a synchronous operation, each itera-
tion is a replacement of states s(t) in all
cells by states s(t + 1). The cellular au-
tomaton thus changes its global state σ(t)
by a new global state σ(t+ 1). An iteration

of an asynchronous cellular automaton is a sequence of events. Each event
is a replacement of a randomly chosen cell state s(t) by the state s(t + 1).
The number of the events per iteration is equal to |W |.

A model concentration of each substance c0 and c1 in any cell wij ∈ W
is calculated by means of summing up over an averaging vicinity Av(wij)
with some radius r:

c0(wij) =
1

|Av(wij)|
∑

w∈Av(wij)

(1− s(wij)),

c1(wij) =
1

|Av(wij)|
∑

w∈Av(wij)

s(wij).
(1)

The vicinity Av(wij) consists of the cells which are not further than r
from wij .

2.2. Multi-particle models. The multi-particle cellular automaton dif-
fers from Boolean one in that it has integer-valued states s(wij) of cells
wij ∈W ; s(wij) being in the interval s(wij) ∈ [0, S], where S is the number
of particles, corresponding to a maximum concentration of substance “one”
in a cell. The value of s(wij) shows the number of the substance “one”
particles in the cell wij . Concentrations of substances “zero” and “one” in
the cell wij are equal to S − s(wij) and s(wij), respectively.

The model concentrations c0 and c1 of each substance, respectively, are
calculated as follows:
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c0(wij) =
1

|Av(wij)| · S
∑

w∈Av(wij)

(S − s(wij)),

c1(wij) =
1

|Av(wij)| · S
∑

w∈Av(wij)

s(wij).
(2)

A radius r of the averaging vicinity Av can be diminished up to zero, and
this will not excessively increase the automaton noise, like in the Boolean
models. So, it is possible to use an automaton with a smaller in comparison
with the Boolean model amount of cells.

3. Naive diffusion

3.1. Boolean model. The Boolean asynchronous cellular automaton sim-
ulates a diffusion process as follows. Each cell of the automaton wij ∈ W
is located at some point of a plane and has
four neighbors. In Figure 2, a cross tem-
plate with the cell wij and its neighboring
cells a, b, c, and d is given. At each itera-
tion, the following steps are done:

1. A random cell wij ∈ W is equiproba-
bly selected.

2. One of four neighboring cells wk ∈
{a, b, c, d} is equiprobably selected.

3. Cells wij and the selected one wk ex-
change their states s(wij) and s(wk).

j
i 1 2 3 4 5

1

2 a

3 d wij b

4 c

5

Figure 2

The above iteration is repeated many times. After that, averaging (1)
should be executed for obtaining the concentrations c0 and c1 for every cell
of the array. The effect of operation of such an automaton is infiltration of
substance “zero” into substance “one” and vise versa.

3.2. Multi-particle model. At each iteration, the following steps are
done:

1. A random cell wij ∈W is equiprobably selected.

2. One of the four neighboring cells wk ∈ {a, b, c, d} is equiprobably se-
lected.

3. The quantities of particles s representing the state value in each of
the cells wij and wk are divided into the two groups sk and s1−k as
follows:
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sk(wij) = bk · s(wij)c+ s′(wij), s1−k(wij) = s(wij)− sk(wij),
sk(wk) = bk · s(wk)c+ s′(wk), s1−k(wk) = s(wk)− sk(wk),

where k ∈ (0, 1] is a certain parameter determining a model diffusion
rate; s′(w) = 1 with the probability k · s(w)−bk · s(w)c and s′(w) = 0
otherwise; bxc denotes the floor x.

4. A group of particles sk(wij) moves from the cell wij to the cell wk,
while a group of particles sk(wk) moves in the contrary direction, where
wk ∈ {a, b, c, d}. Thus, their new states are

s(wij) = s1−k(wij) + sk(wk), s(wk) = s1−k(wk) + sk(wij).

After the assigned number of iterations, averaging (2) should be executed
for obtaining the concentrations c0 and c1. An expected result is the same
as in the Boolean model, differing only in that the amount of the automaton
noise is less.

