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 2002 NCC PublisherParallel computationson graph structuresI.V. KudrinThe Graph Automaton intended for modeling parallel �ne-grained transforma-tions of graph structures is presented. It works in mode of simultaneous applicationof a set of substitution commands to a graph image. Substitution commands arepresented in graph notation, too. The example of algorithm implementation on theGraph Automaton is given.IntroductionThe Graph Automaton is an extension of Parallel Substitution Algorithm [1]to the �eld of cellular spaces with irregular structure. Unlike PSA, a work-ing �eld structure is not determined by external rules, but de�ned by astate of working �eld itself. Moreover, the automaton can change not onlystate of cells of working �eld, but also its structure, during parallel programexecution.1. Graph Automaton de�nitionLet A be a �nite alphabet and M be a set of names (at most countable).A pair (a;m) 2 A �M is called a vertex where a is the state and m isthe name of a vertex.Let M� be a set of all subsets of M which contain one or two elements.A triple (a; L;D), where a 2 A, L 2 M�, D � L, is called an edge. In thetriple, a is the state, L is the link and D is the direction of an edge.If the link component L of an edge contains two names, then the edgeconnects two vertices. Otherwise, when the link component L contains oneelement the edge describes a self-loop. The direction component D is a sub-set of link component L and describes a set of the edge directions. A triple(a; L; ;) expresses an undirected edge. The one-element direction componentD designates a directed edge; the two-element one describes a two-directededge.When the link component of an edge e contains the name m, it is saidthat the edge e refers to a vertex with the name m.



40 I.V. KudrinDe�nition 1. A �nite set G of vertices and edges, with no pair of verticeshaving identical names and no pair of edges having identical link componentsis called a partial graph image.Denote MG = fm j (�; m) 2 Gg.De�nition 2. A partial graph image G is called a complete graph image ifthe following condition is met: 8(�; L; �) 2 G L �MG.Remark. In a graph image, there is no more than one edge for any pair ofvertices, and no more than one self-loop for each vertex.In a complete graph image, any edge refers to vertices existing in theimage, while in a partial graph image the link component L (and directioncomponent D) of the edge may contain names outside the image. Such edge(a; L;D) 2 G, L \MG 6= L is called a hanging edge.Example 1. Let A = fa; bg,M = IIN, IIN = f1; 2; : : :g, thenG1 = f(a; 1); (a; 3); (a; f1; 2g; ;); (b; f1; 3g; f1g)gis a partial graph image with hanging edge (a; f1; 2g; ;), andG2 = f(a; 1); (b; 2); (a; 3); (a; f1; 2g; ;); (b; f1; 3g; f1g)gis a complete graph image.De�nition 3. Two complete graph images G1 and G2 are called isomorphicif their alphabets coincide and there is a one-to-one correspondence f :MG1 !MG2 between their name sets, such that1. (a;m) 2 G1 , (a; f(m)) 2 G2;2. (a; L;D) 2 G1 , (a; f(L); f(D))2 G2, where f(X) = ff(x) j x 2 Xg.The set of all complete graph images, where no pair of isomorphic graphimages exists, and vertices and edges have states from A and names fromM is denoted by K(A;M).Example 2. Graph imagesG1 = f(a; 1); (b; 2); (a; 3); (a; f1; 2g; ;); (b; f2; 3g; f2g)gand G2 = f(a; 9); (b; 4); (a; 5); (a; f4; 9g; ;); (b; f5; 4g; f4g)gare isomorphic ones.



