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Minimization of nonlinear functions
with linear restrictions®

E.A. Kotel’'nikov, G.I. Zabinyako

The algorithms for minimization of large-dimension functions with linear con-
straints with allowance for sparseness of the limitation matrices are considered.
A special case of the quadratic programming is emphasized. The algorithms have
been implemented as a package of software programs to be used in the operational
environments DOS, UNIX.

1. Algorithms

The following problem is considered:

min f(2) 1)
under the conditions

Az = b, (2)

0 << P 3)

with the initial point 2°. Here f is a function (not necessarily smooth), the
vectors «, 3, z, 2% € R*, b € R™, A is m x n matrix. The initial point
z¥ may not satisfy limitations (2), (3). In this case, we find an admissible
point, closest, in a sense, to 2V. If f is nonconvex, the approximations to a
conditional stationary point are constructed.

For the solution of problem (1)—(3), it is proposed to use the reduced
gradient method, which can be represented as a combination of elements
of the modified simplex-method and one of the algorithms of unconditional
minimization [1].

In connection with the fact that the object function is nonlinear, the
current point of the optimizing sequence z* is not necessarily located at
the vertex of the polynomial specified by restrictions, therefore the number
of components of the point z* having the values o; < xf < B; can exceed
m. Then, in addition to the basis and the non-basis variables used in the
simplex-method, we will consider the so-called superbasis variables. Let zpg,
g, *y be vectors of the basis, the superbasis and the non-basis variables,
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respectively, and B, S, N be matrices made up of columns of the matrix A
according to partitioning of components of the point z, B is a non-degenerate
m X m matrix. Then

xB:B_l(b—SxS—NxN). (4)

If on a certain segment of the computational process the mesh size along
the direction of the shift p* up to the minimum point of the function f
is smaller than the mesh size up to the parallelepiped boundary, given by
restrictions (3), the content of the basis, the superbasis and the non-basis
variables does not change. When solving the subproblem involved, the non-
basis variables preserve their values, and the basis and the superbasis vari-
ables take the values within their boundaries, in this case according to (4)
the basis variables are dependent on the superbasis variables. Let

F(zs) = f(zp,as,2n) = f(B™'(b— Szs — Nan), 25, 2n),

then the process of solving the subproblem reduces to minimization of F'(zg)
with simple restrictions ag < zg < g, as < zg < fg, where ap, 0g, ag,
(s are the vectors whose components are the values «;, 3; corresponding
to the basis and the superbasis variables. The gradient h of the function
F is called the reduced gradient of the function f, and the matrix H of
the second derivatives of the function F' — the reduced matrix of the second
derivatives of the function f. Denote W = B~'S, where V = [-WT I 0],
V is s x n matrix consisting of three submatrices: W7 corresponds to the
basis variables, I is the unit matrix, and 0 is zero matrix corresponding to
the superbasis and the non-basis variables, respectively. Then, according
to [1] h* = Vg¢* is the reduced gradient at the current point z¥, where
gk = Vf(xk); H* = VG*VT is the reduced matrix of the second derivatives
of the function f; and G* is the matrix of the second derivatives of the
function f at the point z*.

For the solution of a subproblem, three methods of unconditioned mini-
mization are provided: the conjugate gradient or the quasi-Newton method
can be used for a smooth object function, r-algorithm — for a non-smooth
function. The mesh size along the direction p* to the minimum point of
the function f can be found with the help of the quadratic or the cubic
interpolation; the so-called adaptive algorithm is provided for a non-smooth
function.

A subproblem is considered to be solved if the value ||h||o is small. The
first direction pg of any subproblem is a reduced antigradient, i.e., ps = —h.

