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Categorical modelling of trace equivalence for
timed automata models with invariants

N. S. Gribovskaya

Abstract.
Formal models for real-time systems have been actively studied over the past

several years. Much of the theory of untimed systems has been lifted to the real-time
setting. An example is the notion of trace equivalence applied to timed transition
systems with invariants which is studied here within the general categorical frame-
work of open maps. In particular, we demonstrate how to characterize standard
timed trace equivalence in terms of spans of open maps with a natural choice of a
path category.

1. Introduction

During the last years various timed extensions of concurrent models have
been actively studied in order to handle quantitative aspects of the behaviour
of concurrent and real-time systems. Much of the theory of untimed systems
has been lifted successfully to these real-time models. For example, many re-
sults from automata theory have been transferred to timed automata models
[3, 4, 1]. The real-time models often include timed versions of equivalences
on concurrent processes, e.g., timed bisimilarity equivalence, timed testing
equivalence and timed trace equivalence.

In this paper we focus on a timed variant of trace equivalence which
has already been treated for real-time models by many researchers (see,
for instance, [2, 21, 22]). Our aim here is to apply the general categorical
framework of open maps [14] to an extension of timed transition systems by
invariants which have to be true in all reachable states of the model. Such
invariants represent global properties of timed transition systems and may
be used for specification and verification of systems and processes.

The general idea of the open maps approach is to formalize that one
categorical model of computation is more expressive than another in terms
of embeddings. This approach also provides a general concept of abstract
bisimilarity for any categorical model in terms of spans of so-called open
maps, which are those morphisms which, roughly speaking, reflect and pre-
serve behavior. Formally, the definition of open maps is parameterized not
just on a categorical presentation of a model (i.e., on the choice of mor-
phisms), but also on the notion of a computation path and what does it
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mean to extend a computation path by another one. This abstract defi-
nition of bisimilarity makes possible a uniform definition of an equivalence
over different models (see [14, 18, 9, 10]) and allows one to apply general
results from the categorical setting (e.g., the existence of canonical models
and characteristic games and logics) to concrete behavioural equivalences.

The outline of the paper is as follows. The basic notions and notations
related to the open maps approach are defined in Section 2. In Section 3,
we introduced a model of timed transition systems with invariants, given
a category of timed transition systems with invariants and its subcategory
from [13], and represent some properties of this category. Next, in Section
4, we show how timed trace equivalence can be captured by the open maps
approach. Finally, Section 5 contains conclusions and remarks on the future
work.

2. Introduction to open maps

In this section we briefly recall the basic definitions from the category theory.
The notion of a category was introduced by S. Eilenberg and S. Mac

Lane in 1944 in connection with the problem of axiomatization of the group
theory of homologies and cohomologies of the topological spaces. This notion
gradually found its use in the applied fields of mathematics as well.

Definition 1. We say that the category M is assigned, if we have:

• a set M, the elements of which we call the objects of the category,

• a set M(X, Y ), the elements of which we call the morphisms from X
to Y ,

• a rule of composition: ◦ : M(X,Y )×M(Y, Z) −→ M(X, Z),

• the morphism 1X ∈ M(X,X), called identity,

satisfied the following axioms:

• for all f ∈ M(X, Y ), g ∈ M(Y,Z) and h ∈ M(Z, V ): h ◦ (g ◦ f) =
(h ◦ g) ◦ f ,

• for all f ∈ M(X, Y ) and g ∈ M(Y, Z) it holds: 1Y ◦ f = f and
g ◦ 1Y = g.

One of the most important terms of the category theory is the notion
of open morphisms. For a given category the open morphisms are defined
by a specific subcategory and represent simulations between objects of the
category. Let M be a category and P ↪→ M be some subcategory of the
category M. Let us give the formal definition of P-open morphisms.
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Definition 2. A morphism f : X → Y in the category M is called P-open,
if for any morphism m : P → Q in the subcategory P and all morphisms
p : P → X, q : Q → Y , f : X → Y such that q ◦m = f ◦ p, there exists a
morphism p′ : Q → X such that p′ ◦m = p and f ◦ p′ = q.

