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Spherical mean value theorem for
a poroelastic static system

Kholmatzhon Imomnazarov, Nasridin Zhabborov

Abstract. Mean value relations for a vector of displacement of an elastic porous
body and a pore pressure for a poroelastic static system, when mass forces and
energy dissipation are absent, are obtained.
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1. Introduction

It is well-known, what an important role in mathematical physics is played
by classical mean value theorems for harmonic analysis [1]. Mean value
relations are most useful, also, in computational mathematics as they give
an effective method of constructing difference schemes. In Monte Carlo
methods, mean value theorems play a special role as they are basic for
constructing algorithms of a random walk on spheres [2–4]. In [4, 5], mean
value relations for a system of Lame equations and thermoelasticity are
obtained.

Simulation of two phase flows in heterogenous porous media is widely
used in oil production. For example, the simulation of a reservoir is intended
reconstructing a geological history of a sedimentary basin and, in particular,
dislocation of a hydrocarbon component on a geological time scale. The
simulation of a reservoir deals with understanding and prediction of fluid
flows occurring in the processes of oil production. On the other hand, the
simulation of two phase flows in porous media plays an important role for the
prognosis of earthquakes preparation as this is an energy intensive process.
Opening cracks in the zones with increased values of the shearing and the
tensile stresses is the most universal mechanism of development of changes
in a porous medium. Such zones are formed in the vicinity of the sources
of future earthquakes if a distribution of forces in space is non uniform.
Many seismologists consider that the initial stage of opening cracks and
a subsequent state of the medium, when destruction processes develop, is
associated with the dilatancy of the medium described in [6–8].

Dilatancy is a nonlinear loosening of a medium due to the formation of
cracks caused by a shear. This takes place, when tangential stresses exceed
a certain threshold. A dilatancy area is considered to incorporate a set of
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elastic porous medium points, for which at a given stress field {σij} the
following condition is fulfilled:

Dτ ≡ τ − α(P + ρgz)− Y ≥ 0, (1)

where ρ is the density of rocks, g is the acceleration of gravity, z is the
depth of a point, P is the hydrodynamic pressure, α is the internal friction
coefficient, Y is the cohesion of rocks, τ is the intensity of tangential stresses:

τ =
√

3
2

[
(σ11 − σ22)2 + (σ22 − σ33)2 + (σ11 − σ33)2 + 6(σ2

12 + σ2
13 + σ2

23)
]1/2

.

Condition (1) coincides with the Schleicher–Nadai criterion of material de-
struction under the action of shearing loads. It satisfactorily describes the
beginning of the rock destruction process. It can also be used at the “pre-
destruction” stage (when loading constitutes up to 60–90 % of the critical
value) for the qualitative description of the shape of areas with intensifica-
tion of crack opening.

In the given paper, mean value relations for equations of a poroelastic
static system are obtained using the proposed method [4, 5]. Namely, the
mean value relations for a vector of displacement of an elastic porous body
and a pore pressure are obtained. The knowledge of these values is sufficient,
on the one hand, for evaluation of reservoirs in oil production and, on the
other hand, for definition of a dilatancy area in problems of the prognosis
of earthquakes.

2. Statement of the problem

Let us assume that the bounded domain Ω̃ ⊂ R3 is filled with a homoge-
neous isotropic elastic porous medium. The elastic porous static state of
the medium Ω̃ in the absence of mass sources and dissipation of energy is
described by the system of the differential equations [9, 10]:

ρ0,s

ρ0

∂P

∂xi
+

3∑
k=1

∂h̄ik
∂xk

= 0,
ρ0,l

ρ0

∂P

∂xi
= 0, i = 1, 2, 3. (2)

Here h̄ik is a stress tensor, P is the pore pressure, ρ0 = ρ0,l + ρ0,s, ρ0,l and
ρ0,s are partial densities of fluid and an elastic porous body, respectively.
The total stress tensor of the elastic porous body looks like

