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On a massively parallel finite element method

Joseph M. Maubach∗

Abstract. This paper discusses the key-properties from the Parallel Finite Ele-
ment Method (PFEM) introduced and examined in [4, 5, 11–15]. It focuses at the
PFEM applications in the context of non-conforming finite element basis functions
(for maximal parallelism, see [14]) on locally-bisection-refined tensor-product grids
(for simple and cheap load balance techniques, see [18, 19, 21]).

The Parallel Finite Element Method is an iterative solution method based on a
Red-Black domain decomposition. The method is robust, and can solve elliptic as
well as mixed elliptic-hyperbolic and hyperbolic problems (see [14]). The amount
of iterations is optimal for a method with only local communication. Nonlinear as
well as constraint systems of equations can be solved element-wise in parallel.

1. Introduction

The Parallel Finite Element Method (PFEM) is a finite element discrimi-
nation method which –– with a proper choice of finite basis functions –– can
solve linear as well as constrained problems massively in parallel, as is shown
in [13, 14].

The latter papers are quite theoretical and therefore somewhat hide the
fact that the actual iterative solution algorithm is of a simple nature. In a
lucid manner, this paper discusses the PFEM key properties and iterative
solution method, as well as some nonlinear constrained applications. For
details it refers to published papers. By means of illustration, application
of the PFEM to a convection-diffusion problem is discussed.

The remainder of this paper is organized as follows. First, we present
the required mathematical context for the PFEM: An example of a standard
convection-diffusion problem is introduced in Section 2, the related domain
decomposition being presented in Section 3, the induced operator splitting
is addressed in 4. This splitting is exploited in the iterative algorithm in
Section 6. The rate of convergence results (analyzed in [14]) are summa-
rized in Section 7, and more complex (nonlinear, constraint) applications
are mentioned in Section 8.

2. The convection-diffusion problem

First, we formulate the standard unit-square convection-diffusion problem:

−ε∆u + bT∇u + cu = f in Ω = (0, 1)2, u|∂Ω = 0. (1)
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We assume that the domain is first partitioned into a tensor-triangle-grid
(such as in Figure 1 on the next page). Afterwards it is refined where needed
with the local (n-dimensional) bisection refinement presented in [17–19].
This refinement method is simple and cheap–– for the two-dimensional case,
see, also [6, 10, 22, 24, 25].

The related standard stream-line upwind Galerkin finite element formu-
lation (SUPG) is: Find a solution u such that b(u, v) = f(v) for all v in a
suitable space, where

b(u, v) =
∫

ε∇u∇v + δb∇ub∇v + cu(v + δb∇v) + vb∇u + H.O.T. (2)

Here H.O.T. stands for Higher Order Terms which stem from the partial in-
tegration of the term

∫
(∆u)(v+δb∇v). The PFEM induced parallelism (see

Section 5) is maximal if one uses non-conforming finite element basis func-
tions: In such a case there are no basis functions which have support points
at the vertices of the triangles, which decreases the amount of couplings in
the matrix (and, hence, increases the amount of parallelism).

The bilinear operator b in (2) is not coercive for non-conforming bases,
whence the PFEM uses the standard skew-symmetrized SUPG formulation:
Find a solution u such that a(u, v) = f(v) for all v, where

a(u, v) =
∫

ε∇u∇v + δb∇ub∇v +
(
c− 1

2
∇·(b + δcb)

)
uv +

(1− δc)(vb∇u− ub∇v) + H.O.T. (3)

In the sequel, for the sake of simplicity, we will use the first order non-
conforming linear basis functions on triangles (as in [1]), whence all H.O.T.
reduce to zero. For higher order basis functions, see, for instance [9]. The
use of formulation (3) introduces an extra (small) error called consistency
error, see [1].

3. The domain decomposition

Next, the domain Ω is covered with the black and the red colored elements,
for instance, as in Figure 1. The research has shown that the use of more
than two colors does not being about a faster iterative solution algorithm (for
comments on the color strategy see [4, 20]). The notation is as follows: B
and R are the sets of all respectively black and red elements, and subdomains
are defined: ΩR =

⋃
e∈R e, etc.

4. The coefficient matrix splits. . .

The basic idea for the domain decomposition is that integration is additive,
the integral over the entire domain Ω is the sum of the integrals over the
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Figure 1. Domain decomposition: Ω = ΩR ∪ ΩB , ΩR ∩ ΩB = ∅

red ΩR and the black ΩB domains. Now, the bilinear operator a(·, ·) is split
to a red and a black part:

aω(u, v) =
∫

ω
ε∇u∇v + δb∇ub∇v + (c− 1

2
∇·(b + δcb))uv +

(1− δc)(vb∇u− ub∇v) + H.O.T.

and a(u, v) := aΩ(u, v). Based on this, we can split the canonical matrix
representation of the bilinear operator a(·, ·):

A = AΩ = AΩR
+ AΩB

=: AR + AB.

The PFEM method differs from the ADI (alternative direction splitting)
where the bilinear operator e(u, v) =

∫
∇u∇v is split to direction-dependent

parts

ex(u, v) =
∫

uxvx, ey(u, v) =
∫

uyvy

with a related canonical matrix splitting E = Ex + Ey.
For more information on the ADI methods see [2, 3, 7, 8].

