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On numerical experiments with some iterative
solvers in mixed finite element method∗

A.A. Kalinkin, Yu.M. Laevsky

1. Introduction

This paper presents some numerical experiments with iterative solvers of
algebraic linear systems for mixed finite element approximations [1]. We
consider the following problem: Ω is a parallelepipedal domain,

∇(k∇u) = f in Ω, u = 0 on ΓD,
∂u

∂n
= 0 on ΓN ,

where ΓD∪ΓN = ∂Ω. The domain consists of three kinds of parallelepipeds:
a) inclusive, k = 1; b) small internal parallelepipeds, where k has a small
value, and, finally, c) the internal parallelepiped-bridges, where k has a
big value. Our objective is to adapt Conjugate Gradient method (CG) to
a problem with a large number of degrees of freedom and large jumps in
coefficients. This means that we design a preconditioner for the CG with
very simple implementation on the one hand, and with convergence nearly
independent of the number of degrees of freedom and of the coefficients
jumps, on the other. The mathematical basis for such a preconditioner is a
well-known additive Swartz method [2]. The efficiency of a preconditioner is
demonstrated on a number of sample problems that include the large jumps
in the coefficients.

The use of the Raviart–Thomas lower order elements [1] gives us the
following algebraic system(

A B
BT 0

) (
p
u

)
=

(
0
f

)
.

After elimination of the vector p we arrive to the system BT A−1Bu = −f
and design a preconditioner for the matrix of this system. Note that the
inversion of the matrix A can be exactly implemented (Ω is a parallelepiped).

2. The additive Swartz preconditioner

Let us construct the preconditioner M−1 presented as follows (according to
the additive Swartz method): M−1 = RΛRT + D.
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This matrix is defined on the original mesh {xi, yi, zi} which generates
the grid space V . Let us introduce the auxiliary grid {Xi, Yi, zi} with new
nodes in x- and y-directions and with steps hx = lx/2mx and hy = ly/2my,
respectively, where lx and ly are the corresponding sizes of the inclusive par-
allelepiped. Moreover, hx ≥ max(xi+1 − xi) and hy ≥ max(yi+1 − yi). This
means that the auxiliary grid is coarser than the original one. Therefore,
instead of the auxiliary grid we use the coarse grid. Such an approach was
proposed in [2, 3]. The coarse grid is uniform in x- and y-directions, and
we can use the DFT (the Discrete Fourier Transform) for these directions.
Let V0 be a space corresponding to the coarse grid. Then we construct the
matrix R : V0 → V using the primitive bilinear interpolation, and the main
operation is to invert the grid Laplace type 7-point operator with the use
of the DFT in x and y-directions and LU -factorization in z-direction. How-
ever, because of dim V0 ≤ dim V , the matrix RΛRT can be singular, with a
nontrivial kernel. Moreover, while constructing the matrix Λ, we take into
account only z-layer –– the subdomains [x0, x0 + lx] × [y0, y0 + ly] × [z′, z′′].
Therefore, we add the diagonal matrix D with the positive entries which
corresponds to the first step of the simple Jacobi iterations. This means
that we take into account the coefficient jumps in the matrix D.

3. Tests for the model problems

3.1. Description of the model problems. Let Ω be the unit cube with
a small parallepipedal subdomain ω and G = Ω \ ω. In G, k = 1 and, in ω,
k 6= 1. An integer n specifies the grid step h = 1/n.

In Tables 1–4 the experiments with 4 different subdomains are shown.
A number of iterations is given in the form “i (j)” where i and j correspond
to the preconditioners without and with taking into account the coefficient
jumps in the diagonal matrix D (see Section 2). In Tables 5–6, we demon-
strate the influence of a non-uniform and an anisotropic mesh. In Tables 1–6
a small coefficient in ω was considered. But most difficulties happen with a
large coefficient. In Tables 7–8, the results for large coefficients are given.
For a subdomain, which is a thin plate or a thin plate with a small hole,
we used the preconditioner with allowance for the coefficient jumps when
factorizing a grid operator on a coarse grid.

