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Sound wave propagation simulation in
an inhomogeneous medium using

Lattice Gas Automata∗

Valentina Markova

Abstract. The Lattice Gas Automata (LGA) models are based on a microscopic
model of physical process being simulated and can be considered as an adjunct to
the traditional numerical methods to the spatial dynamics simulation. Here we
consider two simple LGA models: HPP and HPPRP. They are based on a square
lattice whose nodes can be occupied by the moving particles in the HPP-model,
and the moving and the rest particles in the HPPRP-model. In this paper, the pos-
sibility of a simple LGA models to simulate sound wave process in inhomogeneous
medium formed from two solid materials (aluminium and ebonite) are investigated.

1. Introduction

In the Lattice Gag Automata (LGA) models, the dynamics of an event is
described by a set of hypothetical particles, which have moved through space
and collided with each other and with obstacles. Space is represented as a
regular lattice whose nodes can contain a quantity of hypothetical particles.
Each lattice node is assigned to a LGA cell. As opposed to the classical
cellular automaton, an initial state of the LGA cell is determined by a set
of some particles, locating in the cell at this time instant. There are two
types of particles: the moving particles and the rest particles. The moving
particles have the same mass (equal to one unit) and equal absolute veloc-
ity (equal to one unit). The rest particles have the same velocity (equal
to zero) and a different mass. Interactions between particles are simple.
Each interaction consists of two successive steps: collision and propagation.
The collision rules are chosen in such a way that the mass and momentum
conservation laws are satisfied. The collision rules determine the LGA cell
transition table. All cells update their own states simultaneously and syn-
chronously. An iterative change of the LGA global state (evolution of the
LGA) describes the dynamics of an event on microscopic level.

In order that a modeling process be observed in the usual fashion of a
physical event, averaged values of particles density and velocities for each
LGA cell are calculated in a certain averaging area. Automata noise arises
for small values of the averaging radix. This is the main disadvantage of the
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LGA models. Automata noise cannot be eliminated, but its effect can be
reduced by increasing the averaging radix.

In this paper, the ability of a simple LGA models to simulate the sound
wave propagation in inhomogeneous media on an example of media of two
solid materials: aluminium and ebonite is demonstrated. As the models,
two LGA models (HPP and HPPRP) on a square lattice with four neighbors
are used. The HPP cells contain only the moving particles. The HPPRP
cells can contain the moving particles and the rest particles. As opposed
to the HPP model, the HPPRP collision rules can be deterministic or non-
deterministic. In [3], it is shown that the HPPRP model corresponds to the
wave equation. One can also specify that certain regions of a square lattice
have different rest particles numbers. The energy exchanges between the
moving and the rest particles in the regions are thus different, and media
with different sound speeds can be realized.

This paper is organized as follows. The second section describes the main
concepts of the LGA models. In the third section, the influence of the LGA
model parameters on the sound wave propagation velocity is experimentally
investigated. The sound wave propagation process in an inhomogeneous
medium formed of two solid materials (aluminium and ebonite) is discussed
in the fourth section.

2. The main concepts of LGCA models

2.1. The HPP model. In the HPP model, each cell contains only the
moving particles. The state of the HPP cell is determined by the velocity

Figure 1

vector v = (v1, v2, v3, v4) at this moment. The l-th digit
value of the vector, l = 1, 2, 3, 4, shows the presence (vl = 1)
or the absence (vl = 0) of particles in the direction to the
l-th neighbor. The HPP cell with the velocity vector v =
(0, 1, 1, 0) is shown in Figure 1. (An arrow in the cell shows
the direction of the velocity vector particle.) In the HPP
model, the particles collided according to the following rule:

Rule 1 (Head-on collision). Two moving particles, arrive at a cell with an
opposite direction of their velocity vector (head-on collision), escape from the
cell, changing the direction of their velocity vector by 90 degrees (Figure 2).

Figure 2. Collision rules for the HPP model
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2.2. The HPPRP model. As opposed to the HPP cell, each HPPRP cell
can contain the moving particles and the rest particles. The state of HPPRP
cell is defined by the two vectors: velocity vector v and mass vector m. The
rest particles have the zero velocity and a different mass. Here we will
consider the rest particles with masses equal to 2, 4, 8, and 16. It is evident
that two mass 2 rest particles equal to one mass 4 rest particle, four mass
2 rest particles equal to one mass 8 rest particle. The length of the mass
vector m = (mr,mr−1, . . . ,m1) does not depend on the space structure and
is equal to the number of the rest particles. The k-th digit value of the
vector, k = 1, 2, . . . , r, determines the presence (mk = 1) or the absence
(mk = 0) of a rest particle with mass 2k in a cell. The HPP cell with the
velocity vector v = (0, 1, 1, 0) and the mass velocity
m = (0, 1, 0) is shown in Figure 3. So, the state
of a HPPRP cell is represented by an (r + 4) long
Boolean vector. (In what follows, the HPPRP model
with one rest particle will be indicated by HPP1rp, the
HPPRP model with two rest particles will be indicated
by HPP2rp and so on.)

