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Parallel computations
on graph structures

1.V. Kudrin

The Graph Automaton intended for modeling parallel fine-grained transforma-
tions of graph structures is presented. It works in mode of simultaneous application
of a set of substitution commands to a graph image. Substitution commands are
presented in graph notation, too. The example of algorithm implementation on the
Graph Automaton is given.

Introduction

The Graph Automaton is an extension of Parallel Substitution Algorithm [1]
to the field of cellular spaces with irregular structure. Unlike PSA, a work-
ing field structure is not determined by external rules, but defined by a
state of working field itself. Moreover, the automaton can change not only
state of cells of working field, but also its structure, during parallel program
execution.

1. Graph Automaton definition

Let A be a finite alphabet and M be a set of names (at most countable).

A pair (a,m) € A X M is called a vertex where a is the state and m is
the name of a vertex.

Let M™ be a set of all subsets of M which contain one or two elements.
A triple (a, L, D), where a € A, L € M*, D C L, is called an edge. In the
triple, a is the state, L is the link and D is the direction of an edge.

If the link component L of an edge contains two names, then the edge
connects two vertices. Otherwise, when the link component L contains one
element the edge describes a self-loop. The direction component D is a sub-
set of link component I and describes a set of the edge directions. A triple
(a, L, D) expresses an undirected edge. The one-element direction component
D designates a directed edge; the two-element one describes a two-directed
edge.

When the link component of an edge e contains the name m, it is said
that the edge e refers to a vertex with the name m.
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Definition 1. A finite set GG of vertices and edges, with no pair of vertices
having identical names and no pair of edges having identical link components
is called a partial graph image.

Denote Mg = {m | (-,m) € G}.

Definition 2. A partial graph image G is called a complete graph image if
the following condition is met: V(-,L,-) € G L C Mg.

Remark. In a graph image, there is no more than one edge for any pair of
vertices, and no more than one self-loop for each vertex.

In a complete graph image, any edge refers to vertices existing in the
image, while in a partial graph image the link component L (and direction

component D) of the edge may contain names outside the image. Such edge
(a,L,D) e G, LN Mg # L is called a hanging edge.

Example 1. Let A = {a,b}, M =IN, IN = {1,2,...}, then
Gr={(a,1),(a,3), (a,{1,2},0), (b, {1,3},{1})}
is a partial graph image with hanging edge (a, {1,2}, ), and
G2 ={(a,1),(6,2),(a,3), (a,{1,2},0), (b, {1,3},{1})}
is a complete graph image.

Definition 3. Two complete graph images Gy and G4 are called isomorphic
if their alphabets coincide and there is a one-to-one correspondence f :
Mg, — Mg, between their name sets, such that

L. (avm) € Gl =4 (avf(m)) € G27

2. (a, L, D) € Gy & (a, f(L), f(D)) € Gy, where f(X) = {f(z) | v € X}.

The set of all complete graph images, where no pair of isomorphic graph
images exists, and vertices and edges have states from A and names from
M is denoted by K (A, M).
Example 2. Graph images

G = {(av 1)7 (b7 2)7 (av 3)7 (av {17 2}7 (Z))v (bv {27 3}7 {2})}
G? — {(av 9)7 (b7 4)7 (av 5)7 (av {47 9}7 (Z))v (bv {57 4}7 {4})}

are isomorphic ones.

and
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Definition 4. An expression of the form
O: Gl * G2 — Gg,

where GGy, G2 and G5 are partial graph images, Gy U G5 and G4 U G5 are
complete graph images, Gy NGy = 0, Go NG5 = 0, is called a substitution
command. G * Gy is the left-hand side of a substitution command, G is
the base, GG is the context, and G5 is the right-hand side of a substitution
command.

Denote Mgy, = {m | (7m) e Gy UG2}7 Mopr = {m | (7m) € G;),}\]W@)L7
Mg = Mer, U Megg.

Remark. In a substitution command, the hanging edges from the base
and from the right-hand side must refer to the vertices of the context. The
hanging edges from the context must refer to the vertices of the base and
of the right-hand side simultaneously. In this case, the unions of base and
context, and also of context and right-hand side, are complete graph images.

Definition 5. Let (G be a complete graph image. A function geqg : Mo —
M is called a covering function ©® — G if the following conditions are met:

) voa(me) € Mg, me € Moy,
"N\ vea(me) € M\ Mg, me € Mog,

2. my,mg € Mg, my # mg = @@G(ml) #+ @@G(m2)7

3. V(aﬂn) e G1 UGy 3(@,99@@(77”&)) € G,

4. Y(a,L,D) e Gy UGy Fa,pec(L), vec(D)) € G,
where ¢(X) = {p(z) | 2 € X}.

Remark. The covering function ® — (' establishes a correspondence be-
tween the left-hand side of a substitution command © and a subgraph of a
graph image (G. The selected subgraph is isomorphic to the graph image of
the left-hand side of a substitution command. For all names of the right-
hand side of a substitution command, which are absent in the left-hand side
(the set Mopr), new names absent in a source graph image are generated.

