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Regularization of an inverse dynamic problem for
the equation of SH waves in a porous medium∗

Kh.Kh. Imomnazarov, Sh.Kh. Imomnazarov, T.T. Rakhmonov,
Z.Sh. Yangiboev

Abstract. A regularizing algorithm of an inverse problem for a one-dimensional
equation of SH waves in a fluid-saturated porous medium with energy loss under
intercomponent friction is proposed.

1. Introduction

Many engineering problems are reduced to solving purely mathematical
problems. Going from engineering problems to purely mathematical ones
can pose certain complications. Therefore, the creation of mathematical
models for physical processes is among the most important areas in mod-
ern science. Boundary value problems have found a wide use in the fluid
mechanics. These are problems, in which either the shape of an object (the
underground contour of a dam, oil-water contact, airfoil contour, etc.) is
found using given characteristics or the characteristics are calculated with
its shape given. The former problems are called the direct boundary value
problems, and the latter – the inverse boundary value problems [1]. Specifi-
cally, such problems emerge in exploration geophysics when searching for oil
strata and choosing parameters of the wave action on oil and gas deposits to
intensify oil production. The development of models for filtration in porous
media, which is determining in solving geophysical problems, started in the
second half of the 19th century. The development of many problems of fil-
tration was based on the law of resistance in fluid filtration, experimentally
established in 1856 by H. Darcy, a French engineer. The law reveals that the
fluid filtration rate is proportional to the pressure gradient. The filtration
coefficient characterizes both a medium and a fluid, that is, it depends on the
size of particles, their shape and roughness, the porosity and permeability
of the medium, and the viscosity of the fluid. The first theoretical investi-
gations into filtration based on this law were made by J. Dupuit and then
continued by F. Forchheimer. The first two-velocity mathematical models
for the description of seismic wave propagation in fluid-saturated porous
media were developed in [2, 3]. A non-isothermal model of filtration under
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assumption of the entropy additivity of porous medium components was ob-
tained with the use of conservation laws by P.H. Roberts and D.E. Loper [4].
A continual theory of filtration not limited by such an assumption was con-
structed in [5, 6], also, within the method of conservation laws. The Darcy
law is obtained as a consequence of the equations of the above-mentioned
theories in one of the limiting cases.

In recent decades, much attention of mathematicians has been given to
the so-called ill-posed problems, that is, problems whose solution may not
exist or be non-unique, unstable. Among such problems are many inverse
initial boundary value problems of mathematical physics. Some mathemat-
ical statements of inverse problems in wave propagation theory for a model
of elastic media were first considered by A.S. Alekseev [7, 8]. It was found
that they are linked with one-dimensional inverse spectral problems consid-
ered by I.M. Gelfand and B.M. Levitan [9] and M.G. Krein [10, 11]. In [12],
a relation between the Baranov–Kunetz method and a discrete analog of
the Gel’fand–Levitan method was established. In this case, the conditions
of solvability of the Gel’fand–Levitan equations made possible to correct
inaccurate seismograms. A rather extensive bibliography on the theory of
inverse problems for hyperbolic-type equations can be found in [13–23].

In this paper, using the idea from [23], we construct a regularizing al-
gorithm of an inverse problem for a one-dimensional equation of SH waves
in fluid-saturated porous media with energy loss under intercomponent fric-
tion.

2. Problem statement

Let a half-space z > 0 be filled with a non-homogeneous porous medium.
Equations for the propagation of seismic SH waves with allowance for energy
absorption caused by the intercomponent friction coefficient b(z) have the
following form [24, 25]:

ρs(z)utt = (µ(z)uz)z − ρl(z)b(z) (ut − vt), (1)
ρl(z) vtt = ρl(z)b(z) (ut − vt). (2)

Here u and v are the velocity vector components of the displacement of
particles of an elastic porous body and fluid with the partial densities ρs(z)
and ρl(z), respectively. Assume the porous medium be at rest at t < 0:

u|t=0 = ut|t=0 = 0, v|t=0 = vt|t=0 = 0. (3)

Let the following force be applied at the boundary z = 0:

µuz|z=0 = δ(t). (4)

Here δ(t) is the Dirac delta function.
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Using the information from (4), once continuously differentiable positive
functions ρs(z), µ(z), and continuous positive functions ρl(z), b(z), it is
necessary to determine twice continuously differentiable functions u(t, z),
v(t, z) from (1)–(3). This problem will be called a direct dynamic problem
for equations of SH waves in a porous medium.