Note that objects of the category M and P-open morphisms form a sub-
category in the category M, because identity morphisms and compositions
of P-open morphisms are obviously P-open.

In [14], the notion of P-open morphism was used to define the abstract
P-bisimilarity in the setting of objects of M.

Definition 3. Two objects X and X ′ of M are called P-bisimular iff there

is a span of P-open morphisms X
f←− X0

f ′−→ X ′.

To extract a subclass of categories, for which a specific bisimilarity is
indeed an equivalence relation, let us define a category with pullbacks.

Definition 4. A category M has pullbacks, iff for any two morphisms
T1

µ1→ T0
µ2← T2 there exist T and two morphisms T1

π1← T
π2→ T2 such that

• µ1 ◦ π1 = µ2 ◦ π2,

• for any other T ′ and morphisms T1
φ1← T ′ φ2→ T2 such that µ1 ◦ φ1 =

µ2◦φ2, there exists a unique morphism ξ : T ′ → T such that φi = πi◦ξ
(i = 1, 2).

The following proposition shows that if the category M has pullbacks,
then P-bisimilarity is always an equivalence relation.

Proposition 1. [14] Pullbacks of P-open morphisms are P-open.

3. Timed transition systems with invariants

In this section we describe a model of timed transition systems with invari-
ants, a category for this model proposed in the paper [13], and consider the
properties of the category. Furthermore, this section contains a number of
useful definitions and notations.

As a model for real time systems, we use timed transition systems with
invariants [16] which are an extension of timed transition systems and are a
basic interleaving model for concurrent and real-time systems.
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Figure 1. Timed transition system with invariants T

Definition 5. A timed system T is a six-tuple (S, Στ , s0, X, T, I), where

• S is a set of states, and s0 is the initial state,

• Σ is a finite alphabet of actions,

• X is a set of clock variables (clocks),

• T is a set of transitions such that T ⊆ S × Στ × ∆ × 2X × S. Here
∆ is a clock constraint generated by the following grammar ∆ ::= c#x
| x + c #y | ∆ ∧ ∆, where # ∈ {≤, <,≥, >, =}, c is a real valued
constant, and x, y are clock variables,

• I assigns an invariant that is given by the same syntax as clock con-
straints to each state; thus the invariant for a state s, ιs, can be gen-
erated by the grammar ∆.

A transition (s, σ, δ, λ, s′) is denoted by s
σ→

δ, λ
s′.

Example 1. For the timed transition system T depicted in Figure 1, we
have the following: the alphabet of actions Σ1 consists of three actions a, b,
and c, and the set of clocks X1 includes two clocks x and y. ♦

In order to explain the behavior of a timed transition system with in-
variants, we define some useful notions and notations. Let R+ be the set
of real nonnegative numbers and N be the set of natural numbers. For all
n ∈ N we define the set Rn as the Cartesian product of n sets R+.
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Definition 6. A timed word over an alphabet Σ is a finite sequence of pairs
α = (σ1, d1) (σ2, d2) (σ3, d3) . . . (σn, dn), where for all 1 ≤ i ≤ n σi ∈ Σ,
di ∈ R+ and for all 1 ≤ i ≤ n− 1 di ≤ di+1.

A pair (σ, d) represents an occurrence of action σ at time d relative to
starting time 0.

Definition 7. A clock evaluation is a function ν : X → R+ which assigns
times to the clock variables of a system. We define (ν + c)(x) := ν(x) + c
for all clock variables x ∈ X. If λ is a set of clocks, then

ν[λ → 0](x) =

{
0 if x ∈ λ,

ν(x) otherwise.