Definition 6. A set ®og = {poqg} of all possible covering functions © —
G, where

1. Y1, 02 € Pog, ¢1 # w2 = Am € Moy, ¢1(m) # p2(m)
2. Voi, 02 € Pog, ¢1 # P2, m1, M2 € Mer = @1(m1) # @2(ms)

is called a covering set © — G.
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Remark. Each covering function of a covering set ©® — G selects a unique
subgraph from the source graph image GG (according to rule 1). If a set Meor
of a substitution command © is not empty, then each covering function of
a covering set ® — G generates unique set of names absent in the source
graph image (G (according to rule 2).

Example 3. Let

0 :{(a, 1), (¢, {1,2},0)}  {(a,2)} = {(b, 1), (a,3), (¢, {1,3},0)}

be a substitution command defined for the complete graph image

G= {(av 1)7 (av 2)7 (Cv {1,2}, @)},
where A = {a,b,c}, M = IN. So, the covering set © — G is
Poq = {poac, voa, }

vor, = {1—}1,2—}2,3%4},
PG, = {1—}2,2—}1,3%5}.

There are two various ways of covering the left-hand side of the command
O to the graph image G, so the covering set ®gg contains two covering
functions. Since the set Mgr = {3} for this command is not empty, the new
names are generated by each covering function.

Definition 7. A covering separation function is defined as follows:

V(Go) = {(a, p(m)) | (a,m) € Gy U{(a, (L), ¢(D)) | (a, L, D) € G,

where G is any component (G, Gz, or Gi3) of a command © : G; xG3 — G5
and ¢ is a covering function ©® — G.

Remark. The covering separation function ¢ translates a partial graph
image G of a command component to the name space of the source graph
image G according to the covering function ¢.

Example 4. With conditions of Example 3:
1&({(@, 1)7 (Cv {1,2}, @)},99@(5) = {(av 2)7 (Cv {1,2}, (Z))}v
¢({(b7 1)7 (av 3)7 (Cv {17 3}7 @)},99@(5) = {(bv 2)7 (av 5)7 (Cv {27 5}7 (Z))}

Definition 8. An expression like O¢,, : G| *GY — G%, where G = (G, ¢),
is called a substitution.
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Remark. The substitution O¢, is a translation of substitution command
O to the name space of the source image GG, according to the covering func-
tion ¢. The substitution exists only when a covering function exists, i.e.,
a subgraph that is isomorphic to a graph image of the left-hand side of a
substitution command exists in the source graph image.

Definition 9. If the substitution O¢g, : G} * G4 — G4 exists, then the
substitution command © is said to be applicable to the graph image G, and
the substitution ©g, can be executed in the graph image G, resulting in:

Og, (G) = F((G\G) UG,
where F'is the “lost” edges elimination function:
F(G) = {(a,m) | (a,m) € G}y U{(a, L, D) | (a, L, D) € G, L C Mc}

Remark. The function I’ removes all hanging edges from a partial graph
image (G, so the result of its execution is a complete graph image.

In compliance with the substitution command definition, there are four
variants of substitution execution behavior, respecting to an element e of a
command:

1. e € Gy, e ¢ Gy UG3: the element will be deleted;

2. € € GG, e ¢ Gy UGy: the element will be added;

3. € € Gy, e € G3,e ¢ G5: the element will be changed;

4. e € G, e ¢ G,e ¢ G3: the element is used for context search only.
Definition 10. An execution of all possible substitutions, which are pro-

duced by the covering command © : Gy * G3 — G5 to the complete graph
image G, is called an ezecution of the command © in the graph image G"

0(G) = F((G\o~(G) uet(@),
where ©7(() is a set of elements to be removed:

0~ (G) = U ¢(G17S‘9)7

wEPoq
and ©T(G) is a set of elements to be added:
or(@) = U v(Gs ).

wEPoq

Example 5. With conditions of Example 3, the execution of the substitu-
tion command O in the graph image G results in the graph image
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O(¢) = {(b,1), (b,2), (a,4), (a,5), (¢, {1,4},0), (¢, {2,5},0) }.

The set of elements to be removed is

(a,1), (¢, {1,2},0)} U {(a,2), (¢, {2,1},0)}
(a,1), (a,2), (¢,{1,2},0)},

and the set of elements to be added is

(b,1), (a,4), (¢,{1,4},0)}U {(b,2), (a,5), (¢, {2,5},0)}
(b, 1), (b,2), (a,4), (a,5), (¢, {1,4},0), (¢, {2,5},0)}.