Parallel computations on graph structures 41De�nition 4. An expression of the form� : G1 �G2 ! G3;where G1, G2 and G3 are partial graph images, G1 [ G2 and G2 [ G3 arecomplete graph images, G1 \ G2 = ;, G2 \ G3 = ;, is called a substitutioncommand. G1 � G2 is the left-hand side of a substitution command, G1 isthe base, G2 is the context, and G3 is the right-hand side of a substitutioncommand.DenoteM�L = fm j (�; m) 2 G1 [G2g,M�R = fm j (�; m) 2 G3gnM�L,M� =M�L [M�R.Remark. In a substitution command, the hanging edges from the baseand from the right-hand side must refer to the vertices of the context. Thehanging edges from the context must refer to the vertices of the base andof the right-hand side simultaneously. In this case, the unions of base andcontext, and also of context and right-hand side, are complete graph images.De�nition 5. Let G be a complete graph image. A function '�G :M� !M is called a covering function �! G if the following conditions are met:1. ('�G(m�) 2MG; m� 2M�L;'�G(m�) 2M nMG; m� 2M�R;2. m1; m2 2M�; m1 6= m2 ) '�G(m1) 6= '�G(m2);3. 8(a;m) 2 G1 [G2 9(a; '�G(m)) 2 G;4. 8(a; L;D) 2 G1 [G2 9(a; '�G(L); '�G(D)) 2 G,where '(X) = f'(x) j x 2 Xg.Remark. The covering function � ! G establishes a correspondence be-tween the left-hand side of a substitution command � and a subgraph of agraph image G. The selected subgraph is isomorphic to the graph image ofthe left-hand side of a substitution command. For all names of the right-hand side of a substitution command, which are absent in the left-hand side(the set M�R), new names absent in a source graph image are generated.De�nition 6. A set ��G = f'�Gg of all possible covering functions � !G, where1. 8'1; '2 2 ��G; '1 6= '2 ) 9m 2M�L; '1(m) 6= '2(m)2. 8'1; '2 2 ��G; '1 6= '2; m1; m2 2M�R ) '1(m1) 6= '2(m2)is called a covering set �! G.



42 I.V. KudrinRemark. Each covering function of a covering set �! G selects a uniquesubgraph from the source graph image G (according to rule 1). If a setM�Rof a substitution command � is not empty, then each covering function ofa covering set � ! G generates unique set of names absent in the sourcegraph image G (according to rule 2).Example 3. Let� : f(a; 1); (c; f1; 2g; ;)g � f(a; 2)g! f(b; 1); (a; 3); (c; f1; 3g; ;)gbe a substitution command de�ned for the complete graph imageG = f(a; 1); (a; 2); (c; f1; 2g; ;)g ;where A = fa; b; cg,M = IIN. So, the covering set �! G is��G = f'�G1 ; '�G2g;'�G1 = f1! 1; 2! 2; 3! 4g;'�G2 = f1! 2; 2! 1; 3! 5g:There are two various ways of covering the left-hand side of the command� to the graph image G, so the covering set ��G contains two coveringfunctions. Since the setM�R = f3g for this command is not empty, the newnames are generated by each covering function.De�nition 7. A covering separation function is de�ned as follows: ( eG;') = f(a; '(m)) j (a;m) 2 eGg [ f(a; '(L); '(D)) j (a; L;D) 2 eGg;where eG is any component (G1, G2, or G3) of a command � : G1 �G2 ! G3and ' is a covering function �! G.Remark. The covering separation function  translates a partial graphimage eG of a command component to the name space of the source graphimage G according to the covering function '.Example 4. With conditions of Example 3: (f(a; 1); (c; f1; 2g; ;)g ; '�G2) = f(a; 2); (c; f1; 2g; ;)g ; (f(b; 1); (a; 3); (c; f1; 3g; ;)g ; '�G2) = f(b; 2); (a; 5); (c; f2; 5g; ;)g :De�nition 8. An expression like �G' : G01�G02 ! G03, where G0i =  (Gi; '),is called a substitution.