In applications, of great interest are problems of determining the variable
coefficients of a differential equation. This is due to the fact that, as a
rule, differential equations describe physical processes, and the equation
coefficients are associated with the physical characteristics of the medium
in which these processes occur. Since these coefficients cannot be measured
directly, the problem of determining the properties of a substance is, in
essence, an inverse one.

Using the method proposed in [23] for the inverse problem of elastic-
ity theory, we construct a regularizing algorithm of the following inverse
problem:

Problem 1. Using the information u|z=0 = φ(t), reconstruct µ(z) from
(1)–(4). The other functions, ρs(z), ρl(z), and b(z), are considered to be
known.

3. Reducing problem (1)–(4) to a canonical form

Introduce, instead of z, the coordinate

x =
∫ z

0

dξ

ct(ξ)
,

where ct(z) =
√

µ(z)

ρs(z)
is the propagation velocity of the transverse seismic

waves in a porous medium.
With the use of the coordinate x, the propagation velocity of seismic

waves in a porous medium becomes unity. Since ∂

∂z
= 1

ct

∂

∂x
, equations (1)

and (2) have the canonical form

utt − uxx = (lnσ)′ux − b(x)
ρl(x)
ρs(x)

(ut − vt), x > 0, (5)

vt = b(x) (u− v), x > 0, (6)

u|t=0 = ut|t=0 = 0, v|t=0 = 0, (7)

ux|x=0 =
δ(t)
σ(0)

. (8)

In formula (5), σ(x) =
√
µ(x)ρs(x) is the acoustic stiffness, σ > 0. Now

assume that inequalities
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0 < ρmin
s ≤ ρs(x) ≤ ρmax

s <∞,

0 < ρmin
l ≤ ρl(x) ≤ ρmax

l <∞, (9)

0 < bmin ≤ b(x) ≤ bmax <∞

are satisfied.
Inverse Problem 1 is reformulated as follows: let, on the interval [0, T ],

the function
u|x=0 = φ(t), t ∈ [0, T ], (10)

be specified, and it is necessary to determine σ(x), x ∈ [0, T/2]. Let A denote
the operator for solving the direct problem, φ = A lnσ, σ ∈ C1[0, T/2], and
let Φ be the image of the space C1[0, T/2] at the mapping A.

According to [7, 8, 21–23], one can show that Φ is a set in C1[0, T ]
determined by the equality

Φ =
{
φ ∈ C1[0, T ] : φ(0) < 0,

‖ψ‖2L2(0,T ) +
∫ T/2

−T/2

∫ T/2

−T/2
φ′(|t−s|)ψ(t)ψ(s) dt ds ≥ 0, ∀ψ ∈ L2(0, T )

}
,

and the operator A is the homeomorphism of C1[0, T ] on Φ.

4. The regularizing algorithm of problem (5)–(8)

Let, instead of the function φ = A lnσ, its approximate value φ̃ ∈ C1[0, T ],
‖φ − φ̃‖ ≤ δ be known. If φ̃ ∈ Φ, due to the continuity of A−1 on Φ,
as an approximate value of σ one can take σ̃ = exp[A−1φ̃]. Assume that
φ̃ ∈ C1[0, T ], φ̃(0) < 0, but, generally speaking, it does not belong to Φ. In
this case, a natural method of finding an approximation is to construct the
mapping R : Φ̃ → C1[0, T/2], Φ̃ = {φ ∈ C1[0, T ] : φ(0) < 0} approximating
the inverse operator A−1 on Φ and determined on the entire set Φ̃ [7, 8,
21–23].

