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The fundamental solution of the stationary
two-velocity hydrodynamics equation

with one pressure∗

Kh.Kh. Imomnazarov, Sh.Kh. Imomnazarov, M.M. Mamatqulov,
E.G. Chernykh

Abstract. The fundamental solution to describe the three-dimensional steady-
state flows of viscous fluids of the two-velocity continuum with pressure phase
equilibrium has been obtained.
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1. Introduction

The study of physical and technical processes in the continuum mechan-
ics begins with constructing a mathematical model. The presence in the
upper mantle of partial melts has acquire an important role in geophysi-
cal literature. The assumption of formation of a partial melt by first order
phase transition has allowed V.N. Dorovsky to explain localization in space
of large masses of this substance in dynamic conditions [1]. In this case,
the effects of volume magma generation were not taken into account. The
account of magma generation in terms of the shear strain mantle thickness
was considered in [2], where a continuous medium in the geological time
scale is a viscous “fluid-1” due to intrinsic viscosity, or for other reasons,
it attacks the necessary thermodynamic conditions of the phase transition.
Along the grain boundaries and the inter-grain there begins the accumula-
tion of magma, i.e., “fluid-2” with a viscosity intrinsic of melts known in
geology.

Such a melt is integrated in the process of the combined heat and mass
transfer and filtered through the system that has generated it. In other
words, this theory represents heat and mass transfer dynamics of mutual
penetration of one fluid that is less viscous through a medium of greater
viscosity viscous as a kind of filtering process. Or by analogy with the
Navier–Stokes equations this theory can be called a two-speed system of the
Navier–Stokes equations or a two-velocity hydrodynamics.
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The study of viscous compressible / incompressible fluids based on the
solution to a complete system of equations of the two-velocity hydrodynam-
ics is promising. In the literature, quite a limited number of cases, allowing
the analytical integration of the Navier–Stokes equations are known [3, 4].
The objective of this paper is to construct the fundamental solution for the
stationary system of equations of the two-velocity hydrodynamics with pres-
sure phase equilibrium. Such a solution may be useful for testing numerical
methods solving the two-velocity hydrodynamics equations.

2. Two-velocity hydrodynamics equations with one pressure

In [5, 6], a nonlinear two-velocity model of fluid motion through a deformable
porous medium was developed on the basis of conservation laws, invariance
of the equations as related to the Galilei transformations and conditions
of thermodynamic consistency. The two-velocity two-fluid hydrodynamic
theory of the pressure equilibrium condition of subsystems was constructed
in [2]. The equations of motion of a two-velocity medium in the dissipative
case with one pressure, in the isothermal case has the form [2]:

∂ρ̄

∂t
+ div(ρ̃ṽ + ρv) = 0,

∂ρ̃

∂t
+ div(ρ̃ṽ) = 0, (1)

ρ̄
(∂v
∂t

+ (v,∇)v
)

= −∇p+ ν∆v + (ν/3 + µ)∇ div v +
ρ̃

2
∇(ṽ − v)2 + ρ̄f ,

(2)

ρ̄
(∂ṽ
∂t

+ (ṽ,∇)ṽ
)

= −∇p+ ν̃∆ṽ + (ν̃/3 + µ̃)∇ div ṽ − ρ

2
∇(ṽ − v)2 + ρ̄f ,

(3)

where ṽ and v are the velocity vectors of the subsystems that make up the
two-velocity continuum with the corresponding partial densities ρ̃ and ρ, ν
(µ), and ν̃ (µ̃) are the corresponding shear (bulk) viscosities, ρ̄ = ρ̃ + ρ is
the common density of the two-velocity continuum; p = p(ρ̄, (ṽ − v)2) is a
two-velocity equation of state; f is the force mass vector per mass unit.

Rewrite equations (2) and (3) in the equivalent form

ρ̄
(∂v
∂t

+
1

2
∇(v2)− v × rotv

)
= −∇p+ ν∆v + (ν/3 + µ)∇ div v +

ρ̃

2
∇(ṽ − v)2 + ρ̄f , (4)

ρ̄
(∂ṽ
∂t

+
1

2
∇(ṽ2)− ṽ × rot ṽ

)
= −∇p+ ν̃∆ṽ + (ν̃/3 + µ̃)∇ div ṽ − ρ

2
∇(ṽ − v)2 + ρ̄f , (5)
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From these equations we can derive other ones to determine a change in
the vortices in the course of time. For this let us apply the operator rot to
both sides of equations (4) and (5). As a result, obtain