So, during the execution of the substitution command © in the source graph
image G

0~ (G)

{
{

CAN(E)

{
{

1. The state of vertices with names “1” and “2” are changed from “a” to

“b777
2. The edge (¢, {1,2},0) are removed,

3. The vertices (a,4) and (a,5) and the edges (¢, {1,4},0) and (¢, {2,5},0)
are added.

Definition 11. A finite set of substitution commands = = {©4,...,0,} is
called a Parallel Substitution System (PSS). A PSS is said to be applicable to
a complete graph image G if there exists a non-empty subset of commands
=/ C = applicable to GG. The execution of the PSS Z in ( results in

=(G) = F((G\ (@UE/(a—(G))) U <@U: @+(G))).

A PSS = is referred to as non-contradictory with respect to a subset K* C
K (A, M) if its execution in any G € K* results in a complete graph image.
If the PSS is non-contradictory with respect to any G € K(A, M), it is
called non-contradictory.

Definition 12. Let = = {0y,...,0,} be a non-contradictory PSS. The
following iterative procedure is called a synchronous mode of the PSS =
execution in G. Let G* be the result of its ith step, then

1. If no substitution command © € Z is applicable to G, then G is the
result of computation;

)
—
—

2. If there exists a non-empty subset of substitution commands =" C
applicable to G*, then G'*! is substituted for G*, i.e., G = Z'(G").
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Definition 13. A PSS together with the synchronous mode of execution of
a PSS, which is non-contradictory with respect to K* C K (A, M), is called
a Graph Automaton (GA) and is denoted by Il = (=, K*). The result of the
execution of Il in GG € K* is referred to [1(G). A complete graph image, in
which GA is executed, is called a working field of the Graph Automaton.

2. Special cases and extensions of the GA

Functional substitution. Improvement of expressive capabilities of the
GA can be achieved by extension of the states of vertices and edges alphabet
A by additional variables and functions whose domain and range are in A.
To the alphabet A the set of variable symbols Z and functional symbols F
are added, so that the resulting alphabet is A’ = AU Z U F.

The new alphabet is used in substitution commands definition. During
the application of a command to the working field, variable symbols are as-
sociated with the states of working field cells. Function values are evaluated
on the basis of associated variables. In result, the substitution is formed
with calculated values. The special symbol “—” is used for a designation of
variables with don’t care values.

Example 6. The command

O:{(= D} +{(z,2), (= {12}, {1},3)} = {(z + 1, 1)}

defines an operation of increment and transfer of a vertex state by the edge
specified direction.

Multiple vertices and edges allow to define commands which being ap-
plied to the working field select variable size sets of vertices and edges. With
functional substitutions, there is a capability to use special aggregate func-
tions, such as count(), sum(), min(), etc. The mark * in a name is used
for multiple vertex designation. An edge incident to multiple vertex is also
multiple.

Example 7. The command

O: {(_7 1)} * {(xv 2*)7 (_7 {17 2*}7 {1})} — {(max(x)v 1)}

sets the state of the vertex to the maximal of its neighborhood vertices
values.

Graph image in geometrical space. Each item of a working field can
be attributed with certain coordinates. Thus, it is possible to set the graph
layout in a coordinate space. Substitution commands are supplemented
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with opportunities to read and set spatial coordinates of vertices. Hence,
it is possible to combine logic and spatial modeling on graph image. This
opportunity allows the usage of Graph Automaton for simulating physical
processes.

3. Graphic representation of the GA

One of the key advantages of Graph Automaton is the possibility of its visual
representation. This is an easy-to-interpret GA’s form and it is achieved by
creation of the equivalent graphic representing of GA’s components.

Work field representation. The vertices of a working field are repre-
sented as circles, and edges are represented as the lines connecting these
circles. The state of the vertex is written inside a circle, and the state of the
edge is written next to a line representing it. The direction of the edge is
indicated by an arrow. The example of graphic representation of a working
field is shown in Figure 1. One may note, that the names of a graph image
vertices disappeared in a graphic representation, but the references between
elements are reflected in obvious way.

Figure 1. Graphic representation of graph image
G = {(a,1), (6,2), (¢,3), (¢, {1},0), (e, {2}, {2}),
(£ {1,210), (9,41, 3}, {1}), (h,{2,3},{2,3})}

Substitution command representation. The substitution command
consists of three partial graph images. Therefore in graphic representa-
tion three identical size rectangular areas bounding graphic representation
of each command part are used. The relative geometrical position inside
bounding rectangle is interpreted as a name of command’s vertex. This al-
lows indicating references of elements from different command parts. The
example of graphic representation of a command is shown in Figure 2.