Figure 3

In the HPPRP model, the collision rules differ from the HPP collision
rules. In addition to the head-on collision of the moving particles, the energy
exchange between the moving and the rest particles occurs. In response
to this exchange, either a rest particle is created and moving particles are
annihilated or a rest particle is annihilated and moving particles are created.
In the general case, the collision rules are deterministic or non-deterministic.
They can be divided into the three groups.

Group 1 (the head-on collision). The moving particles collide with each
other according to the head-on collision rule (Figure 2) independent of the
presence or the absence of the rest particles.

Group 2 (the rest particle creation). If in a cell, the collision rule holds
for two (four) moving particles and there is initially no mass 2 (4) rest par-
ticle, then moving particles will be annihilated and a mass 2 (4) rest particle
will be created, respectively (Figure 4a). If in a cell, the collision rules hold
for two moving particles and there are initially no mass 4 rest particle and
mass 2 rest particle, then moving particles and mass 2 rest particle will be
annihilated and a mass 4 rest particle will be created (Figure 4b).

Group 3 (the rest particle annihilation). If a mass 2 (4) rest particle
already exists in a cell, and there are no two (four) moving particles for
which the collision rule is hold, then two (four) moving particles will be
created after the collision step, respectively, and the rest particle will be
annihilated (Figure 5a). If a mass 4 rest particle already exists in the cell,
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Figure 4. The rest particle creation rules

a b

Figure 5. The rest particle annihilation rules

and there are no a mass 2 (4) rest particle and no four (or two) moving
particles for which the collision rules hold, then two moving particles and
a mass 2 rest particle will be created after the collision step, and a mass 4
rest particle will be annihilated (Figure 5b).

The rest particles are created (annihilated) with a certain probability
Pk, k = 1, 2, . . . , r, in so doing, the following limitations should be met:

Pk+1 ≥ Pk,
r∑

k=1

Pk ≤ 1. (1)

3. The influence of the HPPRP parameters on the sound
wave propagation velocity

3.1. The HPPRP characteristics. In terms of the cellular automata
modeling, the sound wave propagation is represented by a 2D cellular array
W with M × N size cells. The first several array rows form a source for
generation of the initial momentum. The source cells are the HPP cells.
The rest of the array cells are the HPPRP cells, including the HPP cells.
Each cell is assigned to an automaton. The automaton transition table
has 2r+4 states. The source cells generate the moving particles with some
probability within one iteration. The initial states of the HPPRP cells are
generated according to a set of probabilities of the presence of the rest
particles in the initial particle distribution. Further, a set of probabilities
will be denoted by Prp = 〈pr, pr−1, . . . , p1〉, where pk is the probability that
the k-th rest particle exists in the initial particle distribution. The collision
and the propagation rules make up the automaton transition rules. For such
rules, condition (1) must be satisfied.

The boundary conditions are as follows. The left boundary (the column
W0) is the wall this one collision rule (the bounce-back rule: a moving



Sound wave propagation simulation in an inhomogeneous medium. . . 75

Figure 6. Bounce-back rule

particle colliding with a wall cell simply reverses its momentum (Figure 6).
The right boundary (the column WN−1) is open (WN−1 = WN−2). The
upper and the lower boundary conditions are periodical. Further an array
of the HPPRP cells will be called by the HPPRP medium.

The medium cell with the coordinates (i, j) will be given by the mov-
ing particle density dij and the particle density d̂ij . Let vij = (v4(ij), v3(ij),
v2(ij), v1(ij)) and mij = (mr(ij),mr−1(ij), . . . ,m1(ij)) are the velocity vec-
tor and the mass vector of the cell with the coordinates (i, j), respectively.
Then

dij =
4∑

k=1

vk(ij), d̂ij =
4∑

k=1

vk(ij) +
r∑

k=1

2kmk(ij).

For the HPP medium dij = d̂ij . The wave propagation process in this
medium will be given by the following parameters:

• averaged density of the moving particles 〈ρ0〉,

• averaged density of the medium 〈ρ〉, and

• averaged sound wave propagation velocity 〈vs〉.