∂Ω

∂t
− rot

(
v ×Ω

)
= − rot

(∇p
ρ̄

)
+ ν∆Ω + rot

(ν/3 + µ

ρ̄
∇ div v

)
+

rot
( ρ̃

2ρ̄
∇(ṽ − v)2

)
+ rotf ,

∂Ω

∂t
− rot

(
ṽ ×Ω

)
= − rot

(∇p
ρ̄

)
+ ν̃∆Ω + rot

( ν̃/3 + µ̃

ρ̄
∇ div ṽ

)
−

rot
( ρ

2ρ̄
∇(ṽ − v)2

)
+ rotf .

3. The linear system of equations of two-velocity
hydrodynamics of a compressible medium

Without the mass forces f = 0, the system of equations (1)–(3) has the
solution v = 0, ṽ = 0, ρ = ρ0, ρ̃ = ρ̃0 for interphase mixture fluids with,
that is at the rest, the uniform pressure p = p0, the partial densities ρ0, ρ̃0

and the temperature T .
Let us linearize equations (2), (3) with respect to the hydrodynamic

background v = 0, ṽ = 0, ρ = ρ0, ρ̃ = ρ̃0, p = p0, i.e.:

v = v1, ṽ = ṽ1, ρ = ρ0 + ρ1, ρ̃ = ρ̃0 + ρ̃1, p = p0 + p1.

Substituting these expressions in (1)–(3) and, for brevity, using the notations
v, ṽ, ρ, ρ̃ instead of v1, ṽ1, ρ1, ρ̃1, we obtain

∂ρ

∂t
+ ρ0 div v = 0,

∂ρ̃

∂t
+ ρ̃0 div ṽ = 0, (6)

ρ̄0∂v

∂t
= −∇p+ ν∆v + (ν/3 + µ)∇ div v + ρ̄0f , (7)

ρ̄0∂ṽ

∂t
= −∇p+ ν̃∆ṽ + (ν̃/3 + µ̃)∇ div ṽ + ρ̄0f . (8)

4. The linear steady-state system of two-velocity
hydrodynamics equations

In the steady-state case (ρ̇, ˙̃ρ, v̇, ˙̃v) = 0 the system of equations (6)–(8) has
the form

div v = 0, div ṽ = 0, (9)

ν∆v = ∇p− ρ̄0f , (10)

ν̃∆ṽ = ∇p− ρ̄0f . (11)
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Green’s function Gij(r, r
′), G̃ij(r, r

′), Pi(r, r
′) (i, j = 1, 2, 3) of a steady-

state system of two-velocity hydrodynamics (9)–(11) satisfies the following
system of differential equations:

∂mGmj(r, r
′) = 0, ∂mG̃mj(r, r

′) = 0, (12)

ν∆Gij(r, r
′)− ∂iPj(r, r′) = δijδ(r − r′), (13)

ν̃∆G̃ij(r, r
′)− ∂iPj(r, r′) = δijδ(r − r′), (14)

where δij is the Kronecker delta, δ(r) is the Dirac function, ∂i denotes the

ith partial derivative, i.e., ∂i =
∂

∂xi
.

Denote by (v̂(α), ˆ̃v(α), p̂(α)) the Fourier transform of (v(r), ṽ(r), p(r)),
and, namely,

(v̂(α), ˆ̃v(α), p̂(α)) =
1

(2π)3/2

∫
R3

(v(r), ṽ(r), p(r)) e−iαr dr.

Multiplying (12)–(14) by
1

(2π)3/2
e−iα(r−r′) and integrating over r ∈ R3, we

obtain
∂mĜmj = 0, ∂m

ˆ̃Gmj = 0, j = 1, 2, 3, (15)

ν∆Ĝij − ∂iP̂j =
1

(2π)3/2
δij , i, j = 1, 2, 3, (16)

ν̃∆ ˆ̃Gij − ∂iP̂j =
1

(2π)3/2
δij , i, j = 1, 2, 3. (17)

Hence, the functions Ĝij ,
ˆ̃Gij , P̂j , are uniquely defined:

Ĝij =
1

(2π)3/2να2

[
−δij +

αiαj
α2

]
, ˆ̃Gij =

1

(2π)3/2ν̃α2

[
−δij +

αiαj
α2

]
,

P̂j =
iαj

(2π)3/2α2
.

