
Joint NCC & IIS Bull., Comp. Science, 16 (2001), 129–139
c© 2001 NCC Publisher

Representation of interval models and

interval data in the constraint

programming system

A.A. Lipatov, A.V. Poltaratskii

Introduction

One of the most advanced and practically significant approaches in con-
straint programming [1] is the method of subdefinite models [2, 3].

This method is the basis for a multilevel constraint programming tech-
nology that has been developed to solve various problems in economics,
engineering, calendar planning, etc.

A subdefinite model is a pair (X,C), where X is a set of variables and
C is a set of constraints on them. In the subdefinite model, the values of
variables can be both precise and subdefinite. For variables of numerical
data types subdefinite values can be defined as intervals or sets of possible
values of variables.

We call a subdefinite model, where subdefinite values of variables may
be only numeric intervals, an interval model.

This paper deals with some problems related to the representation of
interval models and interval data in the UniCalc solver [4] intended to solve
the systems of algebraic equations and ineualities. A number of methods
developed by the authors for the solution of these problems in the UniCalc
environment are considered.

1. Some issues of data representation in the

UniCalc solver

The UniCalc solver supports the interactive mode of problem solving. If a
system has several solutions, then each of them can be found by entering
additional constraints on the values of the variables. These constraints can
be in the form of equations, inequalities or logical expressions.

Based on the analysis of calculation results, we can change the source
model, for example, by modifying the original constraints, adding new con-
straints or refining the values of variables.



130 A.A. Lipatov, A.V. Poltaratskii

Effectiveness of the UniCalc solver can be increased by adding the fol-
lowing new capabilities to the UniCalc shell.

1. Displaying and editing the interval model using a traditional mathe-
matical notation. In the current implementation of the solver shell,
the model is created and presented in the UniCalc language.

2. A high-level model description language that facilitates creation and
modification of large complex mathematical models. Such a language
is not available in the current implementation of the solver.

3. Visualization of the interval data used in models. The current version
of the UniCalc shell has a tool for visualization of user-defined func-
tions. It allows one to display one or several functions of one argument
(possibly with subdefinite values).

The problem of visualization of interval data arises in connection with
the development of various methods of interval calculations, as well as within
the framework of subdefinite models.

It is necessary to note that in UniCalc the function of graphical tools
is not only to allow a visual presentation of the interval data produced by
calculation, but also to facilitate direct control over the calculation process.

One of the most important problems of interval data visualization is
displaying arrays of interval values and subdefinite functions.

The following characteristics of arrays of interval values are relevant for
their visualization.

1. The values of the elements of arrays are subdefinite.

2. The amount of elements in array is large.

3. The range of values of the elements may be very large, covering several
orders of magnitude.

4. We need to support interactive manipulation with the graphical rep-
resentation of interval data.

5. It is necessary to compare several arrays or a sequence of states of one
array obtained after execution of several calculation steps.

The following problems arise in connection with visualization of subdef-
inite functions.

1. The values of functions and their arguments are subdefinite.

2. The number of arguments of a function is arbitrary.



Representation of interval models and interval data 131

3. It is necessary to afford an opportunity to preset the invariable values
for some arguments of function. These values may be either exact or
subdefinite. Such arguments will be called “fixed.”

4. Interactive manipulation with the graphical representation of a func-
tion should be supported, when the user is capable to add and change
additional constraints on the values of the function for some or all
values of its arguments.

5. It is necessary to compare the results produced by different calculation
steps for the model.

2. Solutions for some problems

The authors are developing a new version of the integrated shell for the
UniCalc solver. An outline of the solution for some of the problems listed
in section 1 is presented. The new shell of the solver includes advanced
tools for symbolic representation of interval models, as well as a subsystem
for graphical representation of interval data (called iG). In particular, iG
implements visualization of one-dimensional and two-dimensional arrays of
interval values. New methods of visualization of subdefinite functions of one
argument have been also developed.

2.1. Enhancing the UniCalc language

The main reason for extending the language is that in its current imple-
mentation it is difficult to develop complex models with many variables and
expressions; in addition, reusing models or their parts in other problems is
impossible. The key technologies used in the new language are generaliza-
tion, inheritance, aggregation and polymorphism of models.

Generalization and inheritance of models

Generalization and inheritance make possible to use local similarity of
different parts of models, as well as multilevel classification of models. For
implementation of complex models, it allows moving from simple to complex:

– first, we describe the base model with a minimal set of expressions;

– next, we describe a model that inherits all the expressions of the base
model and then add new expressions.

Aggregation of models

Aggregation is establishing dependencies between a compound model
and the submodels representing its components (the “whole”–“part” rela-
tion).



132 A.A. Lipatov, A.V. Poltaratskii

Figure 1. The document consists of several paragraphs

The most important property of the relation of aggregation is its tran-
sitivity (if A is part of B, and B is part of C, then A is part of C): thus,
from the above figure it is possible to conclude that the document consists
of several (zero or more) sentences.

It is easy to see that the relation of aggregation is not symmetric (if A
is part of B, then B is not part of A).