000 @

y = max(x)+1
Figure 2. Graphic representation of substitution command

0: {(_a 1)} * {(l‘, 2*)a (_a {L 2*}’ {1})} - {(max(x) + 1’ 1)}

*
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4. Grata the system of modeling

The system of simulation modeling Grata is intended for creation models
of graph algorithms on the computer. The system works in Windows en-
vironment and uses the standard user interface. The program environment
provides a visual designing of graph images of working field and substitution
commands. The executive block performs an interpretation of the algorithm
constructed within the system framework, its debugging and representation
of work’s results (Figure 3).
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Figure 3. Appearance of system Grata

All components of a graph algorithm are united in a project within the
framework of the system. A project determines a common settings for an
algorithm, and groups a components by their functions. Two main com-
ponents of a project are a representation of a working field and a set of
substitution commands. In the Grata, a representation of a working field
and substitution commands is made on the basis of graphic representation
of the GA. It provides convenient visual editing of the Graph Automaton
components.

In the system, an integer and a real numbers and a strings are used as
states of graph elements. The numerical data can be displayed using colors
of selectable pallets.

The Grata system allows to work both with base variant of Graph Au-
tomaton, and with the extensions described above. The C-like programming
language is built into the system, realizing functional substitutions. For work
with a spatial arrangement, three coordinates (z, y, z) are attributed to each
vertex of working field. The system functions set is extended by an ability
to read and to set spatial coordinates.

The GA, as well as its software implementation, has enough of oppor-
tunities for modeling such tasks, as equivalent transformations of automata
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networks by the certain criteria, functional modeling based on the hierarchi-
cal networks and so on. The system can be used for research of algorithms
for various graph problems, such as topological sort or shortest path search.

5. Example of model on Graph Automaton

As an example of the Graph Automaton work, the implementation of algo-
rithm of parallel list prefix computation ([2]) will be demonstrated.

Let ® be an associative binary operation. The problem of prefix compu-
tation consists in the following: given a sequence (z1, zo, ..., 2,), a sequence
<y17 Y2544 yn>7 for which =1 and

Yk = Y1 QT =21 Q022X ...Q0 Xk

for £k =2,3,...,n, should be constructed.

Let us consider, that the elements zq, ..., z, are connected in the singly
linked list. Let there be a set of N processors, each of which keeps its own
value of y, and a pointer to the next element next.

The description of algorithm under these agreements is given in [2]:

LIST-PREFIX(L)

1 for each processor ¢

do y[i] « z[i]

3 while there is an object ¢, for which next[:] # NIL
4 do for each processor ¢

5 do if next[i] # NIL
6
7

[\]

then y[next[i]] + y[i] @ y[next[i]]
next[i] « next[next[t]]

At Graph Automaton implementation, the vertices of a working field will
represent processors. The state of vertex corresponds to a state of a field y of
the appropriate processor. The pointer next is represented by the directed
edge. Thus, as the field next can store both valid pointer, and NIL, then, for
uniformity of substitution commands execution, the additional vertex with
a state “0” is created on the working field. The valid pointer is represented
as an edge with a state “0”, and the empty one as an edge with a state “17.
The following substitution command corresponds to lines 3—7 of the given
algorithm (initial state of a working field after initialization appropriate to
lines 1-2 is considered):

O: {(5, 1), (0,{1,2}, {1})} + {(4,2), (=, 3), (n, {1, 3},{3})} —
{17, 1), (n,{2,3},{3})}

In Figure 4, the graphic representation of this command is shown.
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Figure 4. The substitution command for LIST-PREFIX algorithm

NO OO O IGEIGEIGEYG

0 0 0 0 0 1

111111

Figure 5. The sequence of changes of working field states for LIST-PREFIX
algorithm: a) initial state, b), ¢) intermediate states, d) final state

Let the operation @ be an addition. Then, when filling initial cells as
x; =1,1=1...n, the special case of a considered problem, the list ranking
problem is occurred. The sequence of graphic representation of working field
states for this case is shown in Figure 5.

Conclusion

The Graph Automaton being a toolset of modeling of parallel fine-grained
transformations of graph structures is submitted in this article. The formal
description of the GA base is given and some its extensions and additions
are designated. The way of graphic representation of a working field and
substitution commands is given, that allows providing convenient and evi-
dent work with the Graph Automaton components. Based on the graphic
representation, the system of simulation modeling Grata is created. Sys-
tem is capable to create, to edit and to investigate models of parallel graph
algorithms. The example of algorithm of list prefix parallel processing im-
plementation is given.

The presented system is capable to simulate an extensive class of systems:
from physical models up to functional chart of devices. The system gives
common basis for constructing a wide class of functional models and parallel
algorithms.



50 L.V. Kudrin

References

[1] Achasova S.M., Bandman O.L., Markova V.P., Piskunov S.V. Parallel Substi-
tution Algorithm. Theory and Application. — Singapore: World Scientific, 1994.

[2] Cormen Thomas H., Leisersor Charles E., Rivest Ronald L. Introduction to
Algorithms. — Cambridge, Mass.: MIT Press, 1990.



