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Two-level explicit difference schemes∗

Yu.M. Laevsky

Abstract. The main disadvantage of explicit schemes for the numerical solution to
nonstationary problems is in a very strong stability condition for the size of a time
step size. One of the possibilities to improve the efficiency of explicit algorithms
is to use different time steps in different space subdomains. From this point of
view the methods studied below can be considered as a special case of domain
decomposition methods. This approach allows increasing the accuracy of results
for the problems corresponding to multiscale physical processes. A striking example
is the problem of the laminar flame propagation. There are two natural subdomains
in this problem: the subdomain corresponding to the area of diffusion processes and
the subdomain corresponding to the kinetic area. The latter is quite narrow and
requires a very small spatial step to attain an admissible accuracy. The schemes
with the time steps variable in space are studied in [1–3] for the implicit schemes.
In [4, 5], a similar technique was applied to provide the localization of a stability
condition in subdomains for the explicit schemes. The Dirichlet and the Neumann
boundary conditions were used at the interface of the subdomains in [4] and [5],
respectively. Applications of these methods are presented in papers [6, 7], and in [8],
aspects of parallelization are discussed.

In this paper, we have improved the results from [4]. Namely, we demonstrate
the estimate of stability with respect to the right hand-side independent of the
number of interior layers (see below).

1. The original family of two-level schemes

Let Hi, i = 1, 2, and H = H1×H2 be real finite-dimensional Hilbert spaces
with the inner products (·, ·)i and (·, ·) = (·, ·)1 + (·, ·)2, and with the norms
‖ · ‖i and ‖ · ‖. Let Aii : Hi → Hi, i = 1, 2 and A12 : H2 → H1 be linear
continuous operators, and Aii be self-adjoint positive definite in Hi. This
means that the inverse operators A−1

ii exist. And finally, AT
12 : H1 → H2 is

the adjoint operator to the operator A12 with respect to the corresponding
inner products:

(AT
12u1, u2)2 = (u1, A12u2)1 ∀ui ∈ Hi, i = 1, 2.

Let us define the operator A : H → H as the following matrix operator(
A11 A12

AT
12 A22

)
,
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which is the self-adjoint operator in H. Let us assume that A is a positive
semi-definite operator. It is well known that this property is provided by
the positive semi-definiteness of the Schur complement S22(A) = A22 −
AT

12A
−1
11 A12:

(S22(A)u2, u2)2 ≥ 0 ∀u2 ∈ H2.

And finally, let
‖A11‖(1) � ‖A22‖(2).

Here and after we denote the norms of operators in Hi as ‖ · ‖(i) .
Let us consider a difference scheme in the spaces H1 and H2: for given

elements fn1 ∈ H1, f
n+ k

p

2 ∈ H2, n = 0, 1, . . . , k = 0, . . . , p−1, p ≥ 2, u0
i ∈ Hi,

i = 1, 2, let us find the elements un1 ∈ H1, n = 1, 2, . . . , and u
n+ k

p

2 ∈ H2,
n = 0, 1, . . . , k = 1, . . . , p, such that

un+1
1 − un1

∆t
+A11u

n
1 +A12u

n
2 = fn1 , (1.1)

u
n+ k

p

2 − u
n+ k−1

p

2

τ
+AT

12u
n+ k−1

p

1 +A22u
n+ k−1

p

2 = f
n+ k−1

p

2 , k = 1, . . . , p,

(1.2)

u
n+ k−1

p

1 = un1 +
k − 1

p

(
un+1

1 − un1
)
, k = 1, . . . , p, (1.3)

where n = 0, 1, 2, . . . , ∆t = pτ .
Let us represent scheme (1.1)–(1.3) in the canonical form in the space H

[9] (Samarskii’s flavor). To this end, let us exclude from (1.2) the elements
with fractional indices taking into account (1.3). As a result we obtain

un+1
2 = Lun2 −∆tQAT

12u
n
1 −RAT

12(un+1
1 − un1 ) +

τ
(
P p−1fn2 + . . .+ Pf

n+ p−2
p

2 + f
n+ p−1

p

2

)
, (1.4)

where

P = I2 − τA22, L = P p, Q =
1

p
(P p−1 + . . .+ P + I2),

R =
τ

p
(P p−2 + . . .+ (p− 2)P + (p− 1)I2).

Here and after Ii and I are the identity operators in Hi and H. It is easy to
see that P , L, Q, and R are the self-adjoint operators in H2 commutating
with A22.