4. Margolus diffusion

4.1. Boolean model. In the Boolean cellular automaton of the Margolus
diffusion, a template is a square of 2× 2 cells. In this model, the even and
the odd iterations are distinguished. They are executed in a different way.
In Figure 3a, the even partitioning (for using at the even iterations) is given;
both indices i and j of the upper left cell of the blocks of 2 × 2 cells are even.
In Figure 3b, the odd partitioning (for using at the odd iterations) is given;
i and j of the upper left cell are odd. Because of the synchronous mode
of the Margolus diffusion, the transition rule in all the blocks is applied
simultaneously. At each iteration in each block, the following steps are
carried out:

j
i 1 2 3 4 5

1 c d c d c

2 b a b a b

3 c d c d c

4 b a b a b

5 c d c d c

j
i 1 2 3 4 5

1 a b a b a

2 d c d c d

3 a b a b a

4 d c d c d

5 a b a b a

a) even partitioning b) odd partitioning

Figure 3. Cellular array partitioning for the Margolus diffusion
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1. The direction of rotation is selected either clockwise or counterclock-
wise equiprobably, independent of other blocks.

2. The cells a, b, c, and d in each block exchange their values s(a), s(b),
s(c), s(d) around a circle, according to a selected direction (a → b →
c→ d→ a or a→ d→ c→ b→ a).

The necessary number of iterations is to be repeated. After that, aver-
aging (1) should be executed for calculating the concentrations c0 and c1 in
every cell of the array. In [2], it is proved that the Boolean Margolus block-
synchronous cellular automaton exactly simulates the diffusion process.

4.2. Multi-particle model. At each iteration in each block, the following
steps are carried out:

1. The direction of rotation is selected either clockwise or counterclock-
wise equiprobably, independent of other blocks.

2. The number of particles s(a), s(b), s(c), and s(d) in each of the cells
a, b, c, and d is divided into the two groups sk and s1−k as follows:

sk(a) = bk · s(a)c+ s′(a), s1−k(a) = s(a)− sk(a), etc.,

where k ∈ (0, 1] is a parameter of a model diffusion rate; s′ = 1 with
the probability k · s − bk · sc, and s′ = 0 otherwise; bxc denotes the
floor of x.

3. The cells a, b, c, and d in each block exchange their values sk(a), sk(b),
sk(c), sk(d) around a circle, according to a selected direction. In the
case of the clockwise exchange, their states thus will be equal to

s(a) = s1−k(a) + sk(d), s(b) = s1−k(b) + sk(a),
s(c) = s1−k(c) + sk(b), s(d) = s1−k(d) + sk(c).

In the case of the counterclockwise exchange, their states thus will be
equal to

s(a) = s1−k(a) + sk(b), s(b) = s1−k(b) + sk(c),
s(c) = s1−k(c) + sk(d), s(d) = s1−k(d) + sk(a).

After finishing all the iterations, averaging (2) should be executed for
obtaining the concentrations c0 and c1.
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5. Computer simulation

For validation of the proposed models, their program realization has been
constructed. This allows carrying out computing experiments with both
models. The code has been written in C. The computing experiments, per-
formed with the multi-particle Margolus diffusion model only, are described
below. Results of the experiments with the naive diffusion model are iden-
tical to the Margolus one we will not dwell on them here.

5.1. Diffusion of a round spot. The first example simulated by the
proposed model is rather simple. The size of a cellular automaton is I = 500

by J = 500 cells. The cells
{
wij :

(
I

2
− i
)2

+
(

J

2
− j
)2
≤
(

IJ

100

)2}
are

initialized by ones, s(wij) = 1. The rest of the cells are initialized by zeros,
s(wij) = 0. So, the substance “one” looks like a round spot on the substance
“zero” background. In Figure 4a, the array of the averaged concentration
c1 of the substance “one” in the initial global state is shown. Because of
the averaging radius r = 20 being significant for the selected size of the
cellular array, the boundary between the substances is blurred. After the
simulation is completed, the spot of the substance “one” diffuses into the
substance “zero” background. In Figure 4b, the result of Boolean model
implementation is given; in Figure 4c, the result of multi-particle model
implementation is given. The obtained results allow us to conclude the
following:

• the models simulate diffusion process correctly;

• the multi-particle model provides a less diffusion rate than the Boolean
one;

• the multi-particle model gives much less noise than the Boolean one.

a b c

Figure 4. Diffusion of a round spot: a) the initial state for both models, b) the
boolean model, 5,000 iterations, and c) the multi-particle model, 10,000 iterations
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The following experiments deal with the automaton noise measurements,
and making a comparison between the noise of the multi-particle model and
that of the Boolean one.