A constraint δ is satisfied by a clock evaluation ν iff the expression
δ[ν(x)/x] evaluates to true. Here δ[y/x] is a syntactic substitution of y
for x in δ. A constraint δ defines a subset of Rm (m is the number of clocks
in the set X). We will call this subset the meaning of δ and denote it by
‖δ‖X . The meaning of an invariant ιs, ‖ιs‖X , is defined in the same way
as the meaning of a constraint δ. A clock evaluation ν defines a point in
Rm (denoted by ‖ν‖X). Thus, the constraint δ is satisfied by the clock
evaluation ν iff ‖ν‖X ∈ ‖δ‖X .

Definition 8. Let T = (S, Στ , s0, X, T, I) be a timed transition system with
invariants. A configuration of T is a pair 〈s, ν〉, where s is a state and ν
is a clock evaluation. The configuration C0(T ) = 〈s0, ν0〉, where ν0 is the
constant 0 function, is called the initial configuration. We define the set of
all configurations of T as Conf(T ).
We say that T can make a run 〈s0, ν0〉 σ1→

d1

〈s1, ν1〉 σ2→
d2

. . .
σn→
dn

〈sn, νn〉 iff for

all i > 0 there exists a transition si−1
σi→

δi, λi

si such that ‖νi−1+(di−di−1)‖X

∈ ‖δi‖X , for all τ ∈ [0, (di − di−1)) it holds that ‖νi−1 + τ‖X ∈ ‖ιsi−1‖X

and νi = (νi−1 + (di − di−1))[λi → 0] (here s0 is the initial state, ν0 is the
constant 0 function and d0 = 0) and for the last state ‖νn‖X ∈ ‖ιsn‖X . The
timed word α = (σ1, d1) (σ2, d2) . . . (σn, dn) is generated by this run.

In the paper [13] the authors constructed the category of the timed tran-
sition systems with invariants, CT T Sι

Σ, which consists of the timed tran-
sition systems with invariants and morphisms between them. Let us give
the definition of a morphism between two timed transition systems with
invariants.
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Figure 2. The timed transition system with invariants T̆

Definition 9. [13] A morphism (µ, η) between timed transition systems with
invariants T1 = (S1,Σ, s0

1, X1, T1, I1) and T2 = (S2, Σ, s0
2, X2, T2, I2) consists

of two components: a map µ : S1 → S2 between the states and a map
η : X2 → X1 between the clocks. These maps must satisfy µ(s0

1) = s0
2, for

all s1 ∈ S1 ‖ιs1‖X1 ⊆ ‖ιµ(s1)[η(x)/x]‖X1, and whenever there is a transition
in T1 of the form s1

σ→
δ1, λ1

s′1, there is a transition µ(s1)
σ→

δ2, λ2

µ(s′1) in T2

satisfying the following two constraints:

1. λ2 = η−1(λ1), where η−1(λ1) = {x ∈ X2 | η(x) ∈ λ1},
2. ‖δ1‖X1 ⊆ ‖δ2[η(x)/x]‖X1.

Example 2. It is easy to check that the pair of maps (µ, η) such that
µ1(s̆i) = si, (0 ≤ i ≤ 2) and η1(x) = x, η1(y) = y is a morphism from the
timed transition system with invariants T̆ in Figure 2 to the timed transition
system with invariants T in Figure 1. ♦

Let us introduce an auxiliary notation. For a function η : X ′ → X and
a clock valuation ν : X → R+, we define η−1(ν) : X ′ → R+ as follows:
η−1(ν)(x′) := ν(η(x′)).

Consider a useful simulation property of a morphism, proved in [13].

Theorem 1. [13] Given timed transition systems with invariants T and
T ′ with alphabet Σ and a morphism (µ, η) between T and T ′, whenever
〈s0, ν0〉 σ1→

τ1
〈s1, ν1〉 . . . 〈sn−1, νn−1〉 σn→

τn

〈sn, νn〉 is a run of T generating the
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timed word (σ1, τ1) . . . (σn, τn), then 〈µ(s0), η−1(ν0)〉 σ1→
τ1
〈µ(s1), η−1(ν1)〉 . . .