Lemma 1.1. The following presentations are valid :

Q =
1

∆t
A−1

22 (I2 − L), R = A−1
22 (I2 −Q).
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Proof. As τI2 = A−1
22 (I2 − P ) and p = ∆t/τ , we have

Q =
1

∆t
A−1

22 (I2 − P )(P p−1 + . . .+ P + I2) =
1

∆t
A−1

22 (I2 − L).

Then

R =
1

p
A−1

22 (I2 − P )(P p−2 + . . .+ (p− 2)P + (p− 1)I2)

=
1

p
A−1

22 (pI2 − P p−1 − . . .− P − I2) = A−1
22 (I2 −Q).

Let the inverse operator Q−1 exist. Further we will present sufficient
conditions for this. According to Lemma 1.1, A22 = Q−1(I2 − L)/∆t, and
equality (1.4) can be transformed to:

Q−1RAT
12

un+1
1 − un1

∆t
+Q−1u

n+1
2 − un2

∆t
+AT

12u
n
1 +A22u

n
2 = ϕn

2 , (1.5)

where

ϕn
2 =

1

p
Q−1

(
P p−1fn2 + . . .+ Pf

n+ p−2
p

2 + f
n+ p−1

p

2

)
. (1.6)

According to (1.1), (1.5), we obtain the two-layer scheme in the canonical
representation

B
un+1 − un

∆t
+Aun = ϕn, (1.7)

where ϕn = (ϕn
1 , ϕ

n
2 )T ∈ H, ϕn

1 = fn1 , the element ϕn
2 is defined by (1.6),

B : H → H is the following matrix operator

B =

(
I1 O12

Q−1RAT
12 Q−1

)
. (1.8)

Here and after Oij : Hj → Hi is a null operator which converts any element
from the space Hj into a null element from the space Hi.

Our objective is to study the stability of the scheme (1.7). This issue
has a close connection with properties of certain polynomials.

2. Auxiliary polynomials

On the closed interval [0, 1], let us consider the functions

l(x) = (1− x)p, q(x) =
1

x

(
1− l(x)

)
. (2.1)
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Lemma 2.1. The function q(x) being the polynomial of degree p − 1,
q(0) = p, q(1) = 1, and the following inequalities hold at x ∈ [0, 1]:

1 ≤ q(x) ≤ p, q(x) ≥ p l(x), q(x) ≥ k(1− x)k−1, k = 2, . . . , p.

Proof. Let y = 1− x. According to (2.1)

q(x) =
1− yp

1− y
= 1 + y + . . .+ yp−1.

From this equality, it follows that q(x) is the polynomial of degree p − 1,
q(0) = p (y = 1), q(1) = 1 (y = 0). It is evident that 1 ≤ q(x) ≤ p at
y ∈ [0, 1], and

q(x)− p l(x) = 1 + y + . . .+ yp−1 − p yp =

p−1∑
k=0

yk(1− yp−k) ≥ 0,

that is, the first and the second inequalities from the Lemma statement are
valid. Then

q(x)− k(1− x)k−1 ≥ 1 + y + . . .+ yk−1 − kyk−1

=

k∑
l=1

yl−1(1− yk−l) ≥ 0, k = 2, . . . , p,

and the latter is proved.

In addition to l(x) and q(x), we use the function

r(x) =
1

x
(p− q(x)). (2.2)

Let y = 1− x. Then

r(x) =
1

1− y
(p− 1− y − . . .− yp−1) = p− 1 + (p− 2)y + . . .+ yp−2,

that is, r(x) is the polynomial of degree p− 2.
Let ρ be a positive number. In the interval [0, ρ], let us consider the

polynomials

l̂(λ) = l(λ/ρ), q̂(λ) =
1

p
q(λ/ρ), r̂(λ) =

1

pρ
r(λ/ρ). (2.3)

Based on these polynomials, let us define the operators l̂(A22), q̂(A22) and
r̂(A22) acting in the space H2.
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Lemma 2.2. At ρτ = 1, the following equalities are valid :

L = l̂(A22), Q = q̂(A22), R = r̂(A22),

where the operators L, Q, and R are defined above.

Proof. According to (2.1), (2.3)

l̂(A22) = l(τA22) = (I2 − τA22)p = L.

From Lemma 1.1 it follows that

q̂(A22) =
1

p
q(τA22) =

1

p
(τA22)−1(I2 − l(τA22)) =

1

∆t
A−1

22 (I2 − L) = Q,

and according to (2.2)

r̂(A22) =
τ

p
(τA22)−1(pI2 − q(τA22)) = A−1

22 (I2 −Q) = R.

