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About one combined inverse problem for
the equations of porous media and

Maxwell’s equations∗

Kh.Kh. Imomnazarov

Let us consider the propagation of magnetoacoustic waves in the porous
media saturated with electrolyte in the case when the loss of energy oc-
curs due to electroconductivity, intercomponental friction coefficient and
electrokinetic effect. Linearized equations describing electromagnetic quasi-
stationary effects in the porous media saturated with electrolyte look like
[1, 2]:
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where u is the velocity of motion of an enclosing matrix, v is the velocity of
a conducting liquid, B is a magnetic field, σ = σl + σs (ρ = ρl + ρs) is the
electroconductivity (density) of a medium, σs (ρs) is the electroconductivity
(partial density) of an enclosing matrix, σl (ρl) is the electroconductivity
(partial density) of a liquid, ce is the speed of light, α is the electrokinetic
constant, χ̄ = χ∂ − α2/σ, χ∂ is the friction coefficient, ak (k = 1, 2, 3, 4)
are coefficients of functions of two velocities of longitudinal waves and one
velocity of a transverse wave of a porous saturated medium [1].

In the one-dimensional case, the axis x coincides with the direction of
propagation of transverse waves and is parallel to the direction of the mag-
netic field. Let us assume that the electroconductivity of the enclosing ma-
trix is absent, the velocities u = (0, uy, uz), v = (0, vy, vz), and the magnetic
field B = (0, By, Bz) are perpendicular to B0. Let a medium rest at t < 0,
and on the boundary x = 0 the following conditions are given:
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where µ = ρsc
2
t .

Let us now consider steady-state oscillations with a frequency ω of a
homogeneous half-space x > 0. Let the velocities and the magnetic field
look like

(uy, uz, vy, vz, By, Bz) = (uy(x), uz(x), vy(x), vz(x), By(x), Bz(x))e−iωt.

Within the limits of the statement proposed, after separation of a time factor
with respect to amplitudes we will obtain a boundary value problem. The
bounded solution of the obtained boundary value problem looks like
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βk, k = 1, 2, are characteristic roots with positive real parts of the differential
operator
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The velocity of the conducting liquid is found from
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Components of the electric field are calculated by the formulas
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Let us consider the case when magnetoacoustic waves are excited by a
seismic source. For the sake of definiteness we consider that B0

y = B0
z = 0,

fy = 0, fz 6= 0. The case when magnetoacoustic waves are excited by a
magnetic source were considered in [1]. From (3), we will obtain
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Hence, there is a connection between the components

Ez = −i ω
ω∗
Ey.

This relation allows us to formulate a method of measuring the kinetic co-
efficients α/χ̄. For measuring α/χ̄, we will place the sensor measuring two
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orthogonal components of the vector of the electric field E = (Ex, Ey) on
the boundary x = 0. We gain the equality of the modules |Ex| and |Ez| by a
change in the frequency of an external exciting pulse signal. The equalities
of the modules of electric fields are achieved with the frequency of excitation
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α
.

Knowing the external magnetic field B0, elecrtocunductivity σ = σl + σs
and characteristic frequency ω∗, we will obtain the formula for defining of
the combination the electrokinetic coefficient and the friction coefficient

χ̄

α
=

σ

ω∗

B0

ce
.
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