σik = −h̄ik − Pδik, (3)

h̄ik = −µ
(
∂Ui
∂xk

+
∂Uk
∂xi

)
−
(
λ− ρ0,s

ρ0
K

)
δik div U +

ρ0,l

ρ0
Kδik div V , (4)
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P =
(
K −

(
ρ2
0α̂+

K

ρ0

)
ρ0,s

)
div U −

(
ρ2
0α̂+

K

ρ0

)
ρ0,l div V , (5)

where U = (U1, U2, U3) is the vector of displacement of the elastic porous
body, V = (V1, V2, V3) is the vector of displacement of fluid, K = λ + 2

3
µ,

δik is the Kronecker delta, and α̂, λ, µ are the constants from the equation
of state [9].

3. Differential equations of the vector of displacement of
an elastic porous body and pore pressure

Using the pore pressure definition (5), we exclude from (4) the vector of
displacement of fluid. The obtained expression is substituted into the first
equation of system (2), and the operator div will act on both sides of the
second equation of system (2). As a result, we will obtain a system of second
order differential equations of the vector of displacement of the elastic porous
body U and the pore pressure P :

∆U + α̃∇ div U + β̃∇P = 0, ∆P = 0. (6)

Here,

α̃ = 1 +
λ

µ
− K2

(ρ3
0α̂+K)µ

, β̃ =
Kρ0,l − ρ3

0α̂ρ0,s

(ρ3
0α̂+K)µρ0

.

Now, following [4, 5], introduce N(u) and N (1)(u), which are operators
of averaging the vector function u = (u1, u2, . . . , un)T on the surface of the
sphere S(x, r) on the uniform measure dΩ and dη(1) = {[aδij+bsisj ]dΩ}ni,j=1,
respectively, i.e.,

N(u) =
1

ωnrn−1

∫
S(x,r)

u(x + ry) dΩ(y),

N (1)(u) =
1

ωnrn−1

∫
S(x,r)

u(x + ry) dη(1)(y),

where ωn is the area of the unit sphere, si are the direction cosines, a and b
are known constants.

For a harmonic function P (x), x ∈ Ω̃, we have

P (x) = N(P )(x) =
3

4πr3
N (W )P (x), (7)

where N (W )P (x) is a volume integral of P on W = {|x− y| < r}. For the
harmonic function ∂P

∂xk
, using (7) we obtain
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∂P (x)
∂xk

=
3

4πr3

∫
W

∂P

∂xk
dW =

3
4πr3

∫
S(x,1)

P
xk
r
dΩ, k = 1, 2, 3,

or
∇P (x) =

3
4πr3

∫
S(x,1)

P∇s dΩ(s). (8)

Now, using the formula from [5] and taking into account a biharmonic vector
of displacement of the elastic porous body U and then relation (8), we obtain

N (1)(U)(x)−U(x)

=
r2(∆ + α̃∇ div)U(x)

α̃+ 3
+

∞∑
n=2

2(n+ 1)r2n

(2n+ 3)!

[
15n∆n−1(−β̃)∇P (x)

α̃+ 3
− 3(n− 1)∆U(x)

]

= − β̃r2

α̃+ 3
∇P (x) = − β̃r2

α̃+ 3
3

4πr3

∫
S(x,1)

P∇s dΩ(s).

Consequently, taking into account the harmonicity of P and the biharmonic-
ity of U , we have proved the following theorem:

Theorem. The general solution to the system of equations (6) of the class
C∞(Ω̃) satisfies the mean value relation

P (x) = N(P )(x), U(x) = N (1)(U)(x) +
β̃r2

α̃+ 3
3

4πr3

∫
S(x,1)

P∇s dΩ(s).

Components of the stress tensor are calculated by the formula from [11],

σik = µ

(
∂Ui
∂xk

+
∂Uk
∂xi

)
+
(
λ− K2

K + ρ3
0α̂

)
δik div U − ρ3

0α̂

K + ρ3
0α̂
δikP,

if the vector of displacement of the elastic porous body U and the pore pres-
sure P are known.
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