As shown in [21, 22], the initial inverse problem is reduced to a Volterra-
type nonlinear equation. In this paper, according to [23], a regularizing
algorithm preserving its “Volterra properties” is proposed.

First of all, let us show that the operator A acts from C1[0, T/2] to
C1[0, T ], and (A lnσ)(0) = −1/σ(0) < 0. Let σ ∈ C1[0, T/2]. A solution to
problem (5)–(8) is sought for in the class of piecewise smooth functions of
the form

u(x, t) = θ(t− x)u∆(x, t), v(x, t) = θ(t− x) v∆(x, t).

Here θ(t) is the Heaviside function, and u∆, v∆ are the restrictions of u, v
to the closed domain ∆ = {(x, t) : 0 ≤ x ≤ t}, u∆, v∆ ∈ C1(∆).
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Then it follows from (5)–(8) that at any T > 0 the restrictions of u, v
to the triangle ∆(T ) = {(x, t) : 0 ≤ x ≤ t ≤ T − x} (again denoted by u, v)
must satisfy the following relations:

utt − uxx = (lnσ)′ux − b(x)
ρl(x)
ρs(x)

(ut − vt), 0 < x < t < T − x, (11)

vt = b(x) (u− v), 0 < x < t < T − x, (12)

ux|x=0 = 0, 0 ≤ t ≤ T, (13)

u(x, x) = − 1√
σ(0)σ(x)

exp
(
−

∫ x

0

b(y)ρl(y)
2ρs(y)

dy

)
, 0 ≤ x ≤ T/2, (14)

v|t=0 = 0, 0 ≤ x ≤ T/2, (15)

It is easy to see that problem (11)–(15) is equivalent to the equations

u(x, t) = ω
( t+ x

2

)
+ ω

( t− x

2

)
− ω(0)−

1
2

∫ x

0
(lnσ)′(ξ) dξ

∫ t+x−ξ

t−x+ξ
U(ξ, ζ) dζ +

1
2

∫ (t+x)/2

0
(lnσ)′(ξ) dξ

∫ t+x−ξ

ξ
U(ξ, ζ) dζ +

1
2

∫ (t−x)/2

0
(lnσ)′(ξ) dξ

∫ t−x−ξ

ξ
U(ξ, ζ) dζ +

1
2

∫ x

0
b(ξ)

ρl(ξ)
ρs(ξ)

dξ

∫ t+x−ξ

t−x+ξ
V (ξ, ζ) dζ −

1
2

∫ (t+x)/2

0
b(ξ)

ρl(ξ)
ρs(ξ)

dξ

∫ t+x−ξ

ξ
V (ξ, ζ) dζ −

1
2

∫ (t−x)/2

0
b(ξ)

ρl(ξ)
ρs(ξ)

dξ

∫ t−x−ξ

ξ
V (ξ, ζ) dζ, (16)

v(x, t) = b(x)
∫ t

0
e−b(x)(t−s)u(x, s) ds, (17)

where ω(x) = u(x, x), U = ux, W = ut,

V (ξ, ζ) = W (ξ, ζ)− b(ξ)
∫ ζ

0
e−b(ξ)(ζ−s)u(ξ, s) ds.

Differentiating (16) with respect to x and t, we obtain integral equations
for the functions U(x, t), W (x, t), and u(x, t), whose solution exists and is
unique in C(∆(T )). Substituting U(x, t) and W (x, t) into (16), we find the
solution u(x, t) from the class C1 to problem (11), (13), (14). Substituting



6 Kh.Kh. Imomnazarov, et al.

u(x, t) into (17), we find the solution v(x, t) of the Cauchy problem (12),
(15). Hence, the function φ(t) = u|x=0 will be from C1[0, T ] and φ(0) =
−1/σ(0) < 0, that is, φ ∈ Φ̃.