〈µ(sn−1), η−1(νn−1)〉 σn→
τn

〈µ(sn), η−1(νn)〉 is a run of T ′ generating the same

word.

Timed transition systems with invariants under an alphabet Σ and mor-
phisms between them form a category of timed transition systems with in-
variants, CT T Sι

Σ, in which the composition of two morphisms (µ, η) : T −→
T ′ and (µ′, η′) : T ′ −→ T ′′ is defined as (µ′, η′) ◦ (µ, η) := (µ′ ◦ µ, η ◦ η′),
and the identity morphism is the morphism where both µ and η are the
identity functions. As proved in [13], CT T Sι

Σ is indeed a category which
has pullbacks and binary products.

4. Timed trace equivalence and open maps

In this section we first introduce the notion of timed trace equivalence in
the setting of timed transition systems with invariants and then show how
the equivalence can be captured by open maps.

Definition 10. For a timed transition system with invariants T , the set
L(T ) = { α = (σ1, d1) . . . (σn, dn) | T can make a run 〈s0, ν0〉 σ1→

d1

〈s1, ν1〉
σ2→
d2

. . .
σn→
dn

〈sn, νn〉 } is called the language of the timed transition system

T .

Example 3. The set L(T̆ ) = {ε, (b, t1), (b, t1)(c, t2) | t1 ≤ 3, 1 < t2−t1 < 2}
is the language of the timed transition system T̆ , depicted in Figure 2. ♦

Now we define the notion of a trace equivalence for timed transition
systems with invariants.

Definition 11. Timed transition systems with invariants T and T ′ are
called timed trace equivalent iff L(T ) = L(T ′).

Example 4. Consider the timed transition systems with invariants shown
in Figure 1, 2 and 3. The timed transition systems with invariants T̂ and T̄
are timed trace equivalent, while the timed transition systems with invariants
T and T̆ are not, because, for example, we have (b, 1)(c, 2) ∈ L(T ) but this
is not the case for the timed transition system with invariants T̆ . ♦

Next, following the paper [14], we construct a subcategory of observations
of the category CT T Sι

Σ.
We choose timed words over Σ as “observation objects”.
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Figure 3. The trace equivalent timed transition systems with invariants

Definition 12. [13] Given a timed word α = (σ1, τ1) . . . (σn, τn), we de-
fine a timed transition system with invariants T α = (Sα, 0, Σ, V α, Tα, Iα)
corresponding to α as follows:

0 σ1−→
δ1,λ1

1 . . . (n− 1) σn−→
δn,λn

n,

i.e. the states are the integers 0, 1, . . . , (n − 1), n, with 0 as the initial
state, and the set of clock variables, V α, consists of the 2n subsets of states
{1, 2, . . . , n}. In addition, we define λi = {x | i ∈ x} and δi = ∧

x∈V α
(x =

τi − τI(i,x)), where I(i, x) := max{k ∈ x ∪ {0} | k < i} and τ0 := 0. The
index returned by I(i, x) is the index of the last state at which x was reset.
The invariants are defined inductively to be of the form

∧
x∈X(cx ≤ x < c′x).

The initial invariant is
∧

x∈X(0 ≤ x < τ1). Assume that the invariant on
the state (i − 1) is

∧
x∈X(ci−1

x ≤ x < c̃i−1
x ), then the invariant on state i

is
∧

x∈X( if x ∈ λi then (0 ≤ x < τ̃i) else (c̃i−1
x ≤ x < c̃i−1

x + τ̃i)), where
τ̃i = τi − τi−1. The constraint on the final state is

∧
x∈X( if x ∈ λi then

(x = 0) else (x = c̃i−1
x )).

The class of timed transition systems of the form T α is denoted as T T Sα
Σ.