Polymorphism of models

In the current version of the UniCalc shell, we are implementing two
forms of polymorphism.

1. At the level of inheritance of models, there are two base models Mi

and Mj that are different descriptions of the same object. There is also
a model M whose parent can be either of the base models, depending
on the context. Thus, in compliance with more and more definite
conditions, M may inherit either from Mi or from Mj .

2. At the level of modifying structure of the task, two variants of the
base model M0 are defined in blocks Bi and Bj , correspondingly. The
model M1 is derived from M0 by adding to M0 some constraints which
are kept in the block B. In the structure of the task we describe the
condition that decides which blocks would be used to implement M1:
Bi and B1, or Bj and B1.

2.2. Visualization of a UniCalc model

The following problems relate to the display of complex mathematical mod-
els:

– difficulty in writing and perceiving complex mathematical expressions;

– large number of relations within unstructured models.

The editor of the new environment satisfies modern general requirements
to the user interface. It provides the following features:

– highlighting comments and standard functions;

– construction of the model navigation tree;



Representation of interval models and interval data 133

– calculation stack;

– change of the text font size.

An intuitively clear interface is provided for model development. The
toolbar provides buttons that help to write formulas of arbitrary complex-
ity, such as: multi-level fractions, square roots, exponential expressions etc.
Besides, the developer can write the formulas in a usual linear manner, and
they can be automatically transformed to a multi-level (multi-line) form.
The editor provides automatic single-line to multi-line conversion, i.e. a
model developed in an older version of the environment can be viewed in
the new, multi-line notation.

Development of models often implies writing documentation. The sup-
port of the Windows object embedding mechanism allows one to insert ex-
pressions and formulas built by the shell into documents created by other
programs.

2.3. Visualization of one-dimensional arrays of interval data

The basic image is a one-dimensional array placed on the screen horizontally
(one element on a line) over an optimal coordinate grid. Each line of the
image corresponds to an element of the array. The interval value of an
element is represented by a coloured band and, possibly, in the text form.

The purpose of the iG subsystem is to support visualization of arrays
with the number of elements from several units to several hundreds. For
this purpose, it has a system of scales that allows one to represent arrays
of different size with a different level of detail. The system includes the
following scales.

Basic scale: each element is represented by a line containing information
about its value and graphical representation of the inerval, see Figure 2.

Minimal interactive scale: there is no text information in the line and
the size of the graphical representation is the minimum necessary to support
the interactive mode, see Figure 3.

Minimal graphical scale: one line of the minimal visible width is provided
for each element of the array. In this case, the interactive mode is impossible.

For any scale, information about the value of any element of the array
may be displayed in the status bar.

It is possible to change the scale during a session.
For visualization of arrays with wide spread in values of their elements

over the intervals and their position in the numerical axis, iG implements
linear and logarithm grids. It is also possible to choose the scale for the
element value axis.



134 A.A. Lipatov, A.V. Poltaratskii

Figure 2. The iG system is used to display the array X containing 24 elements.
The current values are between -0,00001 and 1. The values of elements for the
previous states are between -0.00001 and 1E19. The linear scale is used

The interval may be chosen by explicit or implicit marking of its bounds.
In the latter case, the range is set so as to display the value of the present
element at full width of the screen. The sequence of displayed intervals
is stored in a special stack, and so the user can return to any previously
displayed interval.

The logarithmic grid may be used in the case when the range of values
of the array elements will not allow comparing some of their values using
the linear grid. Thus, the values of an array are displayed against a special
coordinate grid. This grid reduces the spread in values of the elements:
emphasizes small differences and reduces great ones.

The values of elements can be edited by entering new numerical values or
by direct manipulating the graphical representation. In the former case, the
editing is more precise, while in the latter it is more intuitive. The values
entered by the user are added to the model as additional constraints. The
UniCalc solver takes into account these constraints at the following step of
calculations.

The iG subsystem provides the capability to compare the results obtained



Representation of interval models and interval data 135

Figure 3. Array Sur with 91 element. The array is shown in the minimal inter-
active scale. The values from the last and the two preceding calculation steps are
displayed



136 A.A. Lipatov, A.V. Poltaratskii

at different calculation steps of the model. The results of each calculation
step of this model are stored in a stack. At any time, the results of several
(upto six) calculation steps can be displayed simultaneously, see Figure 2,
Figure 3.

The values obtained in different steps are displayed by shades of the
chosen colour, with earlier results shown in paler shades. In addition to the
elements of the array, the system displays the constraints added by the user
with the help of the iG subsystem, see Figure 2.

2.4. Visualization of two-dimensional arrays of interval data

Visualisation of two-dimensional arrays of interval data is based on a gen-
eralized representation that allows us to estimate the values of the elements
and their distribution in the array, as well as to choose cross-sections that
will be displayed in greater detail.