Let us show that the equation A lnσ = φ, φ ∈ Φ, is equivalent to the
Volterra equation. For this, we consider the Banach space Z of the vector-
functions

z(x, t) = (z1(x, t), z2(x, t), z3(x), z4(x)),

which are continuous on ∆(T ), with a naturally defined operation of multi-
plication by the scalar functions from C(∆(T )) and the norm

‖z‖ = max{‖z1‖, ‖z2‖, ‖z3‖, ‖z4‖}.

In Z, we consider a subset Z̃0 consisting of vector-functions z0 ≡ Pφ, φ ∈ Φ̃,
of the form

z0(x, t) =
{
φ′(t+x)− φ′(t−x)

2
,
φ′(t+x) + φ′(t−x)

2
, φ′(2x),

1
φ(0)

}
. (18)

It is evident that there is a one-to-one correspondence between Z̃0 and Φ̃.
If in (20) φ ∈ Φ̃, we have z0 ∈ Z̃0. Let us determine the operator M :
Z × R̄+ → Z, R̄+ = {t : t ≥ 0}, by the formulas

(M(z, α))1(x, t) =
∫ x

0
f(z, α)(ξ)[z1(ξ, t+ x− ξ) + z1(ξ, t− x+ ξ)] dξ +

1
2

∫ x

0
b(ξ)

ρl(ξ)
ρs(ξ)

{
z1(ξ, t+ x− ξ) + z1(ξ, t− x+ ξ) +

z2(ξ, t+ x− ξ) + z2(ξ, t− x+ ξ)−

b(ξ)
∫ t+x−ξ

0
e−b(ξ)(t+x−ξ−s)z2(ξ, s) ds−

b(ξ)
∫ t−x+ξ

0
e−b(ξ)(t−x+ξ−s)z2(ξ, s) ds

}
dξ,

(M(z, α))2(x, t) =
∫ x

0
f(z, α)(ξ)[z1(ξ, t+ x− ξ)− z1(ξ, t− x+ ξ)] dξ +

1
2

∫ x

0
b(ξ)

ρl(ξ)
ρs(ξ)

{
z1(ξ, t+ x− ξ)− z1(ξ, t− x+ ξ) +

z2(ξ, t+ x− ξ)− z2(ξ, t− x+ ξ)−

b(ξ)
∫ t+x−ξ

0
e−b(ξ)(t+x−ξ−s)z2(ξ, s) ds+

b(ξ)
∫ t−x+ξ

0
e−b(ξ)(t−x+ξ−s)z2(ξ, s) ds

}
dξ,
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(M(z, α))3(x) = 2
∫ x

0
f(z, α)(ξ) z1(ξ, 2x− ξ) dξ +∫ x

0
b(ξ)

ρl(ξ)
ρs(ξ)

{
z1(ξ, 2x− ξ) + z2(ξ, 2x− ξ)−

b(ξ)
∫ 2x−ξ

0
e−b(ξ)(2x−ξ−s)z2(ξ, s) ds

}
dξ,

(M(z, α))4(x) = −
∫ x

0
f(z, α)(ξ)z4(ξ) dξ, (19)

where f(z, α) = z3z4

(1 + αz2
3)(1 + αz2

4)
.

Lemma 1. The equation z = z0 +M(z, 0), z0 ∈ Z̃0, is solvable in Z if and
only if z0 ∈ Z0.

Proof. Let z0 ∈ Z̃0. By the definition of the sets Z0 and Φ, this means that
there exists a function σ ∈ C1[0, T/2], σ > 0, such that A lnσ = φ, where
φ is uniquely determined by the function z0 according to (18). Then, by
definition, φ(t) = u|x=0, t ∈ [0, T ], where u(x, t) is the solution to problem
(11), (13), (14) with the function σ = exp[A−1φ]. Let us show that in this
case the vector-function

z(x, t) = (ux(x, t), ut(x, t), [u(x, x)]′, 1/u(x, x))

satisfies the equation z = z0 + M(z, 0). In fact, by inverting the wave

operator ∂2

∂x2−
∂2

∂t2
by the D’Alembert formula with allowance for the Cauchy

data u|x=0 = φ(t), ux|x=0 = 0 and the relation following from (14),

f(z, 0) +
bρl

2ρs
=
u′

u
+
bρl

2ρs
= −1

2
(lnσ)′,

we find

u(x, t) =
φ(t+ x) + φ(t− x)