With respect to the set of actions Σ, let P∗Σ denote the full subcategory of
the category CT T Sι

Σ with objects from T T Sα
Σ and with identity morphisms

and morphisms with Tε
1 as a domain.

Given the category CT T Sι
Σ and subcategory P∗Σ, we can now apply the

general framework from [14] to define the alternative notion of open maps.

1Tε denotes the timed transition system corresponding to the empty timed word ε.
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Lemma 1. A morphism (µ, η) : T → T ′ is P∗Σ-open iff for all morphisms
(µ1, η1) : O → T ′ with O ∈ P∗Σ there exists a morphism (µ′, η′) : O → T
such that (µ1, η1) = (µ, η) ◦ (µ′, η′).

Our next aim is to characterize P∗Σ-openness of a morphism relative to
the corresponding subcategory of observations defined as above.

Theorem 2. A morphism between T and T ′ is P∗Σ-open iff whenever
〈s′0, ν ′0〉 σ1→

τ1
〈s′1, ν ′1〉 . . . 〈s′n−1, ν

′
n−1〉 σn→

τn

〈s′n, ν ′n〉 is a run of T ′ generating the

timed word (σ1, τ1) . . . (σn, τn), there exists a run of T 〈s0, ν0〉 σ1→
τ1
〈s1, ν1〉 . . .

〈sn−1, νn−1〉 σn→
τn

〈sn, νn〉 generating the same word and satisfying the follow-

ing conditions: s′i = µ(si) and ν ′i = η−1(νi) for all 0 ≤ i ≤ n.

Proof. (⇒) Let (µ, η) : T → T ′ be a P∗Σ-open morphism. Assume
that 〈s′0, ν ′0〉 σ1→

τ1
〈s′1, ν ′1〉 . . . 〈s′n−1, ν

′
n−1〉 σn→

τn

〈s′n, ν ′n〉 is a run of T ′ generating

the timed word α = (σ1, τ1) . . . (σn, τn). According to Theorem 4 from [13],
for this run there exists a morphism (µ1, η1) : Tα → T ′ in CT T Sι

Σ such
that µ1(i) = s′i (i = 0..n) and η1(x) = {i | (1 ≤ i ≤ n) ∧ (ν ′i(x) = 0)}.
By Lemma 1 we have a morphism (µ2, η2) : Tα → T in CT T Sι

Σ such that
(µ1, η1) = (µ, η) ◦ (µ2, η2), because (µ, η) is a- P∗Σ-open morphism. Now,
by Theorem 4 from [13], we can find a run of T 〈s0, ν0〉 σ1→

τ1
〈s1, ν1〉 . . .

〈sn−1, νn−1〉 σn→
τn

〈sn, νn〉 for morphism (µ2, η2) such that µ2(i) = si (i = 0..n)

and η2(x) = {i | (1 ≤ i ≤ n) ∧ (νi(x) = 0)}. It means that s′i = µ(si) and
ν ′i = η−1(νi) for all 0 ≤ i ≤ n.

(⇐) For the if part of the theorem assume that (µ1, η1) : Tα → T ′ is
a morphism from the category CT T Sι

Σ. By Theorem 4 from [13], we can
find a run of T ′ 〈s′0, ν ′0〉 σ1→

τ1
〈s′1, ν′1〉 . . . 〈s′n−1, ν

′
n−1〉 σn→

τn

〈s′n, ν ′n〉 generating

the timed word (σ1, τ1) . . . (σn, τn) such that µ1(i) = s′i (i = 0, . . . , n) and
η1(x) = {i | (1 ≤ i ≤ n) ∧ (ν ′i(x) = 0)}. Now, from the assumptions of the
theorem, there exists a run of T 〈s0, ν0〉 σ1→

τ1
〈s1, ν1〉 . . . 〈sn−1, νn−1〉 σn→

τn

〈sn, νn〉
generating the same timed word such that s′i = µ(si) and ν ′i = η−1(νi) for all
0 ≤ i ≤ n. By Theorem 4 from [13], this implies an existence of a morphism
(µ2, η2) : Tα → T in CT T Sι