1.1. Conjugate gradients algorithm. Let an object function f(z) be a
twice differentiable function of the vector argument z € R™. Approximations
to the minimum are constructed on the basis of the iterative process:
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pO - _Vf(xo)v

p= V@) + Bip T+ v,
41 _ : 7 7
¢ = argmin f(z* + Ap'),

where V f(z?) is the gradient f at the current point z*, p'~! and p' are the di-

rections used in previous iterations, f3; and ~; are coeflicients. In a standard
scheme of the conjugate gradient method, the direction of an antigradient
is used in restart iterations at i = n,2n,.... In [2], a linear conjugate gra-
dients algorithm (for the quadratic functions f), is substantiated, in which
the other vector is used for restart. For a general case, this algorithm is de-
veloped in [3]. When developing the program, we made use of the improved
algorithm [4] with a non-standard restart.

A correct application of the non-standard renewal makes it possible to
gain some progress when solving ill-conditioned problems by the conjugate
gradients method.

1.2. Quasi-Newton algorithm. In the quasi-Newton algorithm, the re-
current k-th direction of the descent p* is found from the system of equations

kak — _Vf(xk)v

where B* is the current estimation of the second derivatives matrix of the
function f(z). The most efficient quasi-newtonian algorithms are obtained
with the use of the estimations B* of the BFGS formula for the recalculation:

k _ pk 1 k T/ .k

where Y* = V f(2%+1) — V f(2*), and \j, is a mesh size along the direction
p*.

In [5], there is proposed an efficient procedure of supporting in itera-
tions the representation of the matrices B¥ in the factorized form B* =
L*D*(LF)T, where L* is the left triangular matrix with 1 on the main diag-
onal, DF is the diagonal matrix. Application of such a factorized form allows
ensuring the strict positive definiteness of the matrices B* with allowance

for the rounding off.

Yk Yk T

1.3. r-algorithm. To minimize non-differentiable functions, algorithms of
the subgradient form with the space extended towards the difference of two
subsequent subgradients (r-algorithms) proved to be most effective [6].

Let f be a function to be minimized, and 9f(z) be its subgradient at
the point z € R". At the beginning of the process we set the matrix B°
equal to the unit n X » matrix I and the coefficient of extension a > 0
(usually 2 < & < 3). The displacement from the initial point 2 is done in
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the direction opposite 9 f(2%). Further, at any k-th iteration of r-algorithm,
the following values are sequentially determined:

Y= 0f(*) - af(@"t), (5)

b= (BHTYH, (6)

¢ — ﬁ 7)

B = BMI+ (a7! = 1)EREMT), (8)

Pt = (BMhTaf(h), (9)

ekt = gk — /\;CB]H'li (10)
1]’

where Ay > 0is the displacement at the k-th iteration. It is evident from (5)—
(10) that it appears possible to use the symmetric matrices H* = B*(B*)T
instead of the matrices B* in the iterative process. In this case

Hk-l—l — Hk 2 1
where = 1/a, and (10) will take the form
1410

Rt = gk AL

R f(24), 0 f ()

The use of the symmetric matrices H* instead of B* would allow us
to considerably reduce the requirements of the algorithm for the memory
volume. In addition, the matrix B* with an increase of k tends to zero
matrix. The direct calculation of H* = B*(B*)T can result the fact that
the matrix H* will not be strictly positive definite.

In [7], based on the algorithm from [5], a reliable way of recalculation
in iterations of the iterative matrices H” in the factorized form is proposed.
The proposed procedure, as in the quasi-Newton algorithm, provides the
iterative transfer from the representation H* in the form L¥DF(LF)T to
Lk—l—le-l—l(Lk-I—l)T for Hk+1.

For the search for the displacement Ay it is possible to use the algorithms
based on the quadratic, the cubic interpolation, or a special adaptive algo-
rithm similar to the algorithm from [6]. The first two are offered for smooth
f, and the adaptive algorithm is applicable in the case of non-smooth f.

2. Solution of problems

To verify the reliability of software, a series of calculations have been carried
out. As an object function, the well-known test problems of unconditional
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optimization were selected. Matrices of constraints were selected from a test
set of the linear programming problems NETLIB [8]. The problems were
solved on the computer P-75.