2
+

∫ x

0
f(z, 0)(ξ) dξ

∫ t+x−ξ

t−x+ξ
z1(ξ, ζ) dζ +

1
2

∫ x

0
b(ξ)

ρl(ξ)
ρs(ξ)

dξ

∫ t+x−ξ

t−x+ξ

{
z1(ξ, ζ) + z2(ξ, ζ)−

b(ξ)
∫ ζ

0
e−b(ξ)(ζ−s)z2(ξ, s) ds

}
dζ. (20)

Hence, differentiation with respect to x results in the equality

z1(x, t) = z01(x, t) + (M(z, 0))1(x, t).

Differentiating the both parts of equality (20) with respect to t, we obtain
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z2(x, t) = z02(x, t) + (M(z, 0))2(x, t).

Then, setting t = x in (20), we obtain by differentiation z3(x) = z03(x) +
(M(z, 0))3(x). Finally, by definition z′4(x) = −z3(x)z2

4(x). Hence z4(x) =
z04 + (M(z, 0))4(x).

Conversely, let z ∈ Z̃ be the solution to the equation

z = z0 +M(z, 0), z0 ∈ Z̃0.

Then the function z4(x) ∈ C1[0, T/2] satisfies the relation z′4 + f(z, 0)z4 = 0
and the condition z4(0) = 1/φ(0) < 0. Hence, it is negative everywhere. We
set

u(x, t) = φ(t) +
∫ x

0
z1(ξ, t) dξ, (x, t) ∈ ∆(T ), (21)

σ(x) = −z2
4(x) exp

{
−

∫ x

0
b(y)

ρl(y)
ρs(y)

dy

}
, x ∈ [0, T/2],

where φ is the function from Φ̃ corresponding to z0. Let us show that the
pair (u, σ) satisfies equalities (11), (13), and (14). In fact, by definition
ux = z1, σ′/σ = 2z′4/z4 = −2f(z, 0). Hence

u(x, t) = φ(t) +
1
2

∫ x

0

∂

∂ξ

{
φ(t+ ξ) + φ(t− ξ)−∫ ξ

0

σ′(η)
σ(η)

dη

∫ t+ξ−η

t−ξ+η
uη(η, ζ) dζ +∫ ξ

0
b(η)

ρl(η)
ρs(η)

dη

∫ t+ξ−η

t−ξ+η

[
uζ(η, ζ)−

b(η)
∫ ζ

0
e−b(η)(ζ−s)us(η, s) ds

]
dζ

}
dξ

=
φ(t+ x) + φ(t− x)

2
− 1

2

∫ x

0

σ′(ξ)
σ(ξ)

dξ

∫ t+x−ξ

t−x+ξ
uξ(ξ, ζ) dζ +

1
2

∫ x

0
b(ξ)

ρl(ξ)
ρs(ξ)

dξ

∫ t+x−ξ

t−x+ξ

{
uζ(ξ, ζ)−

b(ξ)
∫ ζ

0
e−b(ξ)(ζ−s)us(ξ, s) ds

}
dζ.

One can see that u ∈ C1(∆(T )) and equalities (11) and (13) are valid.
Let us verify whether (14) is satisfied. Setting t = x in (21) and differ-

entiating, we find
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d

dx
u(x, x) = z3(x) =

d

dx

( 1
z4(x)

)
.

Since z4 < 0, from (21) we have the equality

z4(x) = −
√
σ(0)σ(x) exp

{∫ x

0

b(y)ρl(y)
2ρs(y)

dy

}
.

