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A semi-Lagrangian scheme for convection
equations sing the finite element method

V.I. Kuzin, A.Yu. Chursina, V.V. Kravtchenko

Abstract. This paper considers a semi-Lagrangian scheme (SLS) for solving con-
vection equations. The transport equations, as written in the Lagrangian form
at each time step, are approximated on the basis of a weak form using a fi-
nite element method representation with various coordinate functions: delta func-
tions, piecewise-linear functions, and various interpolation methods: those based on
piecewise-linear functions and third order B-splines. For the two-dimensional case,
the calculation of two-dimensional B-spline reduces to solving a set of the algebraic
equations of the dimension less than initial system allows one to reduce the calcu-
lation time. For the schemes considered, test calculations have been conducted, the
results for the one- and two-dimensional cases are presented.

Introduction

The semi-Lagrangian methods [1, 2] as applied to the advection equation
for a certain substance are algorithms with allowance for the fact that the
transport equation is a total time derivative in the direction of a flow. If
such a substance is preserved, it does not change along trajectories of the
flow. When calculating the advection transport with the semi-Lagrangian
methods, a discrete set of particles, which results in a regular set of the nodal
points, is traced backward to the departure points in the time interval. The
value of the function at these points is obtained with the help of certain
interpolation procedures. This method gives us numerical schemes that are
unconditionally stable for linear problems and have inessential phase er-
rors for the waves, whose length exceeds two grid intervals [3, 4]. In [5],
it was shown that in the projective statement, the semi-Lagrangian method
of particles-in-cell can be reduced to the finite element method for different
coordinate functions and interpolation. This paper is aimed at the compar-
ison of two methods of interpolation of the original points and two versions
of representing a solution. To this end, we will use the linear interpola-
tion and interpolation with B-splines combined with presenting a desired
solution as a linear combination of the Dirac delta-functions or piecewise
linear polynomials. This paper reveals that the interpolation with B-splines
in combination with a piecewise linear presentation is the most accurate
method for the problem in question. For the two-dimensional case, the cal-
culation of two-dimensional B-spline reduces to the solution of a set of I
linear algebraic equations of J ×J dimension and a set of J linear algebraic
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equations of I×I dimension, which require less computer costs than for solv-
ing the initial system. This allows us to essentially reduce the calculation
time.

1. Description of the method

Let us consider an open rectangle Ω = (a, b)×(c, d). Without loss of general-
ity let us consider it to be a part of a larger domain as to avoid consideration
of boundary conditions and to solve in it the advection equation with the
velocity ~u and the scalar function ϕ

∂ϕ

∂t
+ ~u · ∇ϕ = 0, ~x ∈ Ω, t ≥ 0,

ϕ(~x, 0) = ϕ0(~x).
(1)

The velocity vector ~u(~x, t) is assumed to be non-divergent, continuous
and with a limited first derivative. In order to solve system (1), consider
the characteristic trajectories ~X(~x, s; t) for (1), satisfying the equation

d ~X(~x, s; t)
dt

= ~u( ~X(~x, s; t), t), ~X(~x, s; s) = ~x, (2)

where ~X(~x, s; t) denotes the original position at the instant t of a liquid
particle being at the point ~x at the instant s. The equation (2) can be
replaced by

~X(~x, s; t)− ~x =
∫ t

s
~u( ~X(~x, s; τ), τ) dτ.

Solution to (1) is as follows:

ϕ(~x, s) = ϕ
(

~X(~x, s; 0), 0
)
.

Then for any two subsequent temporal levels t and s = t + τ , the following
will be valid:

ϕ(~x, s) = ϕ
(

~X(~x, s; t), t
)
. (3)

In the projection form, formula (3) corresponds to a weak solution, given
by the integral relation∫

Ω
ϕ(~x, s)Ψ(~x) d~x =

∫
Ω

ϕ
(

~X(~x, s; t), t
)
Ψ(~x) d~x

=
∫

Ω
ϕ(~y, t)Ψ( ~X(~y, t; s)) d~y, (4)

since the main linear part of the Jacobian determinant
∣∣∣d ~X(~x, s; t)

d~x

∣∣∣ is equal

to 1 because ∇ · ~u = 0. Here ~y = ~X(~x, s; t) and Ψ(~x) is a test function.
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To construct the finite element approximations of relation (4), let us intro-
duce into Ω a regular grid with a mesh size h. For solving the problem, let
us represent the solution ϕ as a linear combination of some coordinate func-
tions. For such functions either the Dirac delta-functions, centered at the
nodal points of the domain with number k, or the functions Ψk (piecewise
linear basis functions of a finite element space) will be selected. As a test
function, the functions Ψk will be chosen. According to the particle-in-cell
method, we place one particle into each grid node, trace its position back-
wards during the time interval τ along the characteristic line and assume
that a substance is transferred by a particle, so that the value ϕ at the
nodal point ~xk at the level s coincides with the value ϕ at the departure
points ~X(~xk, s; t). In this case, the value of the function at these points is
to be found by two different versions of interpolation, i.e., by linear and by
B-splines of third order.