Further, examples of minimization of the generalized Rosenbroc function
for n > 2 are given:

with the initial point 2° = (=1.2,1,...,1)T. It is a known fact that
the unconditional minimization of the Rosenbroc function results in z* =
(£1,1,...,1)T and f* = 0. In each problem, the vector of the right parts

of the constraint (2) is redetermined: for i =1,2,...,m, b; = f: aija’ + 6,
=1
where the values §; are taken at random. Depending on the sig]n d;, the type
of a constraint is introduced. The values «; and 3; from (3) are selected so
that the conditions a; < a7 < 85, j = 1,2,...,n, be fulfilled.
In Tables 1 and 2, the results of solution of these problems by various
methods are presented. The following notations are used:

it — the total number of iterations;
NF — the number of calculations of a function;

NG — the number of calculations of a gradient;

dr = max|z] — 1.0[;  8f =|[f"[;
1
n m
h, = max| _ aja’t — byl; he = max > agyl -,
% ‘ B~
]:1 =1

where [p is a list of basis variables, y are dual estimations, ¢} is the j-th

component of gradient of the function f at the point z*, ¢ is time in seconds.
Table 3 shows results of minimization of the non-smooth function from [9]

101 n ) n )
flay =223 ity =D ait T,
7=1"=1 =1

t;=0.01(j—1),j=1,2,...,101,2° = (0,0,...,0)T with linear constraints.
The minimum of this function is f* = 0 at the point 27 = (£,1 ... 1)
Here dz = max |2} — 1)

J
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Table 1. Conjugate gradients method
Name of .
problem it NF NG Sz 5f hr he t
BRANDY 2478 7566 9840 | 2.E—-8 | 5.E—13 | 1.E—11 | 2.E—20 24
CAPRI 5907 | 14941 | 20481 | 7.E—-8 | 8. E—12 | 2.E—12 | 4. E—19 77
GROW7 381 749 1009 | 2.E—-8 | 1.E—12 | 6.E—12 | 2.E—-20 4
GROW15 1180 2867 3723 | 2.E-8 | 2.E—12 | 2.E—11 | 1.E—16 27
SCTAP1 12817 | 26659 | 39032 | 2.E—7 | 1.E—10 | 2.E-9 8.E—20 | 160
FINNIS 5685 | 16588 | 21633 | 3.E—-8 | 4. E—12 | 6. E-9 2.E—-12 | 121
GFRD-PNC | 16663 | 35208 | 51085 | 4.E—6 | 6.E—8 5.E-8 2.E—17 | 403
E226 592 590 857 | .LE-8 | 4.E—13 | 3.E—-12 | 4.E-12 5
SCFXM1 3537 6749 9736 | 7.E-8 | 1.E—11 | 9. E—11 | 3.E—19 49
LOTFI 1544 3919 5121 | 8.E-9 | 3.E-9 5.E—10 | 3.E—10 14
Table 2. Quasi-Newton method
Name of .
problem it NF NG Sz 5f hr he t
BRANDY 561 927 | 1284 | 1.E-8 | 2.E—12 | 1.E—11 | 9.E—20 15
CAPRI 1306 | 2228 | 3167 | 6.E—-9 | 1.E—-13 | 7.E—-11 | 1.E—19 54
GROW7 370 646 895 | 9. E-9 | 5.E—-15 | 5.E—12 | 1.LE—20 21
GROW15 709 946 | 1331 | 5.E-9 | 3. E—13 | 2.E—11 | 2.E-17 156
SCTAP1 2211 | 3812 | 5438 | 3. E—-7 | 1.E—10 | 4.E-9 3.E—-20 202
FINNIS 1976 | 2980 | 4316 | 3.E—-8 | 1.E—12 | 4. E—-10 | 3.E—12 181
GFRD-PNC | 2189 | 2954 | 4358 | 3.E—6 | 7.E—9 5.E-8 3.E—17 | 1226
E226 407 168 249 | 2.E-8 | 3.E—-12 | 9. E-13 | 8. E-11 7
SCFXM1 1261 | 1623 | 2334 | 2.E—-8 | 4.E—12 | 9.E—-11 | 3.E—18 72
LOTFI 616 683 957 | 5. E-9 | 22E—13 | 2.E-8 5.E-8 23
Table 3
Name of .
problem it NF NG Sz 5f t
SC105 204 593 146 0.027 4.7E—6 8
KB2 357 3117 322 2.3E—4 2.6E—6 9
RECIPE 440 2697 399 0.022 2.2E—4 33
SC50A 227 1489 190 4.8E—9 3.6E—8 5
SC50B 156 1112 126 6.7E—9 2.9E-8 4
SHARE2B 469 2323 382 2.4E-3 2.3E-5 13
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3. Quadratic programming