Then

u(x, x) +
1√

σ(0)σ(x)
exp

{
−

∫ x

0

b(y)ρl(y)
2ρs(y)

dy

}
= u(x, x)− 1

z4(x)
= 0.

Thus, the pair (u, σ), u ∈ C1(∆(T )), σ ∈ C1[0, T/2], σ > 0, satisfies equali-
ties (11)–(15). It follows from the definition of the set Φ that the function
φ(t) = u|x=0 belongs to Φ. Hence, z0 ∈ Z̃0.

Thus, it has been found that the solutions to the equations A lnσ = φ,
φ ∈ Φ, and z = z0 + M(z, 0), z0 ∈ Z̃0, are equivalent. Now, we specify,
instead of the function φ ∈ Φ, its approximate value φ̃ ∈ Φ̃, ‖φ − φ̃‖ ≤ δ.
For simplicity, we assume that φ(0) = φ̃(0) (the inequality φ(0) 6= φ̃(0) does
not introduce any fundamental changes). In terms of the functions z0 = Pφ
and z̃0 = Pφ̃, this means that z0 ∈ Z0, z̃0 ∈ Z̃0 and ‖z0− z̃0‖ ≤ δ. If z0 does
not belong to Z0, then according to Lemma 1 the equation z = z0 +M(z, 0)
does not have any solution.

Now, consider the regularized equation z = z0 +M(z, α) α > 0. Let Br

be a ball in Z of radius r, Br = {z ∈ Z : ‖z‖ ≤ r}, and

‖z‖(x) = max
{

sup
x≤t≤T−x

|z1(x, t)|, |z2(x, t)|, |z3(x)|, |z4(x)|
}
, z ∈ Z.

Lemma 2.

1. M ∈ C1(Z×R̄+;Z), that is, the operator M is continuous from Z×R̄+

to Z and has the continuous partial derivatives Mz(z, α) and Mα(z, α).

2. For any z ∈ Z, α > 0

‖M(z, α)‖(x) ≤ c1
2α

∫ x

0
‖z‖(ξ) dξ, x ∈ [0, T/2], (22)

where c1(α, T ) =
(
1 + 2bmax ρmax

l

ρmin
s

)
(1 + 2Tbmax).

3. For any r > 0, α > 0, z ∈ Br, and y ∈ Br

‖M(z, α)−M(y, α)‖(x) ≤ c2(r, α, T )
∫ x

0
‖z − y‖(ξ) dξ, x ∈ [0, T/2],

(23)
where c2(r, α, T ) =

(
1 + 4r

√
α+ bmax ρmax

l

ρmin
s

α
)
(1 + 2Tbmax)/(2α).
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Proof. The first statement is evident and is verified by direct calculations.
Note that the operator Mz at any fixed z, α is a linear continuous Volterra
operator in L(Z,Z). Let us prove inequality (22). It follows from the defi-
nition of the operator M that for any α > 0:

‖M(z, α)‖(x) ≤ 2
∫ x

0

(
|f(z, α)|+ 1

2
b(ξ)

ρl(ξ)
ρs(ξ)

)
‖z‖(ξ) dξ +

1
2

∫ x

0
b(ξ)

ρl(ξ)
ρs(ξ)

(1 + 2Tb(ξ))2‖z‖(ξ) dξ.

Hence, with allowance for (9) and the inequality |f(z, α)| ≤ 1/(4α) [23], we
obtain inequality (22). Inequality (23) is similarly proved if we take into
account that the function f(z, α) satisfies the inequality [23]:

|f(z, α)− f(y, α)| ≤ 1√
α

max{|z1 − y1|, |z2 − y2|}.