5. . . . To block-diagonal matrices

As shown in [14], a proper (color-respecting) numbering of the degrees of
freedom leads to the matrices AR and AB which are block-diagonal under
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Figure 2. Numbering order: a) left-right/bottom-top, b) black variables first,
c) red variables first

permutation. For our Crouziex–Raviart basis this is shown for a simple
triangulation in Figure 2.

First, the matrix A related to the numbering of the degrees of freedom
in Figure 2a is not a diagonal matrix after permutation, as is indicated by:

A =



1 −1 . . .
1 −1 . . .

1 −1 . . .
−1 −1 4 −1 −1 . . .

0 −1 2 −1 0 . . .
−1 −1 4 −1 −1 . . .

0 −1 1 . . .
0 −1 2 . . .

0 −1 2 . . .
1 . . .

−1 −1 . . .
0 . . .

−1 . . .
0 . . .

0 . . .
. . .



(4)

However, different numberings of the degrees of freedom such as in Figure 2-
(Middle) or 2-(Right) with related permutations

π1 = (1 4 13 2 3 5 6 7 10 14 8 9 11 12 15 16)
π2 = (13 14 2 1 5 4 15 3 6 8 7 11 10 16 9 12)

result in block-diagonal matrices, as shown in Figure 3.
Sometimes it is possible that the neighboring elements (elements which

share a facet) have the same color (see for instance Figure 1 and [5]). In such
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Figure 3. The block diagonal structure of π∗
2ABπ2

a case, one obtains a diagonal block related to the cluster of identically
colored elements. For instance, for the case of a cluster of two identically
colored neighbors, the total of four non-conforming linear basis functions
forms a cluster.

6. The iterative solution methods

The iterative solution methods for the convection-diffusion linear case are
based on Peaceman–Rachford [23] and D’yakunov [3], for the nonlinear case
(a minimum surface equation, see [14]) are based on Kellogg [7], and for
the constraint nonlinear case are based on Lions and Mercier [16] LM-1
and LM-2. This paper presents the linear convection-diffusion PFEM and,
hence, the algorithm [23]:

Let u(0) ∈ RN and ρ ∈ (0,∞). Iterate

(ρIN + AR)v = (ρIN −AB)u(k) + b;

(ρIN + AB)u(k+1) = (ρIN −AR)v + b

until ‖Au(k)−b‖2 < ε. Here b is the entire right-hand side vector (integrated
over the entire domain Ω). (Algorithm [3] employs the colored right-hand
sides bB and bR.)
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The advantages of the algorithm are:

• The algorithm converges for all ρ ∈ (0,∞), the optimum value esti-
mated to be ρ = O(h);

• The iterations involve no inner-product, i.e., no global communication;

• The matrices ρIN + AR, etc. are block-diagonal under permutation,
whence inversion stands for inversion of three by three matrices.

There is no need to calculate the inner product of each iteration to check
whether convergence is reached, in practice, we just check each 10 itera-
tions. This means that massive amounts of data entirely can be processed
in parallel, without need for any global intervention.

The main difference in the nonlinear and the constraint nonlinear algo-
rithms [16] is that there, after operations (ρIN + AR)−1 and (ρIN + AB)−1,
one needs an extra projection onto a constrained space.

7. The rate of convergence

For our convection–diffusion problem, the rate of convergence of the Peace-
man–Rachford and LM-1 and LM-2 does not depend on the amount of dif-
fusion, hyperbolic problems are solved just as efficient as elliptic problems.
More precisely, let h > 0 be a minimum over all grid element diameters.
Assume the operator is maximally monotone (the bilinear operator a(·, ·) is
maximally monotone [13]), and let the finite element space be split appro-
priately [14]. Then, as is proven in [14]:

• The amount of iterations of both Peaceman–Rachford and LM-1 and
LM-2 is optimal for local communication: O(h−1) for sufficiently h;

• This amount of iterations does not depend on

0 ≤ εmin ≤ ε ≤ εmax ≤ 1,

nor on b and c;

• The optimal value for ρ is O(h).

8. Nonlinear applications

The PFEM can also solve (nonlinear) variational inequalities, as well as
constrained (linear) systems of equations:

• Nonlinear operator problems (see [13]):

−∆u + eau + cu = f ; (5)
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• The obstacle problem and other constrained problems (see, also, [13]):

−∆u− f ≥ 0, u− g ≥ 0 in Ω;
(−∆u− f)(u− g) = 0 in Ω;
u = 0 at ∂Ω;

(6)

• Fluid Flow (Stokes) and Solid Mechanics (Signorini’s).

In all cases, the operator must be of the maximally monotone type and the
constraints must be pointwise.

The constraints can be dealt with in parallel as well: First the constraints
over Ω reduce to constraints over the colored domains ΩR and ΩB, and next,
the constraints over, for instance, ΩR decouple into constraints over (clusters
of, or individual) red elements. Hence, projections can be elements wise (or
a cluster of identically colored elements) in parallel.

9. Conclusions

For problem (5), the PFEM is faster even in serial mode than the Walker
and Eisenstat global-convergent nonlinear damped Newton solvers. Next,
constrained problems are solved much more accurately than with a penalty
method (see [13]) because there are no penalty terms. Furthermore, local
constraints can be computed explicitly (per element or cluster)–– hence very
efficiently. The PFEM method scales better in parallel than the famous
Jacobi method (D.O. Neil, Pittsburgh Super Computer Center). Last but
not least, the amount of iterations for the convection–diffusion problem is
optimal for a method with local communications only (O(h−1)), both for
elliptic and mixed elliptic-hyperbolic problems.
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