Further 〈ρ〉 and 〈vs〉 will be called the model density of a medium and the
model velocity, respectively. At the site of action of the initial momentum
to the medium 〈ρ〉 = 〈ρ1〉 + 〈ρ2〉, where 〈ρ1〉 is the uniform background
density, 〈ρ2〉 is the initial momentum density. For the given averaging radius
r, averaged values of the density of the moving particles ρ0 and the model
density of the medium ρ are defined as

〈ρ0
j 〉 =

1
(2r + 1)M

r∑
l=−r

M−1∑
i=0

dij , j = 0, 1, . . . , N − 1,

〈ρj〉 =
1

(2r + 1)M

r∑
l=−r

M−1∑
i=0

d̂ij , j = 0, 1, . . . , N − 1.

The table presents averaged values of the background density 〈ρ1〉 for
all media on condition that the probability of the presence of all the rest
particles in the initial distribution is equal to 0.5. Obviously, that for HPP
medium ρ0

j = ρ1
j .



76 V. Markova

LGA model 〈ρ1〉

HPP 2
HPP1rp (m1 = 2) 3
HPP2rp (m2 = 4, m1 = 2) 5
HPP3rp (m3 = 8, m2 = 4, m1 = 2) 9
HPP4rp (m4 = 16, m3 = 8, m2 = 4, m1 = 2) 17

3.2. The model velocity dependence of the HPPRP medium pa-
rameters. In this paper, the model sound velocity for all HPPRP media
are experimentally obtained. As discussed above, the sound wave propaga-
tion contains is represented by the 2D cellular array. In our experiment, the
array 200×800 cells. The first twenty array rows form a source for generation
of the initial momentum. Each source cell generates three moving particles
with probability 0.95 within one iteration. (The states of all source cells
are equal in value and are defined as vector velocity v = (0, 1, 1, 1).) The
initial states of the rest of the array cells are generated according to a set of
probabilities of the presence of the rest particles in the initial particle dis-
tribution. In our experiment, the presence of the rest particles probabilities
have the same value, namely, p4 = p3 = p2 = p1 = 0.5.

So, in the HPPRP medium, a wave propagates under the influence of
the initial momentum. As discussed above, the wave propagation process in
a medium will be given by a change in model density 〈ρ〉. Figure 7 shows a
change in the density function in the HPP2rp medium every 100 iterations
(in our experiments, r = 10). The model sound velocity is defined as the
number of array cells for which a maximum value of the media density travels
in a unit time. Figure 7 shows the sound velocity dependence of the moving
particle density for the media with the following sets of the presence of the
rest particles probability in the initial particle distribution.

The velocity curves are symmetric about the density 〈ρ〉 = 2, regardless
of the probability of the rest particles presence. In all HPPRP media, the

Figure 7. A change in density function in the HPP2rp medium



Sound wave propagation simulation in an inhomogeneous medium. . . 77

Figure 8. The model velocity dependence of density of the moving particles

Figure 9. The model velocity dependence of density in the HPP2rp media
for different values of the probability of a mass 4 rest particles presence

sound waves attain a maximum velocity and the greatest difference in mag-
nitude for the density 〈ρ〉 = 2. The model sound velocity can be increased
(reduced) in the following ways.

A change in the rest particle initial distribution. At a given
density of the moving particles, the sound wave velocity can be increased
(reduced) due to enhancement (reduction) of the probability of the rest
particles presence. For the given HPPRP media, the sound wave propagates
with the greatest velocity in such HPPRP media wherein the rest particles
with a maximum mass have a minimal probability in the initial particle
distribution (Figure 9).

A change in the collision rules. The model sound wave velocity can
be increased (reduced) at the cost of reduction (enhancement) the proba-
bility creating of the rest particle from two (four) moving particles. Indeed,
the reduction of the probability creating the rest particle means that if only
one moving particle do not take part in collision, then at the next iteration,
this moving particle either collides with another particle or both travel in
the direction of the wave propagation. The simulation supports that for the
given HPPRP medium, the sound wave reaches a maximum value in media
with such a set of the collision rules, wherein the probability creating the
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Figure 10. The model velocity dependence of density in the HPP3rp
medium for different values of the probability of creating the rest particle

rest particle falls with a rise of its mass. It has been found experimentally
that with reduction of the probability creating a mass 8 rest particle from
0.5 to 0.25 in the HPP3rp (Figure 10), the sound wave velocity reaches the
model velocity vm computed from the following formula [2]:

v2
m =

2d(d− 1)
4d(d− 1) +

∑r
k=1m

2
kpkdk(1− dk)

,

where d is the density of the moving particles in a cell with the coordinates
(i, j) (d = 〈ρj〉), mk is the mass of the k-th rest particle, pk is the probability
of the presence of the k -th rest particles, dk = dmk/(dmk + (1− d)mk) is the
density of the k-th rest particle in a cell.