Consider the regularized equation

z = z0 +M(z, α). (24)

Theorem 1. Let z0 ∈ Z. Then, for any α > 0 in Z there exists a unique
solution z(α) to equation (24). In addition, as a function of the parameter
α, it is continuously differentiable in R+ and

‖z(α)‖ ≤ ‖z0‖ exp
(c1T

4α

)
. (25)

Proof. First, find a priori estimate (25). Let z(α) ∈ Z be a solution
corresponding to the value α > 0. It follows from inequality (22) that

‖z(α)‖(x) ≤ ‖z0‖+
c1
2α

∫ x

0
‖z(α)‖(ξ) dξ, x ∈ [0, T/2], (26)

and estimate (25) is obtained by applying the Gronwall inequality to (26).
Let us show that the solution is unique. Let z(α) and y(α) ∈ Z be

two solutions of (24). Since both of solutions lie in the ball Br(α), r(α) =

‖z0‖ exp
(

c1T

4α

)
, then according to Lemma 2 their difference w(α) = z(α)−

y(α) satisfies the inequality

‖w(α)‖(x) ≤ c2(r(α), α, T )
∫ x

0
‖z − y‖(ξ) dξ, x ∈ [0, T/2],

which, for any α > 0, has the unique solution w(α) = 0, that is, z(α) = y(α).
Let us prove the existence of the solution by the method of successive

approximations. We have
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z(n+1)(α) = z0 +M(z(n)(α), α), n ≥ 0, z(0) = z0. (27)

With inequality (22) and the principle of induction, it can be easily shown
that for any n ≥ 0:

‖z(n)(α)‖(x) ≤ ‖z0‖
n∑

k=0

1
k!

(c1x
2α

)k
≤ ‖z0‖ exp

(c1T
4α

)
,

that is, all approximations lie in the ball Br(α).
Consider the sequence w(n)(α) = z(n+1)(α)− z(n)(α). We have

‖w(0)(α)‖ = ‖M(z0, α)‖ ≤ c3‖z0‖, c3 =
c1T

4α
,

‖w(n)(α)‖ = ‖M(z(n)(α), α)−M(z(n−1)(α), α)‖

≤ c2(r(α), α, T )
∫ x

0
‖w(n−1)(α)‖(ξ) dξ, n ≥ 1.

Hence, for any n ≥ 0

‖w(n)(α)‖ ≤ c3‖z0‖
1
n!

(
c2T

2

)n

.

It follows that the series z0 +
∑∞

n=0w
(n)(α) is majorated by the convergent

numerical series

‖z0‖+ c3‖z0‖
∞∑

n=0

1
n!

(
c2T

2

)n

= ‖z0‖(1 + c3ec2T/2).

Hence, the sequence

z(n+1)(α) = z0 +M(z(n)(α), α) = z0 +
n∑

m=0

w(m)(α)

converges in Z. Since all z(n)(α) ∈ Br(α), we have

z(α) = lim
n→∞

z(n)(α) ∈ Br(α).

Going to the limit in (27), due to the continuity of the operator M , we find
that z is the solution to equation (24).

The fact that the solution z(α) is continuously differentiable follows from
the implicit function theorem [26]. Actually, according to Lemma 2, the
operator G : Z × R̄+ → Z, G(z, α) = z − z0 −M(z, α), has the continuous
derivatives Gα = −Mα and Gz = I −Mz. In this case, for any (z, α) ∈
Z × R̄+, Gz(z, α) : Z → Z has a bounded inverse operator (since Mz(z, α)
is a linear continuous Volterra operator). Hence, according to the implicit
function theorem, z(α) ∈ C1(R̄+, Z).
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Consider the case, where z0 ∈ Z0. Then, according to Lemma 1, in Z
there exists a unique solution z(0) of the equation

z = z0 +M(z, 0)

(the uniqueness of the solution follows from the uniqueness of the initial
inverse problem [21, 22]). Hence, if z0 ∈ Z0, equation (24) is uniquely solv-
able in Z for any α ≥ 0. It is easy to see that in this case the solution
z(α) will be continuously differentiable on the closed semi-axis R̄+. Actu-
ally, according to Theorem 1 it is sufficient to prove that z(α2) is smooth in
the neighborhood of the point α = 0. This again follows from the implicit
function theorem, since there exists a solution to the equation G̃(z, 0) = 0,
G̃ ∈ C1(Z × R,Z), where G̃(z, α) = G(z, α2), and the operator G̃z(z(0), 0)
has a bounded inverse. Let us formulate this result as a corollary of Theo-
rem 1.