The software for convex quadratic problems is collected in a separate pack-
age. This is connected with simple realization of the conjugate gradients
method for such problems, the efficiency of computing process and the pres-
ence of reliable means of control over computational errors.

The problem of quadratic programming is in the minimization of the
functions f(z) = 227Qx + T2, with constraints (2), (3), where Q is a
symmetric positive definite matrix.

As known, the scheme of the linear conjugate gradients method is of the
form:

pO = _r07
pk = _rk +ﬁkpk_17 k> 0,
(11)
Tep1 = 2+ agp’,
N R

where ¥ = Qzj, + ¢ is the gradient of the function at the current point zj;
the coeflicients 8y are calculated by the formula providing conjugation of
the vectors p*: B = [|r¥||2/||r*~!|2; e is the value of displacement along
the direction p* to the minimum point: ay = ||7*||2/((p")T Qp").

With linear restrictions in scheme (11), the gradient 7* and the matrix @
are replaced by the reduced gradient and the reduced matrix, respectively,
which brings about the change of calculations of ay, 3, and p~.

In the space of superbasis variables, the direction of the descent pg =
—h* + Brpit is found, where 8 = ||h¥||3/||h*~"||3. Then the direction p
for the basis variables is calculated:

Py = —B71Sps = —Wpk.

Non-basis variables do not change their values, therefore the vector pﬁ“\; is
equal to zero. Consequently, the general direction of the displacement in the
original space (p¥)T = ((p5)7T, (p5)T,07) will satisfy the condition Ap* = 0.

Further the value of the displacement «ay along the direction pg to the
minimum point of the function F is found as follows:

(W) pk
= T NT gk
(p$) Hps

For calculation of the quadratic form in the denominator, the matrix H is
not needed, because of

()T HpS = (9 TVvovTph = (5T Qp".
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For estimation of the accuracy of solution of the subproblem, the criterion
proposed in [10] is made use of. After any /s iterations of the subproblem,
the values ¢ = || — r*||? and ¢ = exp((£)?), are calculated, where 7% =
Qx +c, tis the number of the current iteration of the subproblem, & is the
general number of iterations at a concrete moment. Then, if ||[r¥||Z > @1,
it is considered that the process can be continued; otherwise, it is necessary
to regenerate the conjugate gradients scheme.

For testing the software, matrices of constraints were selected from the
set NETLIB, and the matrix ) was generated using various versions of
distribution of the eigenvalues d; > 0, Q = TT DT, where T is an orthogonal
matrix, D is a diagonal matrix with the entries d; on the diagonal. The
testing has shown a high reliability of the software.

4. Some information about the package

The software can be executed on the computers IBM PC in DOS-environ-
ment, Silicon Graphics and RM600 in media similar to UNIX; in the pro-
gramming language FORTRAN-77.

The software, in addition to procedures of the numerical solution of
problems, contains data processing programs, compilation of dictionaries
and reference tables, translation from the external MPS-format [1] to the
internal package format. For matrices, the sparse column format is used,
which is determined by analogy with the line sparse format [11]. In the
linear programming procedures, the matrices reverse to the basis matrices
are presented in the multiplicative form. A special data structure is used
for storing multiplicators [12].

In the sequel, it is assumed to supplement the software with algorithms of
solution of nonlinear discrete problems and to develop their parallel versions
for the computer RM-600.
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