Σ such that µ2(i) = si (i = 0, . . . , n) and η2(x) =
{i | (1 ≤ i ≤ n) ∧ (νi(x) = 0)}. Thus, we have (µ1, η1) = (µ, η) ◦ (µ2, η2).
Now, from Lemma 1, we conclude that (µ, η) is P∗Σ-open. 2

Example 5. According to Theorem 2, the morphism (µ, η) defined in Ex-
ample 2 is not P∗Σ-open, because for the run of T 〈s0, ν0〉 b→

1
〈s1, ν1〉 c→

2

〈s2, ν2〉 (where ν0(x) = ν0(y) = ν1(y) = ν2(x) = ν2(y) = 0 and ν1(x) = 1),
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generating the timed word (b, 1)(c, 2), there is no run of T̆ , generating the
same timed word. ♦

From [14] and by the fact that CT T Sι
Σ has pullbacks [13], we can con-

clude that P∗Σ-bisimilarity is an equivalence relation generated by open maps.
Now we can present our main result.

Theorem 3. Two timed transition systems T and T ′ are P∗Σ-bisimilar iff
they are timed trace equivalent.

Proof. (⇒) Let T and T ′ be P∗Σ-bisimular timed transition systems
with invariants. This means that there exists a span of P∗Σ-open morphisms

T (µ,η)← T ∗ (µ′,η′)→ T ′ with a vertex T ∗. By Theorems 1 and 2, it is easy to
check that L(T ) = L(T ∗) and L(T ′) = L(T ∗). Thus, we have L(T ) = L(T ′).

(⇐) Let T and T ′ be timed trace equivalent timed transition systems
with invariants. According to [13], CT T Sι

Σ has binary products. Thus, we
have the timed transition system with invariants T × T ′, that is a binary
product of T and T ′, and two projecting morphisms (µ, η) : T × T ′ → T
and (µ′, η′) : T × T ′ → T ′. In order to complete this proof, we need
to demonstrate that (µ, η) and (µ′, η′) are P∗Σ-open morphisms. Assume
〈s0, ν0〉 σ1→

τ1
〈s1, ν1〉 σ2→

τ2
. . .

σn→
τn

〈sn, νn〉 is a run of T , generating the timed

word α = (σ1, τ1) . . . (σn, τn). Since L(T ) = L(T ′), there exists a run 〈s′0, ν ′0〉
σ1→
τ1

〈s′1, ν′1〉 σ2→
τ2

. . .
σn→
τn

〈s′n, ν′n〉 of T ′ generating the same timed word α. By

Theorem 4 from [13], this implies existence of morphisms (µ1, η1) : Tα → T
and (µ2, η2) : Tα → T ′. From the definition of binary products (see [20]), we
get a morphism (µ3, η3) : Tα → T × T ′ such that (µ1, η1) = (µ, η) ◦ (µ3, η3)
and (µ2, η2) = (µ′, η′) ◦ (µ3, η3). From this diagram and by Theorems 1 and
2, it follows that (µ, η) is a P∗Σ-open morphism. In a similar way we can
show that (µ′, η′) is a P∗Σ-open morphism as well. 2

5. Conclusion

In this paper, we have tried to review Joyal, Nielsen, and Winskel’s theory of
open maps [14] to provide a timed variant of a well-known trace equivalence
in the category of timed transition systems with invariants. In particular, we
have developed a categorical characterization of the timed trace equivalence.
In the future, we hope to extend the obtained results to other observational
equivalences (e.g., equivalences taking into account internal actions, etc.)
and to other classes of timed models (e.g., time Petri nets, networks of timed
automata, etc.). In particular, relying on the paper [14], we contemplate to
adapt the unfolding methods for time Petri nets from [6] and open maps
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based characterizations for timed event structures from [22] to transfer the
general concept of bisimilarity to the timed models.
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