A two-dimensional array is represented by a matrix. Each element of
the matrix corresponds to an element of the array. The shade of colour of
an element of the matrix reflects the position of the corresponding interval
value on the numerical axis (i.e. the average value of the interval), see
Figure 5, or the degree of subdefiniteness of its value (i.e. the width of an
interval), see Figure 4. The user selects the characteristic to be displayed.
The correspondence between the shades and the values of the characteristic
is determined by a colour scale. Positive values correspond to shades of red
colour, and negative values correspond to shades of dark blue colour. In
addition, the user can get information about the value of an element of the
array and its indices in the text form.

The display allows adjustable scales for rows and columns. The user
can view arrays of various sizes and their fragments with a different level of
detail.

It is possible to choose a numerical interval that will be displayed using
the larger part of the colour scale. This allows us to show arrays with
wide spread in the values of elements, both in the width of intervals and
their position on the numerical axis. The distribution of colour shades on
the numerical interval containing the values of elements can be linear or
logarithmic chosen by the user.

A two-dimensional array can be displayed in a more evident manner
by choosing vertical (column) or horizontal (row) sections and displaying
them in a window for one-dimensional arrays. Even in this mode, it is
still possible to view the two-dimensional display at the same time. The
display of the array section supports all of the capabilities described above
for one-dimensional arrays.

In order to support working with multiple sections, it is proposed to



Representation of interval models and interval data 137

Figure 4. Array Sur (30×20 elements) is shown in the mode of displaying subdef-
initeness of its elements. The values of subdefiniteness lying in the ranges from 0 to
0.37 is displayed by shades of red colour. The window displaying one-dimensional
arrays shows the 5-th column of this array

develop the means for navigating through the previously displayed sections.
The sequence of displayed sections should be stored in a stack and presented
to the user as a list in which he (she) can choose the necessary section.

Interactive manipulation with a two-dimensional array is supported in
the one-dimensional section display windows as described above in 2.3.

Comparison of the states of the array at several computation steps will be
implemented in a manner similar to comparison of one-dimensional arrays.

2.5. Visualization of subdefinite functions

The visual representation of a function is based on the one-dimensional
array of its values. The values of the function, which are stored in the
array, correspond to the values of the variable argument that are uniformly
distributed on the interval defined by the user. The number of values of the
varying argument and values of the fixed argument are set by the user.

Graphically a function is represented by a two-dimensional diagram. The



138 A.A. Lipatov, A.V. Poltaratskii

Figure 5. The array Sur (30 × 20 elements) is shown in a mode of display of the
position of values of its elements on a numerical axis. The values of this charac-
teristic lying in the ranges from 0 to 0.8 is displayed by shades of red colour. In a
window of display of one-dimensional arrays, the 4-th column of this array is shown.
The additional consraint Sur [22, 4] < 0.201 is imposed on one of its elements

X-axis in the diagram shows the values of the variable argument, and the
Y-axis represents the values of the function. The function is represented by
two curves for the lower and upper bounds of its subdefinite values. The
value of a function corresponding to the value of its argument not reflected
in the array is determined by interpolation.

The user has a possibility to enter additional constraints on the function
values by manipulation with its graphical representation. These new con-
straints can be used at the next step of the model calculation. In order to
compare the results of several calculation steps, several function diagrams
for these calculation steps can be simultaneously displayed over the same
coordinate grid.



Representation of interval models and interval data 139

Conclusion

In this paper, we discussed some problems relevant to representation of data
in constraint programming systems, in particular, in the UniCalc solver. The
following problems have been considered:

– development of means that facilitate creation and editing of interval
mathematical models;

– graphical representation of interval data.

The paper describes the methods for solution of some of these problems
developed by the authors for application in the UniCalc solver. The following
methods were considered:

– editing of interval models in the text form;

– graphical display of one-dimensional and two-dimensional arrays of
interval values;

– graphical display of subdefinite functions.

The application of the proposed methods of representation of the interval
data makes the user interaction with the solver more efficient. The graph-
ical representation of the interval data allows one to perceive the results
of calculations and to control the calculation process in a more intuitive
manner.

The methods can be used in various packages of interval calculations for
solving the abovementioned problems.

References

[1] Montanari U., Networks of Constraints: Fundamental Properties and Appli-

cations to Picture Processing, Inform. Sci. — Vol.7, 1974. — P. 95–132.

[2] Narin’yani A. S., Model vs. Algorithm: Change of Paradigm in Information

Technology, In present one shot.

[3] Telerman V.V., Ushakov D.M., Subdefinite Models as a Variety of Constraint

Programming, Proc. of the Intern. Conf. Tools of Artificial Intelligence (IC-
TAI’96), Toulouse, 1996.

[4] Narin’yani A. S., Semenov A. L., Babichev A.B., Kashevarova T. P. and
Leshchenko A. S., A New Approach to Solving Algebraic Systems by Means

of Sub-Definite Models, In: Proc. of the 16-th IFIP Conference on System
Modelling and Optimization. Compiegne, France. July, 1993. J.Henry and J.-
P. Yvon (Eds.), Lecture Notes in Control and Information Sciences. — Vol.
197, Springer Verlag, 1994.



140


