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Application of schemes based on the differential
approximation method to invariant solutions in

the gas sphere expansion into vacuum∗

G.G. Lazareva, N.A. Biluta

Abstract. This paper considers the problem of obtaining invariant solutions under
rotation transformation in the expansion of a gas sphere into vacuum in the Carte-
sian coordinates for the two-dimensional case. Numerical results are presented and
a comparative analysis of conventional and invariant difference schemes is made.
Various non-invariant difference schemes of first and second approximation orders
are considered. These results show that only the use of an invariant scheme con-
structed on the basis of the method of differential approximation allows obtaining
a correct solution on uniform not dynamic coarse grids.

This paper presents an example of the effectiveness of the differential ap-
proximation method [1]. The experienced gained shows that non-invariance
as related to a group of transformations, permitted by the original system of
differential equations of the difference schemes leads to undesirable calculat-
ing effects, which significantly distort the picture of the physical phenomenon
in question. Y.I. Shokin [2] obtained a necessary and sufficient condition of
invariance of difference schemes in terms of first differential approximation.
In [1], specific classes of invariant difference schemes for the two-dimensional
equations of gas dynamics are considered, including the proposed number
of schemes that are invariant under rotation. The comparative analysis of
the results of calculations of the problem of convergence of a spherical shock
wave to the center offers an undeniable advantage of using an invariant dif-
ference scheme over widespread difference schemes. The proposed method
of differential approximation is commonly used for building, analyzing prop-
erties and classification difference schemes [3–6].

Along with engineering tasks, there is a wide scope of application of
difference schemes for the modelling fundamental problems of astrophysics.
Modern mathematical models of astrophysical processes include a descrip-
tion of unsteady and three-dimensional dynamics of a gravitating gas. De-
spite the existing theory, a such experience of successful application of dif-
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ference methods for solving the gas dynamics equations and for existing
ready-made software packages created on their basis, the problem of grav-
itational gas dynamics requires a special approach. Using the methods of
solving hyperbolic systems in different tasks always requires certain criteria
to the selection of a method and its modification [7]. The gas dynamics
equations are a mathematical expression for fundamental conservation laws
of continuous media: mass, momentum and total energy. In the applications
of hydrodynamic problems, there often occurs a need to consider additional
physical factors such as heat transfer, combustion, gas ionization, the pres-
ence of electromagnetic fields, etc. This leads to the necessity of introducing
into the equations of new terms and inclusion into the system of additional
equations. As a result, the meaning of mathematical models changes: their
solution should be interpreted in the new physics terms. This situation takes
place for a large class of mathematical models in the modern theoretical as-
trophysics. Some specific features are typical of gravitational equations of
the gas dynamics [8]. In the study of complex astrophysical phenomena, the
transition to the modeling of spatial flows of gas is accompanied by mani-
festation of new physics effects, which are either absent in the problems of a
smaller dimension or are presented in minor quantities. In the course of de-
velopment methods of modeling galactic gas dynamics, most of the existing
approaches to the numerical implementation of the gas dynamics equations
were tested. Multi-dimensional models lay down special requirements for
the numerical methods, which are used to implement them. No less signifi-
cant factor is a possibility of a fairly simple parallel implementation of the
method for calculations on supercomputers.

Currently, from a wide range of numerical methods the following are
used: the Lagrangian method SPH (Smoothed Particle Hydrodynamics) and
the Euler methods on adaptive grids AMR (Adaptive Mesh Refinement) [9].
The preference exactly of these two approaches is due, primarily, to the
desire of researchers to overcome the emerging noninvariance of the solu-
tion under the rotation transformation. The Lagrangian SPH is meshless
method. This determines a number of its undoubted merits in the case of its
application to astrophysical problems. The main disadvantage is a strong
dependence of solution on empirical parameters of the method, which results
in the need in more laborious but more reliable Eulerian methods. The fact
is the problem of a non-invariance solution under the rotation transforma-
tion requires for the Euler approach the use of adaptive dynamic grids. More
than 20 years ago, adaptive meshes were introduced into practice of model-
ing. Since that time the technique of numerical construction has become an
important part of the astrophysical modeling. In the case of modeling by
the Euler grid methods, two basic techniques of adaptive meshes are used:
the CR cell refinement and the SAMR block-structured adaptive mesh re-
finement, which is sometimes called the PR patch refinement [10].
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As for the Euler grid method, the way of solving a task is complicated
and, also, there arises a problem associated with determination of the quality
of meshes [11,12].

Increasing options of multiprocessor computer systems do not eliminate
the problem of search for efficient numerical algorithms. Moreover, the de-
velopment of computer technology, along with the extension of opportunities
for the accuracy and completeness of the formulation of tasks put forward an
increasing number of demands for the numerical methods to be used. The
proposed in [1] scheme, which is invariant under the rotation transformation,
can be a panacea for the problems of computational astrophysics. We will
carry out a comparative analysis of the results of calculations of the problem
of expansion of a gas sphere into vacuum in the Cartesian coordinates for
the two-dimensional case.