The inverse Fourier transform and the formulas [7](
δ(r − r′), 1

4π|r − r′|
,
|r − r′|

8π

)
=

1

(2π)3

∫
R3

(1, α−2, α−4)eiα(r−r′)dα

give

Gkj(r, r
′) =

1

ν

[
−

δkj
4π|r − r′|

+ ∂k∂j
|r − r′|

8π

]
,

G̃kj(r, r
′) =

1

ν̃

[
−

δkj
4π|r − r′|

+ ∂k∂j
|r − r′|

8π

]
,

Pk(r, r
′) = ∂k

1

4π|r − r′|
.
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From these expressions we obtain Green’s function of problem (9)–(11)
as

Gkj(r, r
′) = − 1

8πν

[
δkj
|r − r′|

+
(xk − x′k)(xj − x′j)

|r − r′|3

]
, (18)

G̃kj(r, r
′) = − 1

8πν̃

[
δkj
|r − r′|

+
(xk − x′k)(xj − x′j)

|r − r′|3

]
, (19)

Pk(r, r
′) = −

xk − x′k
4π|r − r′|2

. (20)

From these formulas and equations (12)–(14) it is evident that in the argu-
ment r′, the functions Gkj(r, r

′), G̃kj(r, r
′), Pk(r, r

′) satisfy the conjugate
system

∂Gmj(r, r
′)

∂x′m
= 0,

∂G̃mj(r, r
′)

∂x′m
= 0, (21)

ν∆r′Gij(r, r
′) +

∂Pj(r, r
′)

∂x′i
= δijδ(r − r′), (22)

ν̃∆r′G̃ij(r, r
′) +

∂Pj(r, r
′)

∂x′i
= δijδ(r − r′), (23)

The functions Gkj(r, r
′), G̃kjr, r

′), Pk(r, r
′) allow us to construct the

volume potentials

vi(r) = −ρ̄0

∫
Gij(r, r

′)fj(r
′) dr′, ṽi(r) = −ρ̄0

∫
G̃ij(r, r

′)fj(r
′) dr′,

p(r, ω) = ρ̄0

∫
Pi(r, r

′)fi(r
′) dr′,

which by virtue of (12)–(14) satisfy the stationary inhomogeneous system
of equations of the two-velocity hydrodynamics with one pressure (9)–(11).

The character of singularities of the kernels Gkj(r, r
′), G̃kj(r, r

′) and

Pk(r, r
′) is the same as for the singular solution

1

4π|r − r′| to the Laplace

equation and for its first derivative, respectively. This shows that the solu-
tions of the system of equations (9)–(11) are functions of the physical densi-
ties, as well as of the bulk saturation substances constituting the two-phase
continuum.

Formulas (18)–(20) for Gkj(r, r
′), G̃kj(r, r

′) and Pk(r, r
′) can be ob-

tained in another way using the vector analysis formulas

rot rotF = −∆F +∇divF .

Let us seek for Gk(r, r
′) = (Gk1(r, r′), Gk2(r, r′), Gk3(r, r′)), G̃k(r, r

′) =
(G̃k1(r, r′), G̃k2(r, r′), G̃k3(r, r′)) in the form
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Gk = rot rotUk = −∆Uk +∇ divUk,

G̃k = rot rot Ũk = −∆Ũk +∇ div Ũk.

Substituting these relations into (13), (14) and separating the potential parts
from the solenoidal ones, we obtain

−ν∆2Uk = δ(r − r′)ek, (24)

−ν̃∆2Ũk = δ(r − r′)ek, (25)

Pk = ν div ∆Ũk = ν̃ div ∆Ũk. (26)

Hence,

Uk(r, r
′) =

ek

8πν
|r − r′|, Ũk(r, r

′) =
ek

8πν̃
|r − r′|,

Pk(r, r
′) = div

ek

4π|r − r′|
=

∂

∂xk

1

4π|r − r′|
.

These formulas, as is easily seen, coincide with formulas (18)–(20). In for-
mulas (24)–(26), ek is the unit vector along the kth coordinate axis.