Corollary. Let the condition

τ‖A22‖(2) ≤ 1 (2.4)

hold. Then Q is a positive definite operator.

Proof. As A22 is a self-adjoint operator, its eigenvalues are real, and eigen-
vectors compose a full orthogonal system in H2. If λ is an eigenvalue of
the operator A22, then q̂(λ) is the eigenvalue of the operator Q according
to Lemma 2.2. As 0 < λ ≤ ‖A22‖(2) (A22 is positive definite), it follows
that τλ ∈ [0, 1] from condition (2.3), and, for the values x = τλ, Lemma 2.1
is valid. Then q(τλ) ≥ 1, and according to (2.3) q̂(λ) ≥ 1/p, that is, the
eigenvalues of the operator Q are positive. This means that Q is a positive
definite operator.

From this statement follow the existence of the operator Q−1 and repre-
sentation (1.8) of the matrix operator B.

3. Stability with respect to the initial data

Let us study the stability of scheme (1.7) with respect to the initial data
assuming ϕn is the null-element of the space H.

Theorem 3.1. Let condition (2.4) be valid, and

∆t‖A11‖(1) ≤ 1. (3.1)

Then for any u ∈ H the inequality

(Bu, u) ≥ ∆t

2

(
Au, u

)
(3.2)
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holds, and the estimate

(Aun, un) ≤ (Au0, u0), n = 1, 2, . . . (3.3)

is valid.

Proof. As the space H is real, (Bu, u) = (B0u, u) for any u ∈ H, where

B0 =
1

2
(B + BT ), BT is the adjoint operator to B. Therefore, to prove in-

equality (3.2) it is sufficient to prove the positive definiteness of the operator

D = B0 −
1

2
∆tA. It is not difficult to show that D can be represented in

the form
D = D′ +D′′,

where

D′ =

(
I1 −∆tA11 O12

O21 O22

)
, D′′ =

∆t

2

(
A11 A12G

GAT
12

2

∆t
Q−1 −A22

)
,

G = 1
∆tQ

−1R − I2. It is easy to see that condition (3.1) provides positive
semi-definiteness of the operator D′. As A11 is positive definite, to prove
the positive semi-definiteness of the operator D′′ we can prove positive semi-
definiteness of the Schur complement

S22(D′′) = Q−1 − ∆t

2
A22 −

∆t

2
GAT

12A
−1
11 A12G = S̃22 +

∆t

2
GS22(A)G,

where

S̃22 = Q−1 − ∆t

2
A22 −

∆t

2
A22G

2.

As is mentioned above, the Schur complement S22(A) = A22−AT
12A

−1
11 A12 is

positive semi-definite. This means that to prove the positive semi-definite-
ness of the operator S22(D′′), we need to prove the positive semi-definiteness

of the operator S̃22. To this end we need to prove that the function is non-
negative

ψ(λ) = q̂−1(λ)− ∆tλ

2
− ∆tλ

2

(
1

∆t
q̂−1(λ)r̂(λ)− 1

)2

, λ ∈ [0, λmax],

where λmax = ‖A22‖(2). Using formulas (2.3) at ρτ = 1 and x = τλ, we
obtain the equality

ψ(λ) =
px

2(1− l(x))2

[
1− l2(x)− (q(x)/p− l(x))2

]
.

According to condition (2.3) x ∈ [0, 1], and we may use Lemma 2.1. Then

l2(x) + (q(x)/p− l(x))2 ≤ 1

p2
q2(x) ≤ 1.
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Therefore, the function ψ(λ) is non-negative for λ ∈ [0, λmax]. This leads

to the positive semi-definiteness of the operator S̃22. Thus D′′ is a positive
semi-definite operator, and according to the above arguments, inequality
(3.2) is proved. And finally, the stability inequality is a direct consequence
of (3.2) and [9].

Remark. Condition (2.4) can be rewritten in the following form:

p ≥ ∆t‖A22‖(2).

Therefore, the stability conditions with respect to the initial data for the
two-level explicit scheme are condition (3.1) for the step ∆t, which depends
only on the norm of the operator A11, and the condition for the number p
of interior steps, which depends only on the norm of the operator A22.