Parallel computations on graph structures 43Remark. The substitution �G' is a translation of substitution command� to the name space of the source image G, according to the covering func-tion '. The substitution exists only when a covering function exists, i.e.,a subgraph that is isomorphic to a graph image of the left-hand side of asubstitution command exists in the source graph image.De�nition 9. If the substitution �G' : G01 � G02 ! G03 exists, then thesubstitution command � is said to be applicable to the graph image G, andthe substitution �G' can be executed in the graph image G, resulting in:�G'(G) = F �(G nG01) [ G03� ;where F is the \lost" edges elimination function:F (G) = f(a;m) j (a;m) 2 Gg [ f(a; L;D) j (a; L;D) 2 G;L �MGgRemark. The function F removes all hanging edges from a partial graphimage G, so the result of its execution is a complete graph image.In compliance with the substitution command de�nition, there are fourvariants of substitution execution behavior, respecting to an element e of acommand:1. e 2 G1, e =2 G2 [G3: the element will be deleted;2. e 2 G3, e =2 G1 [G2: the element will be added;3. e 2 G1, e 2 G3,e =2 G2: the element will be changed;4. e 2 G2, e =2 G1,e =2 G3: the element is used for context search only.De�nition 10. An execution of all possible substitutions, which are pro-duced by the covering command � : G1 � G2 ! G3 to the complete graphimage G, is called an execution of the command � in the graph image G:�(G) = F ��G n��(G)� [�+(G)� ;where ��(G) is a set of elements to be removed:��(G) = ['2��G (G1; ');and �+(G) is a set of elements to be added:�+(G) = ['2��G (G3; '):Example 5. With conditions of Example 3, the execution of the substitu-tion command � in the graph image G results in the graph image



44 I.V. Kudrin�(G) = f(b; 1); (b; 2); (a; 4); (a; 5); (c; f1; 4g; ;); (c; f2; 5g; ;)g :The set of elements to be removed is��(G) = f(a; 1); (c; f1; 2g; ;)g[ f(a; 2); (c; f2; 1g; ;)g= f(a; 1); (a; 2); (c; f1; 2g; ;)g;and the set of elements to be added is�+(G) = f(b; 1); (a; 4); (c; f1; 4g; ;)g[ f(b; 2); (a; 5); (c; f2; 5g; ;)g= f(b; 1); (b; 2); (a; 4); (a; 5); (c; f1; 4g; ;); (c; f2; 5g; ;)g:So, during the execution of the substitution command � in the source graphimage G:1. The state of vertices with names \1" and \2" are changed from \a" to\b",2. The edge (c; f1; 2g; ;) are removed,3. The vertices (a; 4) and (a; 5) and the edges (c; f1; 4g; ;) and (c; f2; 5g; ;)are added.De�nition 11. A �nite set of substitution commands � = f�1; : : : ;�vg iscalled a Parallel Substitution System (PSS). A PSS is said to be applicable toa complete graph image G if there exists a non-empty subset of commands�0 � � applicable to G. The execution of the PSS � in G results in�(G) = F �G n� [�2�0 ��(G)��[ � [�2�0 �+(G)�!:A PSS � is referred to as non-contradictory with respect to a subset K� �K(A;M) if its execution in any G 2 K� results in a complete graph image.If the PSS is non-contradictory with respect to any G 2 K(A;M), it iscalled non-contradictory.De�nition 12. Let � = f�1; : : : ;�vg be a non-contradictory PSS. Thefollowing iterative procedure is called a synchronous mode of the PSS �execution in G. Let Gi be the result of its ith step, then1. If no substitution command � 2 � is applicable to Gi, then Gi is theresult of computation;2. If there exists a non-empty subset of substitution commands �0 � �applicable to Gi, then Gi+1 is substituted for Gi, i.e., Gi+1 = �0(Gi).