Table 1. The number of iterations
for ω = [0.45, 0.55]3

n k = 0.1 k = 0.01 k = 0.001

20 21 (19) 31 (19) 29 (19)
40 26 (20) 42 (20) 31 (20)
60 27 (20) 42 (20) 31 (19)
80 29 (23) 37 (24) 33 (21)

Table 2. The number of iterations
for ω = [0.45, 0.55]2 × [0, 1]

n k = 0.1 k = 0.01 k = 0.001

20 25 (20) 41 (20) 42 (20)
40 29 (22) 46 (22) 48 (22)
60 33 (24) 46 (26) 35 (21)
80 34 (26) 50 (27) 37 (26)
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Table 3. The number of iterations
for ω = [0, 1]× [0.45, 0.55]2

n k = 0.1 k = 0.01 k = 0.001

20 24 (20) 41 (21) 42 (21)
40 30 (22) 54 (23) 48 (23)
60 33 (23) 53 (24) 46 (23)
80 35 (26) 58 (27) 51 (27)

Table 4. The number of iterations
for ω = [0.25, 0.75]3

n k = 0.1 k = 0.01 k = 0.001

20 39 (27) 78 (31) 72 (29)
40 40 (35) 76 (44) 78 (44)
60 37 (33) 66 (52) 64 (53)
80 39 (37) 71 (61) 70 (57)

Table 5. The number of iterations
for ω = [0.433, 0.567]3, hmax/hmin = 2

n k = 0.1 k = 0.01 k = 0.001

20 52 (35) 101 (35) 79 (35)
40 64 (38) 100 (39) 86 (38)
60 53 (36) 87 (41) 53 (35)
80 64 (41) 102 (48) 53 (40)

Table 6. The number of iterations
for ω = [0.46, 0.54]3, hmax/hmin = 4

n k = 0.1 k = 0.01 k = 0.001

20 94 (78) 158 (78) 174 (78)
40 130 (88) 216 (88) 138 (88)
60 136 (81) 206 (81) 127 (79)
80 164 (97) 257 (97) 152 (95)

Table 7. The number of iterations
for ω = [0, 1]2 × [0.45, 0.55]

n k = 10 k = 100 k = 1000

20 29 (22) 82 (24) 223 (24)
40 39 (22) 122 (23) 351 (24)
60 41 (20) 133 (21) 296 (22)
80 42 (22) — (23) — (23)

Table 8. The number of iterations
for ω = [0, 1]2× [0.45, 0.55] \ [0.45, 0.55]3

n k = 10 k = 100 k = 1000

20 29 (22) 87 (24) 241 (24)
40 39 (24) 127 (27) 381 (27)
60 42 (24) 144 (30) 334 (32)
80 41 (27) — (37) — (40)

Finally, in Tables 9–13, the condition numbers for the preconditioned
matrix are presented (using the coefficient jumps in the matrix D and the
layers with large coefficients when inverting a grid operator on a coarse
grid). In all the tests we assigned the zero Dirichlet boundary condition on
the lower boundary of Ω, the rest of ω boundaries had the zero Neumann
condition. The entries of the right-hand-side vector are nullified except the
first and the last one that are equal to 1. To solve these problems, the
SSG with our preconditioner are used. Stopping criterium –– the residual
relations–– is equal to 10−5.

Table 9. The condition number with non-
modified preconditioner for ω = [0.45, 0.55]3

n k = 1 k = 0.1 k = 0.01 k = 0.001

20 12 25 236 2342
40 12 61 601 5990
60 12 92 913 —
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Table 10. The condition number for
ω = [0.45, 0.55]3

n k = 0.1 k = 0.01 k = 0.001

20 12 12 12
40 17 20 21
60 29 44 47

Table 11. The condition number for
ω = [0.45, 0.55]2 × [0, 1]

n k = 0.1 k = 0.01 k = 0.001

20 14 15 15
40 23 30 31
60 37 64 69

Table 12. The condition number for
ω = [0, 1]2 × [0.45, 0.55]

n k = 0.1 k = 0.01 k = 0.001

20 17 22 23
40 17 22 23
60 14 19 20

Table 13. The condition number for
ω = [0, 1]2 × [0.45, 0.55] \ [0.45, 0.55]3

n k = 0.1 k = 0.01 k = 0.001

20 17 22 23
40 21 31 32
60 32 57 63

3.2. Numerical results. The tables presented show that with a fixed
geometry (as described in Section 1), if the following conditions hold, the
convergence rate slightly depends on the grid dimensions:

• every parallelepiped-bridge in Ω has huge values of k;

• in every small parallelepiped inside Ω, k is relatively small.

Also, one can see, that if a condition does not hold, the described pre-
conditioner gives poor results (for example, if k in a bridge is small, no good
result is expected).
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