4. Stability with respect to the right-hand side

As is well known, from the stability with respect to initial data, the sta-
bility with respect to the right-hand side follows (but with definite norms
harmonization) [9]. Namely, the inequality of stability contains the value
(AB−1ϕn, B−1ϕn). The operator B does not commute with the operator A.
This difficulty can be overcome with the usage of a stronger stability condi-
tion instead of (3.1). It is known [9] that for schemes like (1.7) with vanishing
initial data and with the inequality

(Bu, u) ≥ 1

2
(εI + ∆tA) ∀u ∈ H, ε > 0, (4.1)

being valid, the following estimate holds:

(Aum, um) ≤ 1

ε

m−1∑
n=0

∆t‖ϕn‖2. (4.2)

Our aim is to obtain a condition for inequality (4.1) and to estimate the

norm ‖ϕn‖ with the norms ‖fn1 ‖1 and ‖f
n+ k

p

2 ‖2.

Theorem 4.1. Let condition (2.4) be valid, and

∆t‖A11‖(1) ≤ 1− ε, ε ∈ (0, 1). (4.3)

Then for the vanishing initial data, the inequality

(Aum, um) ≤ 1

ε

m−1∑
n=0

∆t

(
‖fn1 ‖21 + 4 max

k=1,...,p
‖f

n+ k−1
p

2 ‖22
)

(4.4)

holds.
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Proof. Let D0 be a self-adjoint positive definite operator in H. Using
ε/∆t-inequality, we obtain the following:

2|(ϕn, v)| = 2|(D−1/2
0 ϕn, D

1/2
0 v)| ≤ ∆t

ε
(D−1

0 ϕn, ϕn) +
ε

∆t
(D0v, v).

Then multiplying equality (1.7) by 2v ≡ 2(un+1 − un) and using the latter
inequality, we obtain the estimate

(Aum, um) ≤ 1

ε

m−1∑
n=0

∆t (D−1
0 ϕn, ϕn) (4.5)

provided that

(Dv, v) ≡ (B0v, v)− ε

2
(D0v, v)− ∆t

2
(Av, v) ≥ 0 ∀v ∈ H, (4.6)

where B0 =
1

2
(B +BT ). Let us formulate inequality (4.6) assuming

D0 =

(
I1 O12

O21 Q−1

)
.

Similar to the proof of Theorem 3.1, we use the representation

D = D′ +D′′,

where

D′ =
(

1− ε

2

)( I1 − 1
1−ε∆tA11 O12

O21 O22

)
,

D′′ =
∆t

2

(
1

1−εA11 A12G

GAT
12

2−ε
∆t Q

−1 −A22

)
,

G = 1
∆tQ

−1R−I2. According to (4.3), D′ is a positive semi-definite operator.
Similar to the proof of Theorem 3.1, the sufficient condition for the positive
semi-definiteness of the operator D′′ is the positive semi-definiteness of the
operator

S̃22 = (2− ε)Q−1 −∆t A22 − (1− ε)∆t A22G
2.

The latter follows from the non-negative function

ψ(x) =
2− ε

1− l(x)
− 1− 1− ε

(1− l(x))2
(q(x)/p− l(x))2 , x ∈ (0, 1).

As
l2(x) + (q(x)/p− l(x))2 ≤ 1
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(see the proof of Theorem 3.1), then

ψ(x) ≥ 2− ε
1− l(x)

− 1− (1− ε)1 + l(x)

1− l(x)
=

εl(x)

1− l(x)
≥ 0.

Therefore, inequality (4.6) is proved. Now we estimate the inner product

(D−1
0 ϕn, ϕn) = ‖fn1 ‖21 + ‖Q1/2ϕn

2‖2. (4.7)

According to formula (1.6), we have

‖Q1/2ϕn
2‖ ≤

1

p
max

k=1,...,p
‖f

n+ k−1
p

2 ‖2
p∑

k=1

‖Q−1/2P k−1‖(2) .

Using the third inequality from Lemma 2.1, we obtain

‖Q−1/2P k−1‖2(2) = ‖Q−1P 2(k−1)‖(2) ≤ ‖Q−1P k−1‖(2) ≤
p

k
, k = 1, . . . , p.

Then
1

p

p∑
k=1

‖Q−1/2P k−1‖(2) ≤
1
√
p

p∑
k=1

1√
k
≤ 2.

The latter inequality leads to the estimate

‖Q1/2ϕn
2‖ ≤ 2 max

k=1,...,p
‖f

n+ k−1
p

2 ‖2.

From (4.5), (4.7), follows inequality (4.4).
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