Parallel computations on graph structures 45De�nition 13. A PSS together with the synchronous mode of execution ofa PSS, which is non-contradictory with respect to K� � K(A;M), is calleda Graph Automaton (GA) and is denoted by � = h�; K�i. The result of theexecution of � in G 2 K� is referred to �(G). A complete graph image, inwhich GA is executed, is called a working �eld of the Graph Automaton.2. Special cases and extensions of the GAFunctional substitution. Improvement of expressive capabilities of theGA can be achieved by extension of the states of vertices and edges alphabetA by additional variables and functions whose domain and range are in A.To the alphabet A the set of variable symbols Z and functional symbols Fare added, so that the resulting alphabet is A0 = A [ Z [ F .The new alphabet is used in substitution commands de�nition. Duringthe application of a command to the working �eld, variable symbols are as-sociated with the states of working �eld cells. Function values are evaluatedon the basis of associated variables. In result, the substitution is formedwith calculated values. The special symbol \�" is used for a designation ofvariables with don't care values.Example 6. The command� : f(�; 1)g � f(x; 2); (�; f1; 2g; f1g; 3)g! f(x+ 1; 1)gde�nes an operation of increment and transfer of a vertex state by the edgespeci�ed direction.Multiple vertices and edges allow to de�ne commands which being ap-plied to the working �eld select variable size sets of vertices and edges. Withfunctional substitutions, there is a capability to use special aggregate func-tions, such as count(), sum(), min(), etc. The mark � in a name is usedfor multiple vertex designation. An edge incident to multiple vertex is alsomultiple.Example 7. The command� : f(�; 1)g � f(x; 2�); (�; f1; 2�g; f1g)g! f(max(x); 1)gsets the state of the vertex to the maximal of its neighborhood verticesvalues.Graph image in geometrical space. Each item of a working �eld canbe attributed with certain coordinates. Thus, it is possible to set the graphlayout in a coordinate space. Substitution commands are supplemented



46 I.V. Kudrinwith opportunities to read and set spatial coordinates of vertices. Hence,it is possible to combine logic and spatial modeling on graph image. Thisopportunity allows the usage of Graph Automaton for simulating physicalprocesses.3. Graphic representation of the GAOne of the key advantages of Graph Automaton is the possibility of its visualrepresentation. This is an easy-to-interpret GA's form and it is achieved bycreation of the equivalent graphic representing of GA's components.Work �eld representation. The vertices of a working �eld are repre-sented as circles, and edges are represented as the lines connecting thesecircles. The state of the vertex is written inside a circle, and the state of theedge is written next to a line representing it. The direction of the edge isindicated by an arrow. The example of graphic representation of a working�eld is shown in Figure 1. One may note, that the names of a graph imagevertices disappeared in a graphic representation, but the references betweenelements are re
ected in obvious way.Figure 1. Graphic representation of graph imageG = f(a; 1), (b; 2), (c; 3), (d; f1g; ;), (e; f2g; f2g),(f; f1; 2g; ;), (g; f1; 3g; f1g), (h; f2; 3g; f2;3g)gSubstitution command representation. The substitution commandconsists of three partial graph images. Therefore in graphic representa-tion three identical size rectangular areas bounding graphic representationof each command part are used. The relative geometrical position insidebounding rectangle is interpreted as a name of command's vertex. This al-lows indicating references of elements from di�erent command parts. Theexample of graphic representation of a command is shown in Figure 2.Figure 2. Graphic representation of substitution command� : f(�; 1)g � f(x; 2�); (�; f1; 2�g; f1g)g ! f(max(x) + 1; 1)g