5.2. Automaton noise measurements. The cellular array W = {wij :
i ∈ [1, I], j ∈ [1, J ]} with the sizes I = 1000 and J = 1000 is homogeneously
filled in with half-and-half substances “one” and “zero”. The array borders
are closed by a torus. The averaged concentration c1(w) is calculated in
the cut, i.e., the set WAv = {wij : i ∈ [1, I], j = 500}. The number of
iterations is 100. The quantitative representation of the automaton noise is
dispersion D(c1), i.e., the mean square deviation of the concentration c1(w).
It is calculated over WAv as follows:

D(c1) =
1

|WAv|
∑

w∈WAv

(c1(w)− c̄1)2, c̄1 =
1

|WAv|
∑

w∈WAv

c1(w),

where c̄1 is an average concentration.

Boolean model. The initial state s(wij) of each cell wij ∈W is chosen
as s(wij) = 0 or s(wij) = 1, equiprobable.

In Figure 5, the dependence of dispersion D(c1) on the averaging radius
r is shown. Experimental points for the Boolean model are approximated
by the function

D(c1) =
kb

r2
(3)

with kb = 0.074.

Figure 5. The dependence of dispersion D(c1) on the averaging radius r.
Experimental points and approximating curve
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Multi-particle model. The initial state s(w) of each cell w ∈W takes
the value that is equiprobable selected from the two ones: bsmax/2c and
dsmax/2e, where smax is a maximum value of the number of particles in a
cell, bxc and dxe denote the floor and ceiling of x, respectively. In the case
smax is odd, the rounding-off of s(w) to an integer is performed up or down.
If smax is even, for preventing a degenerate case in which all the cells possess
the same initial state, the Eldorado method is applied. It lies in using the
decremented odd values smax = 9, 99, 999, etc. instead of the even ones
smax = 10, 100, 1000, etc.

The averaging radius r was chosen as r = 0 for the greatest possible
accuracy, i.e., the cardinal number of the averaging set |WAv| = 1.

In Figure 6, the dependence of dispersion D(c1) on a maximum value
smax with the model diffusion rate k = 0.5 is shown. Experimental points
for the multi-particle model are approximated by the function

D(c1) =
km(k)
s2max

(4)

with km(0.5) = 0.48.
Obviously, changing the model diffusion rate k implies changing the value

of km. For each k = 0.01, 0.02, . . . , 0.99, such an approximation curve was
plotted and the coefficient km was obtained. In Figure 7, the experimental
dependence km(k) is shown. The point (0.5, 0.48) corresponds to the case
given in Figure 6.

Figure 6. The dependence of dispersion D(c1) on smax.
Experimental points and approximating curve
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Figure 7. The dependence km(k)

Comparison between the Boolean and the multi-particle mod-
els. The dependence of a maximum state value smax of the multi-particle
model on the averaging radius r of the Boolean model with equal dispersion
D(c1) is obtained by equating the right-hand sides of (3) and (4):

smax = kbm(k) · r, (5)

where kbm(k) =
√

km(k)

kb
is a coupling coefficient of the averaging radius r

and a maximum value smax. All the possible values of the coefficient kbm are
given in Figure 8. Apparently, this coefficient possesses its value equal to
kbm = 2.6± 0.2. So, dependence (5) is linear. Now if in the Boolean model
we know averaging radius r which leads to demanded automaton noise we
can easily determine a maximum value smax which is necessary for reaching
of the same level of automaton noise in the multi-particle model.

Figure 8. The dependence kbm(k)
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6. Conclusion

The two new cellular-automata models of the diffusion process are proposed.
The results of computer simulation allow us to conclude the following:

The models authentically feature the diffusion process because the results
of simulation coincide with the results of the known models.

In the models proposed, the automaton noise with respect to the Boolean
ones is extremely low that allows one to use a cellular array of a smaller size
and to decrease the run time.

The dependence of a maximum state value of the multi-particle model
on the averaging radius of the Boolean one with an equal automaton noise
is obtained.

The parameter k in the proposed models affects the diffusion rate. There-
fore, it is possible to simulate the diffusion process with various diffusivities.

In addition, the proposed models can be used in compositions with other
multi-particle cellular-automata models [3].
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