2. The concept of solution by delta-functions with linear
interpolation

For a vivid presentation let us consider a one-dimensional case. The solution
ϕ at the level s = t+τ will be presented as a linear combination of the Dirac
delta-functions centered at the nodal point xk, k = 1, . . . , I,

ϕ(x, s) =
I∑

k=1

ϕ(xk, s)δ(x− xk). (5)

The function ϕ at the time level t is presented in a similar way:

ϕ
(
X(x, s; t), t

)
=

I∑
k=1

ϕ
(
X(xk, s; t), t

)
δ
(
x−X(xk, s; t)

)
.

Here ϕ(xk, s) is the value of the function at the nodal point at the time
level s, ϕ(X(xk, s; t), t) is the value of the function at the departure point
at a previous time level. Consider the projective form of the problem. As
test functions in (4), let us consider the piecewise-linear polynomials of the
form Ψi(x)

Ψi(x) =


x− xi−1

h
, x ∈ [xi−1, xi],

xi+1 − x

h
, x ∈ [xi, xi+1],

0, otherwise.
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As a result we come to

I∑
k=1

ϕ(xk, s)
∫

Ω
δ(x− xk) Ψl(x) dx

=
I∑

k=1

ϕ
(
X(xk, s; t), t

) ∫
Ω

δ(x−X(xk, s; t)) Ψl(x) dx, l = 1, . . . , I.

With allowance for properties of delta-functions we obtain∫
Ω

δ(x− xk) Ψl(x) dx = Ψl(xk),∫
Ω

δ(x−X(xk, s; t)) Ψl(x) dx = Ψl

(
X(xk, s; t)

)
.

In addition, from the definition of the function Ψk it follows that
Ψl(xk) = 1, k = l, and Ψl(xk) = 0, k 6= l. For approximation of the
functions ϕ(X(xk, s; t), t), we will use the linear interpolation

ϕ
(
X(xk, s; t), t

)
≈ ϕ(xk−1, t) +

(
ϕ(xk, t)− ϕ(xk−1, t)

)X(xk, s; t)− xk−1

h
.

The conducted transformations result in a system of equations, written
down in the matrix form {ϕ(s)} = {b}, where ϕ(s) is a vector column of
unknowns of I-dimension, and entries of the right-hand side are given by
the relation

bl =
I∑

k=1

Ψl

(
X(xk, s; t)

)
×

(
ϕ(xk−1, t) + (ϕ(xk, t)− ϕ

(
xk−1, t)

)X(xk, s; t)− xk−1

h

)
.

As for the left-hand side, there is only a vector-column of unknowns, the
system is resolved explicitly.

3. A piecewise linear presentation. Interpolation with cubic
splines

In this section, for the interpolation of values at departure points through
values at nodal points, we will not use a linear interpolation as in the previ-
ous section, but interpolation with B-splines in one-dimensional case. The
function ϕ will be presented as a linear combination of piecewise linear ba-
sis functions Ψi of a finite element space, centered at the nodal points xi.
A natural extension to a two-dimensional case will be given in Section 4.
This brings about the presentation
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ϕ(x, s) =
I∑

k=1

ϕ(xk, s)Ψk(x). (6)

The corresponding representation for the function ϕ at the previous level
yields

ϕ(y, t) =
I∑

k=1

ϕ(xk, t)Ψk(y). (7)

Substituting formulas (6) and (7) into relation (4) for two temporal lay-
ers, obtain

I∑
k=1

ϕ(xk, s)
∫

Ω
Ψk(x)Ψl(x) dx =

I∑
k=1

ϕ(xk, t)
∫

Ω
Ψk(y)Ψl(X(y, t; s)) dy

=
I∑

k=1

ϕ(xk, t)
∫

Ω
Ψk(y)Ψl(y − (X(xl, s; t)− xl)) dy, l = 1, . . . , I, (8)

resulting in the system of linear algebraic equations of the form

A
{
ϕ(s)

}
= {b}. (9)

Here A is a symmetric positive-definite matrix of masses with the compo-
nents akl given by the equalities

akl =
∫

Ω
Ψk(x) Ψl(x) dx.

Elements of the vector-column b are calculated as

bl =
I∑

k=1

ϕ(xk, t)
∫

Ω
Ψk(x)Ψl(x− (X(xl, s; t)− xl)) dx. (10)

To transform formulas in the right-hand side of the matrix equation or,
which is the same, of the components bl, consider the function Kk(Xl),
Xl = X(xl, s; t), presented as

Kk(Xl) =
∫

Ω
Ψk(x)Ψl(x− (Xl − xl)) dx, (11)

where

Ψl(x− (Xl − xl)) =


−Xl − (x + h)

h
, x ∈ [Xl − h, Xl],

Xl − (x− h)
h

, x ∈ [Xl, Xl + h],

0, otherwise.

(12)

Substituting formula (12) into (11), we obtain the functions Kk(Xl),
possessing the following properties [1]:
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1. Kk(Xl) is the cubic polynomial of Xl.

2. dKk(Xl)

dXl
is continuous.