1. The problem of expansion of a gas sphere into vacuum

Let us consider a two-dimensional system of gas dynamics in the Cartesian
coordinates:
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Here ρ is gas density, p is pressure, ε and E are internal and total energy,
and ~u = {u, v} is velocity.

We consider several well-known difference schemes for the 2D gas dy-
namics equations. For simplicity, we assume a uniform grid h = hx = hy.
Simple stable scheme of first order of accuracy is a upwind scheme. Here is
a variant of this scheme:
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As a more complicated scheme of first order, we take the Belotserkovsky–
Davydov scheme of large particles [13] and its more invariant modification
[14]. We consider only the Lagrangian scheme step, on which the effects of
migration, with allowance for the exchange between the cells when they are
rebuilding on the old grid Euler, are calculated.

Let us assume that mass flows (larger particles) through the cell bound-
aries ∆Mn are carried only by the normal to the boundary component of
the velocity:
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where the mass flow is determined by the first order accuracy formulas:
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The reliable and well-tested Lucks–Wendroff method of second order
accuracy gives excellent results for smooth flows [15]:
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Invariant patterns proposed in [1] can be interpreted as splitting differ-
ence schemes with viscosity, in which at the first step the system of equations
of gas dynamics is approximated with second order, at the second step gas
dynamics values are adjusted by the difference scheme that approximates
the diffusion system of equations. Let us write down one of variants of this
set:
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By solving the following test problem we compare the results of the
calculation by the schemes (2)–(5). At the initial time in the calculation
domain we define a circle, which is given by the zero density outside and the
unit density inside.

Given the initial density, we can determine all the parameters of the flow
from the gas dynamic equations. The initial velocity is zero, and owing to
pressure the substance moves through calculation domain in the course of
time. On the boundary, homogeneous boundary conditions of the second
kind are given. Comparison of the results calculated by difference schemes
(2)–(5) with the exact solution of the test problem (Figure 1) shows that all
the schemes in question reflect well the qualitative nature of solution.

To analyze the existence of such properties of the solution, as invariance
under rotation, we can use contour plots of the density (see Figure 1). The
first order accuracy scheme do not allow obtaining axially symmetric solu-
tion: both upwind scheme (Figure 1d) and the original method of large par-
ticles (Figure 1b). Using schemes of second order accuracy for the transport
of gas dynamics values does not make an essential improvement. Despite
the fact that the result of calculation by the method of large particles with
modifications of defining the schemes velocities at the Lagrangian step [14] is
significantly more axially symmetric and with the refinement grid improves,
it is not a perfect (Figure 1c). The Lucks–Wendroff scheme of second order
of accuracy (4) allows us to obtain significantly better results (Figure 1e)

a b c

d e f

Figure 1. The initial velocity field (a) and contour plots of the density (b)–(f)
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a b

Figure 2. Density plots. The results of calculation by the Lucks–Wendroff (a)
and the Shokin–Yanenko (b) schemes

which are close to the axially symmetric solution (Figure 1f) obtained by
the invariant method (5).

There arises a question: why schemes of high orders of accuracy are not
used in solutions of astrophysical problems. The calculations with schemes
(2)–(4) on the coarse 16 × 16 grid do not give us an axially symmetric
solution. The density, obtained by the Lucks–Wendroff scheme (4), has
vivid features near to the center of the circle (Figure 2a). Obviously, the
method reflects the qualitative character of solution. Only invariant scheme
(5) allows us to obtain an axially symmetric solution even on the coarse
grids (Figure 2b). Scheme (5) is stable for 0 < µ < 0.25 and the Courant
condition.

The practice of the numerical calculations shows that the method pro-
posed does not require smoothing of the initial data and works well for large
density gradients.

2. Conclusion

On the example of the expansion of a gas sphere into vacuum, the effec-
tiveness of the widespread method of differential approximation for con-
structing, analyzing the properties and classification of difference schemes is
shown. Calculations were made with the use of invariant under transforma-
tions of rotation scheme obtained with the use of the method of differential
approximation. A comparative analysis of the results of calculations of the
expansion of a gas sphere into vacuum has shown an indisputable advantage
of using an invariant difference scheme as compared to the schemes, both
of first and second order accuracy. If a scheme of first order reflects axial
symmetry of the solutions only on very fine meshes, the second order scheme
expresses the nature of the solution sufficiently well. However, on a coarse
grid, the solution is distorted even in the case of a second order scheme. Of
course, it is possible to modify such a scheme. In this case, along with a sig-
nificant complication of the algorithm, the ideal result can not be obtained.
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As an example of such a modification, a variant of the algorithm for calcu-
lating the movement of gas dynamic values in the scheme of large particles
is given. In contrast to the difference schemes, the scheme proposed in [1]
reflects the axial symmetry of the solution even on the coarsest grid.

We have thus shown that only the use of an invariant scheme constructed
on the basis of a differential approach allows one to obtain a correct solution
on the non-dynamic uniform coarse grids. This result is of great importance
for solving the problem of finding efficient numerical algorithms for modeling
fundamental problems in astrophysics.
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