Parallel computations on graph structures 474. Grata the system of modelingThe system of simulation modeling Grata is intended for creation modelsof graph algorithms on the computer. The system works in Windows en-vironment and uses the standard user interface. The program environmentprovides a visual designing of graph images of working �eld and substitutioncommands. The executive block performs an interpretation of the algorithmconstructed within the system framework, its debugging and representationof work's results (Figure 3).
Figure 3. Appearance of system GrataAll components of a graph algorithm are united in a project within theframework of the system. A project determines a common settings for analgorithm, and groups a components by their functions. Two main com-ponents of a project are a representation of a working �eld and a set ofsubstitution commands. In the Grata, a representation of a working �eldand substitution commands is made on the basis of graphic representationof the GA. It provides convenient visual editing of the Graph Automatoncomponents.In the system, an integer and a real numbers and a strings are used asstates of graph elements. The numerical data can be displayed using colorsof selectable pallets.The Grata system allows to work both with base variant of Graph Au-tomaton, and with the extensions described above. The C-like programminglanguage is built into the system, realizing functional substitutions. For workwith a spatial arrangement, three coordinates (x; y; z) are attributed to eachvertex of working �eld. The system functions set is extended by an abilityto read and to set spatial coordinates.The GA, as well as its software implementation, has enough of oppor-tunities for modeling such tasks, as equivalent transformations of automata



48 I.V. Kudrinnetworks by the certain criteria, functional modeling based on the hierarchi-cal networks and so on. The system can be used for research of algorithmsfor various graph problems, such as topological sort or shortest path search.5. Example of model on Graph AutomatonAs an example of the Graph Automaton work, the implementation of algo-rithm of parallel list pre�x computation ([2]) will be demonstrated.Let 
 be an associative binary operation. The problem of pre�x compu-tation consists in the following: given a sequence hx1; x2; : : : ; xni, a sequencehy1; y2; : : : ; yni, for which y1 = x1 andyk = yk�1 
 xk = x1 
 x2 
 : : :
 xkfor k = 2; 3; : : : ; n, should be constructed.Let us consider, that the elements x1; : : : ; xn are connected in the singlylinked list. Let there be a set of N processors, each of which keeps its ownvalue of y, and a pointer to the next element next.The description of algorithm under these agreements is given in [2]:LIST-PREFIX(L)1 for each processor i2 do y[i] x[i]3 while there is an object i, for which next[i] 6= NIL4 do for each processor i5 do if next[i] 6= NIL6 then y[next[i]] y[i]
 y[next[i]]7 next[i] next[next[i]]At Graph Automaton implementation, the vertices of a working �eld willrepresent processors. The state of vertex corresponds to a state of a �eld y ofthe appropriate processor. The pointer next is represented by the directededge. Thus, as the �eld next can store both valid pointer, and NIL, then, foruniformity of substitution commands execution, the additional vertex witha state \0" is created on the working �eld. The valid pointer is representedas an edge with a state \0", and the empty one as an edge with a state \1".The following substitution command corresponds to lines 3{7 of the givenalgorithm (initial state of a working �eld after initialization appropriate tolines 1{2 is considered):� : f(i; 1); (0; f1; 2g; f1g)g� f(j; 2); (�; 3); (n; f1; 3g; f3g)g!f(i
 j; 1); (n; f2; 3g; f3g)gIn Figure 4, the graphic representation of this command is shown.



Parallel computations on graph structures 49Figure 4. The substitution command for LIST-PREFIX algorithm
Figure 5. The sequence of changes of working �eld states for LIST-PREFIXalgorithm: a) initial state, b), c) intermediate states, d) �nal stateLet the operation 
 be an addition. Then, when �lling initial cells asxi = 1, i = 1 : : :n, the special case of a considered problem, the list rankingproblem is occurred. The sequence of graphic representation of working �eldstates for this case is shown in Figure 5.ConclusionThe Graph Automaton being a toolset of modeling of parallel �ne-grainedtransformations of graph structures is submitted in this article. The formaldescription of the GA base is given and some its extensions and additionsare designated. The way of graphic representation of a working �eld andsubstitution commands is given, that allows providing convenient and evi-dent work with the Graph Automaton components. Based on the graphicrepresentation, the system of simulation modeling Grata is created. Sys-tem is capable to create, to edit and to investigate models of parallel graphalgorithms. The example of algorithm of list pre�x parallel processing im-plementation is given.The presented system is capable to simulate an extensive class of systems:from physical models up to functional chart of devices. The system givescommon basis for constructing a wide class of functional models and parallelalgorithms.
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