Corollary. If z0 ∈ Z0, a solution to equation (24) exists and is unique in
Z for all α ≥ 0, and belongs to the class in C1(R̄+, Z).

Now, let us turn back to the initial problem. Thus, we know the function
φ̃ ∈ Φ̃ such that φ(0) = φ̃(0), ‖φ− φ̃‖ ≤ δ, φ ∈ Φ. Hence, z0 = Pφ ∈ Z0 and
z̃0 = Pφ̃ ∈ Z̃0, ‖z0 − z̃0‖ ≤ δ.

Consider the equation

z = z̃0 +M(z, α).

According to Theorem 1, at α > 0 it has a unique solution in Z. Let it be
denoted by z̃(α). The solution to the equation

z = z0 +M(z, α), α ≥ 0,

is denoted by z(α). We recall that z(0) corresponds to the exact solution
to the inverse problem. The function z̃(α) generates the operator N : Z̃0 ×
R̄+ → Z, N(z̃0, α) = z̃(α). In the next theorem it is stated that this
operator is regularizing for the equation z = z0 +M(z, 0).

Theorem 2. Let δ ≤ δ0. Then there exists a function

α(δ) ∈ C(0, δ0], α > 0, lim
δ→0

α(δ) = 0,

such that
lim
δ→0

‖z̃(α(δ))− z(0)‖ = 0.

Proof. By virtue of the triangle inequality,

‖z̃(α)− z(0)‖ ≤ ‖z̃(α)− z(α)‖+ ‖z(α)− z(0)‖.
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Let α ≤ α0, where the number α0 will be specified later. According to the
corollary of Theorem 1, the function z(α) ∈ C1(R̄+, Z) and, hence, there
exists a constant C1 such that for all α ∈ [0, α0]

‖z(α)− z(0)‖ ≤ C1α.

Now, we estimate the difference z̃(α)− z(α). We have

‖z̃(α)− z(α)‖(x) ≤ ‖z̃0 − z0‖+ ‖M(z̃(α), α)−M(z(α), α)‖(x).

As in the proof of (23), it is easy to obtain the inequality

‖M(z̃(α), α)−M(z(α), α)‖(x) ≤
(
c1
2α

+
2‖z(α)‖√

α

) ∫ x

0
‖z̃(α)− z(α)‖(ξ) dξ.

Note that the norms ‖z(α)‖ are uniformly bounded on R̄+ by some constant
l depending on z0. This follows from the continuity of the function z(α) on
R̄+ and estimate (25). Thus,

‖z̃(α)− z(α)‖(x) ≤ δ +
C2

α

∫ x

0
‖z̃(α)− z(α)‖(ξ )dξ, x ∈ [0, T/2],

where C2 = (c1 +4l
√
α0)/2. Hence, by virtue of the Gronwall inequality, we

obtain the estimate

‖z̃(α)− z(α)‖(x) ≤ δ eC2T/2α.

As a result, we have the inequality

‖z̃(α)− z(0)‖ ≤ C1α+ δ eC2T/(2α).

Now, it is sufficient to take

α(δ) =
C1 + 4l

√
α0

1 + ln(δ0/δ)
T

2
.

Here
α0 =

(
T l +

√
T 2l2 + C1T/2

)2 = α(δ0).

Then
‖z̃(α(δ))− z(0)‖ ≤ C1α(δ) +

√
eδ0δ → 0, δ → 0.

It follows from the proof of the theorem that the operator N will be a
uniformly regularizing operator on any subset Z0l of the set Z0 of the form
Z0l = {z0 ∈ Z0 : ‖z0‖ < l}.

In conclusion, the authors would like to thank Dr. Yu.V. Perepechko for
helpful discussions of the problem and valuable remarks which were taken
into account when preparing this paper.
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