5. Potentials of single and double layers

As in the one-velocity hydrodynamics, we introduce the stress tensor in the
case of the two-velocity hydrodynamics:

Tik(v) = −pδik + ν(∂ivk + ∂kvi),

and
T̃ik(ṽ) = −pδik + ν̃(∂iṽk + ∂kṽi),

corresponding to (v, p) and (ṽ, p).
With the arguments from [7], an analog of Green’s formula corresponding

to the Stokes problem for the two-velocity hydrodynamics is obtained:∫
Ω

(ν∆vi − ∂ip)ui dr

= −
∫

Ω

ν

2
(∂iuk + ∂kui)(∂ivk + ∂kvi) dr +

∫
S
Tik(v)uink dS, (27)∫

Ω
(ν̃∆ṽi − ∂ip)ũi dr

= −
∫

Ω

ν̃

2
(∂iũk + ∂kũi)(∂iṽk + ∂kṽi) dr +

∫
S
T̃ik(ṽ)uink dS, (28)

where n = (n1, n2, n3) is the external to the domain Ω ⊂ R3 normal to S.
Interchanging u, ũ and v, ṽ and introducing along with p any smooth
function q, from (27) and (28) we obtain the following formulas:
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∫
Ω

[(ν∆vi − ∂ip)ui − vi(ν∆ui − ∂iq)] dr

=

∫
S

[Tik(v)uink − T ′ik(u)vink] dS, (29)∫
Ω

[(ν̃∆ṽi − ∂ip)ũi − ṽi(ν∆ũi − ∂iq)] dr

=

∫
S

[T̃ik(ṽ)ũink − T̃ ′ik(ũ)ṽink] dS, (30)

where

T ′ik(u) = qδik + ν(∂iuk + ∂kui), T̃ ′ik(ũ) = qδik + ν̃(∂iũk + ∂kũi).

Equalities (27)–(30) are called Green’s formulas corresponding to the Stokes
problem for the two-velocity hydrodynamics. Using (29), (30) and the usual
method of singular solutions, a representation of any solution v, ṽ, p of the
inhomogeneous system (9)–(11) through the term f and the values of v, ṽ
and Tik(v), T̃ik(ṽ) on S, is obtained.

Potentials of a simple layer with the density φ(ξ) = (φ1(ξ), φ2(ξ), φ3(ξ))
are of the form [7]:

V (r,φ) = −
∫
S
Gk(r, ξ)φk(ξ) dSξ, Q(r,φ) = −

∫
S
Pk(r, ξ)φk(ξ) dSξ,

Ṽ (r,φ) = −
∫
S
G̃k(r, ξ)φk(ξ) dSξ,

and the double-layer potentials with the density ψ(ξ) = (ψ1(ξ), ψ2(ξ), ψ3(ξ))
are called integrals of the form

Wk(r,ψ) =

∫
S
T ′ij(Gk(r, ξ))ψj(ξ)nj(ξ) dSξ,

W̃k(r,ψ) =

∫
S
T̃ ′ij(G̃k(r, ξ))ψj(ξ)nj(ξ) dSξ,

Π(r,ψ) = −2ν
∂

∂xj

∫
S
Pk(r, ξ)nj(ξ)ψk(ξ) dSξ,

Π̃(r,ψ) = −2ν̃
∂

∂xj

∫
S
Pk(r, ξ)nj(ξ)ψk(ξ) dSξ.

All considerations up to now have belonged to the three-dimensional case.
Let us present the results for the two-dimensional case. A singular solution
of the two-velocity hydrodynamics equation (9)–(11) has the form
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Gkj(r, r
′) = − 1

4πν

[
δkj ln

1

|r − r′|
+

(xk − x′k)(xj − x′j)
|r − r′|2

]
,

G̃kj(r, r
′) = − 1

4πν̃

[
δkj ln

1

|r − r′|
+

(xk − x′k)(xj − x′j)
|r − r′|2

]
,

Pk(r, r
′) =

1

2π

∂

∂xk
ln

1

|r − r′|
.

As for the electrostatic potentials, there is one significant difference between
the two-dimensional and the three-dimensional cases due to the fact that
Gkj , G̃kj with |r| → ∞ behaves as ln

1

|r| in the first case and as
1

|r| in the

second one. It can be shown that in the case of the analog to the Stokes
problem for the stationary equation of the two-velocity hydrodynamics in
the two-dimensional version, the first boundary value problem for a system
of biharmonic equations for the current functions is obtained.

6. Conclusion

To describe the three-dimensional steady-state viscous fluids of the two-
velocity continuum with pressure phase equilibrium, the fundamental solu-
tion has been obtained. The effect of physical phase densities, saturation
volume substances and viscosity of the two-phase continuum flows on the
velocity and pressure of currents is shown.
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