3. d2Kk(Xl)

dX2
l

is a function that is continuous in the domain.

Conditions 1–3 define Kk(Xl) as a cubic spline with inner points at the
nodal points of the grid under consideration. So, the components bl are
linear combinations of cubic splines, i.e.,

bl =
I∑

k=1

ϕ(xk, t)Kk(Xl). (13)

Since a linear combination of cubic splines is also a cubic spline, then
from (13) it follows that the components bl are interpolation values at the
points Xl of the new bicubic spline S(Xl). To calculate such a spline, we
set its values at the nodal grid points. Denote by υl the values of the spline
S(x) at the nodal points. Further, assuming Xl = xl, from (10) obtain

A
{
ϕ(t)

}
= {υ}.

Since cubic B-splines form the local basis of a linear space of cubic splines,
then, according to [6], we can obtain

S(x) =
I∑

i=1

ciB4,i(x),

where B4,i(x) denotes the i-th cubic B-spline. The factors ci depend on
time, therefore in order to calculate them, we take the nodal points and
arrive at: {

S(xl)
}

= {υ} = A{ϕ(t)}. (14)

For finding the factors ci at the level t, it is required to solve system

B{c} = A
{
ϕ(t)

}
. (15)

Here the matrix B = {bij} = {B4,j(xi)} is positive definite and has a sym-
metric tridiagonal structure at inner nodes of the domain.

As a result, from (9), (13) and (14) we obtain

A{ϕ(s)} =

{
I∑

i=1

ciB4,i(Xl)

}
= {b}. (16)

The value ϕ(s) at any time instant can be found by the following algo-
rithm:
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1. Calculate ci from (15).

2. Find B4,i(Xl).

3. Construct bl =
∑

i ciB4,i(Xl).

4. Solve system (9).

4. A two-dimensional case

In this section, let us consider the problem in the 2D case with a piece-
wise coordinate function and spline interpolation. Based on the previous
arguments, we come to the equation of the form of (9)

A
{
ϕ(s)

}
= {b}, (17)

where matrix A represents a tensor product of the tridiagonal matrices Ax

and Ay having the structure of the above-considered matrix A and acting
in the directions x and y, respectively. Thus, we come to the system of
equations

(Ax ⊗Ay)
{
ϕ(s)

}
=

{
I∑

i=1

J∑
j=1

cijB4,j(Xp)B4,j(Yq)

}
= {b}. (18)

Here b = {bpq} is a vector column of the right-hand side. Let us rewrite it
in the vector-matrix representation

(Ax ⊗Ay)
{
ϕ(s)

}
= (Dx ⊗Dy){c}, (19)

where Dx = {B4,i(Xp)}, Dy = {B4,j(Yq)} are square I×I and J×J matrices,
and c = {cij} is a vector column of IJ dimension.

The vector {c} is the solution to a system of equations similar to (15):

(Bx ⊗By){c} = (Ax ⊗Ay)
{
ϕ(t)

}
. (20)

Thus, having found the factors cij from system (20), we can find the
solution from (19). It should be noted that the matrices Ax⊗Ay, Bx⊗By are
nine-diagonal IJ×IJ matrices, therefore computer costs of their conversion
essentially increase.

An alternative approach proposed here is in representing a tensor product
through a usual product of matrices. Let us explain it, as an example, on
equation (19). The left-hand side of the equation is represented as

(Ax ⊗Ay){ϕ(s)} ≈ Ax(AyΦT )T , (21)

where Φ is a matrix, whose j-th column is a solution at the points xi (i =
1, . . . , I) at the level yj (j = 1, . . . , J).
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Thus, the original problem reduces to a linear algebraic problem with
a matrix, decomposing to the product of matrices. Denoting the matrix
(AyΦT )T through Ψ, we have arrived at solving I systems of linear algebraic
equations with J × J tridiagonal matrices and J systems of linear algebraic
equations with I × I tridiagonal matrices.

In the same way it is possible to reduce problem (20) to solving a set of
the algebraic equations of the dimension less than initial system.

5. A test example

As a test example, consider a “step” function

ϕ(x) =

{
1, 0 ≤ x ≤ 0.25,

0, otherwise,

which moves with a velocity u = 0.15. The calculation results at the instant
t = 0.5 are displayed in Figures 1, 2.

It is clear that the linear interpolation, as was expected, strongly
smoothes the solution. Therefore the semi-Lagrangian method employing
the finite element method with interpolation by B-splines can be consid-
ered to be the best version of the solution. At the same time, from Fig-
ure 2 it is also clear that the interpolation with B-splines will give weak
“splashes” of the solution in the areas with a jump. Test calculations with a
2D “step” function moving on the plane have the same results as in the 1D
case (Figure 3). These results also indicate to the fact that representation
(21) essentially decreases the volume of calculations.

Acknowledgements. The authors would like to express their gratitude to
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Figure 1. Representation of the numerical solution with linear interpolation
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Figure 2. Representation of the numerical solution with interpolation
by cubic B-splines

Figure 3. The results of calculations with interpolation by bicubic B-splines
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