3.3. Correlation between the model and the physical sound wave
velocity. In order for the sound wave propagation to be simulated in an
inhomogeneous medium consisting of two materials, each material must be
assigned to the HPPRP medium by the physical velocity vph, with which
the sound wave travels in the given material and vice versa. For this pur-
pose, a scale coefficient for velocity conversion (from the physical veloc-
ity to the model velocity and vice versa) must be defined. Let the sound
wave propagate in the solid materials (2000–6320 m/s). The sound wave
reaches a maximum physical velocity in aluminium, maximum model veloc-
ity (cells/iteration) in the HPP medium. As a result, aluminium is assigned
to the HPP medium. In the general case, any HPPRP medium can be
used as basic medium under the following condition: the ratio between the
physical velocity of sound in a material does not exceed the ratio between
the model velocity corresponding to those and materials. Further, the HPP
medium will be considered as a basic one, then the scale coefficient is de-
fined as

µal = vph/vm = 8.94 · 103.

For example, a sound propagates in nickel with the velocity equal to
5400 m/s. According to the scale coefficient, the model sound velocity is
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0.634. The sound wave propagates with such a velocity in all HPPRP media,
but for different density of moving particles and the probability of the pres-
ence of the rest particles in the initial particle distribution (see Figure 8).
Which of the all models is preferred? This is determined by a task. Such a
medium is most often chosen, which has the density close to the equilibrium
state. If this is not obtained, then the probability of the presence of the rest
particles or (and) the probability creating of the rest particles need to be
changed. For the example in question, nickel corresponds to the HPP1rp
medium with the probability p1 = 0.25.

4. The simulation of sound wave propagation in
inhomogeneous media

In experiments, an inhomogeneous medium is formed of two solid materials:
aluminium (a light medium) and ebonite (heavy medium). According to the
scale coefficient, ebonite (vph = 2500 m/s) is assigned to the media with a
model velocity equals 0.3. The sound wave propagates with such a model
velocity in the HPP2rp medium with the following parameters: the density
of the moving particles ρ = 2, the probabilities of the presence of the rest
particles are p1 = 0.5, p2 = 0.44, the collision rules are equiprobable. As
mentioned above, aluminium is assigned to the HPP medium. The sound
wave propagation in inhomogeneous media is represented as a 2D cellular
array W with the size of 200 × 800 cells. The array is comprised of three
subarraies: a source, a subarray generated by the HPPRP cells, and a sub-
array generated by the HPP2rp cells. The demarcation line between two
media does not require additional boundary conditions and collision rules.

Example 1 (The simulation of the sound wave propagation in aluminium-
ebonite medium). In the experiment, the demarcation line between two
media runs the length of the 250-th column of the array. The sound wave
reaches the demarcation line at the 300-th iteration (Figure 11), and then
propagates in the heavy medium (ebonite) with the velocity equal in magni-
tude to the sound wave model velocity in the media corresponding to ebonite
(Figure 12).

Example 2 (The simulation of the sound wave propagation in ebonite-
aluminium medium). In the experiment, the demarcation line between two
media runs the length of the 180-th column of the array. The sound wave
reaches the demarcation line at the 500-th iteration (Figure 13), and then
passes into the light media (aluminium). The simulation has shown that the
sound wave velocity in aluminium (ebonite) pre-demarcation line (Figure 12)
and post-demarcation line (Figure 14) strongly coincide.
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Figure 11. The sound wave propagation in aluminium-ebonite medium

Figure 12. A change in the model wave velocity in aluminium-ebonite medium

Figure 13. The sound wave propagation in ebonite-aluminium medium

Figure 14. A change in the model wave velocity in ebonite-aluminium medium
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5. Conclusion

In this paper, the model wave velocity dependence of the LGA model pa-
rameters (the number of the rest particles, density of the moving particles,
the probability of the presence of the rest particles, and the probability of
creating the rest particles) are experimentally investigated. Two LGA mod-
els on a 2D lattice with four neighbors (the HPP, and the HPPRP) are
used. The technique for evaluation the HPPRP medium and its parameters
by physical velocity of the sound wave propagation in a given medium is
given. The sound wave propagation in inhomogeneous media formed of two
solid materials (aluminium and ebonite) is simulated. The demarcation line
between two media does not require additional boundary conditions and col-
lision rules. The simulation has shown that the sound wave velocity in the
light and in the heavy media, pre-demarcation line and post-demarcation
line coincide very closely.
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