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Specification of monitor metrics for generating
balanced numerical grids∗

A.H. Glasser, I.A. Kitaeva, Yu.V. Likhanova,
V.D. Liseikin, V.S. Lukin

Abstract. Formulas of monitor metrics are introduced for generating the vector
field-aligned and/or adaptive grids. Some results of numerical experiments are
demonstrated.

1. Formulation of the method

1.1. Mapping approach. Let an n-dimensional physical surface (in par-
ticular, a domain or a curve) be locally represented by parametrization

x(s) : Sn → Rn+k, x = (x1, . . . , xn+k), s = (s1, . . . , sn), n ≥ 1, (1)

where Sn is an n-dimensional parametric domain (an interval when n = 1),
while x(s) is a smooth vector-valued function of rank n at every point
s ∈ Sn. A physical geometry specified by (1) is denoted by Sxn. When
k = 0, then Sxn is a domain Xn ⊂ Rn which itself may be considered as a
parametric domain for Xn. The generation of a local numerical grid in Sxn

is carried out by the mapping approach with the help of an intermediate
nondegenerate smooth transformation

s(ξ) : Ξn → Sn, ξ = (ξ1, . . . , ξn), (2)

between Sn and a suitable computational (logical) domain Ξn [1–4]. Ac-
cording to the approach, the grid nodes in Sxn are specified by mapping the
nodes of a reference grid in Ξn with the transformation

x[s(ξ)] : Ξn → Sxn ⊂ Rn+k. (3)

Depending on the form of Sxn and a numerical algorithm (finite differences,
finite elements, finite volumes, spectral elements, etc.) applied for solving a
physical problem, the computational domain Ξn and the cells of the reference
grid may be rectangular or have an other shape. In particular, the reference
grid may be unstructured [4].
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We designate by gxv
ij the covariant metric elements of Sxn in the coordi-

nates v1, . . . , vn. So, parameterizations (2) and (3) yield the corresponding
formulas in the coordinates s1, . . . , sn and ξ1, . . . , ξn:

gxs
ij = xsi · xsj , gxξ

ij = gxs
mp

∂sm

∂ξi

∂sp

∂ξj
, i, j,m, p = 1, . . . , n.

Here and further the repeated indices mean that the summation is carried
out over them.

1.2. Monitor metric. In addition to the computational domain Ξn and
the reference grid, the present grid generation approach also assumes the in-
troduction of a monitor manifold over Sxn by specifying a monitor metric at
the points of Sxn. The monitor metric serves for controlling the properties
of grids in the physical geometry Sxn. It is natural that the metric should
be formulated through the quantities requiring grid adaptation: physical
variables, geometric characteristics of Sxn, specified vector fields, etc. In
addition, a mathematical formulation of the monitor metric should be sim-
ple and comprehensive so that an arbitrary grid could be realized by the
approach considered.

The most general and simple formulation of the monitor metric in Sxn,
denoted by gs

ij , i, j = 1, . . . , n in the coordinates s1, . . . , sn, is given by the
following formula:

gs
ij = z(s)gxs

ij + F k
i (s)F k

j (s), i, j = 1, . . . , n, k = 1, . . . , l, (4)

where z(s) ≥ 0 is a weight function, gxs
ij is the metric of Sxn, and F k

i (s),
i = 1, . . . , n, are components of the vector F k(s) [4].

The functions z(s) and F k
i (s) in (4) are subject to the restriction:

det(gs
ij) > 0. In particular, det(gs

ij) > 0 if z(s) > 0.

1.3. The Dirichlet problem. A mathematical model for generating grids
is formulated for an arbitrary physical geometry Sxn. Let us designate by
gv
ij the covariant elements in the coordinates v1, . . . , vn of a monitor metric

in Sxn. Then the intermediate transformation s(ξ) in (2) is defined as the
inverse of the mapping

ξ(s) : Sn → Ξn, ξ(s) = [ξ1(s), . . . , ξn(s)],

which is subject to the Dirichlet problem:

∂

∂sj

(
w(s)gjk

s

∂ξi

∂sk

)
= 0, i, j, k = 1, . . . , n,

ξi|∂Sn = ϕi(s), i = 1, . . . , n,
(5)
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where gjk
s are the contravariant elements of the monitor metric in the co-

ordinates s1, . . . , sn, w(s) > 0 is a weight function aimed at controlling the
effect of the metric at the points of Sxn, ∂Sn and ∂Ξn are the boundaries
of Sn and Ξn, respectively, while ϕ(s) = [ϕ1(s), . . . , ϕn(s)] is a one-to-one
continuous transformation between ∂Sn and ∂Ξn. The equations in (5) are
referred to as the diffusive equations. The functions ξ1(s), . . . , ξn(s) found
as solutions of (5) specify a grid coordinate system in Sn and Sxn.

The diffusion equations in (5) are the Beltrami equations if w(s) =
√
gs,

gs = det(gs
ij). Moreover, for n 6= 2 they are always the Beltrami equations,

with respect to the metric

gij = (gs)1/(2−n)[w(s)]2/(n−2)gs
ij , i, j = 1, . . . , n , (6)

regardless of the weight function w(s).
Though the Beltrami equations are comprehensive [4], i.e., an arbitrary

nondegenerate intermediate transformation (2) can be computed as the in-
verse of the solution to these equations, the form (5) of the diffusion equa-
tions with the weight function w(s) appears to be more convenient, es-
pecially for n = 2, for realizing the necessary requirements for the grid
properties in different zones of Sxn.

The system of equations in (5) is equivalent to that of the Euler–Lagrange
equations of the following functional:

I[ξ] =
∫

Sn

w(s)gjk
s

∂ξi

∂sk

∂ξi

∂sj
ds, i, j, k = 1, . . . , n. (7)

The expression of functional (7) prompts one what form the monitor
metric should take to provide the generation of a numerical grid with a
required property. For this purpose, the metric is to have such a form that
the integrand in (7)

σ(s) = w(s)gjk
s

∂ξi

∂sj

∂ξi

∂sk
, i, j, k = 1, . . . , n, (8)

describes a measure of departure of the grid from the necessary grid at the
point s ∈ Sn. If such a metric is found, then it can be expected that the
minimization of functional (7) will produce the grid with a required property.

2. Mathematical model for numerical implementations

2.1. Inverted equations. For generating grids, we have to interchange
in the equations in the boundary value problem (5) their dependent and in-
dependent variables thus obtaining nonlinear elliptic equations with respect
to the intermediate function s(ξ).

A system of the diffusion equations with respect to components of the
intermediate transformation s(ξ)
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∂

∂ξj

(
w(ξ)gjk ∂s

i

∂ξk

)
= 0, i, j, k = 1, . . . , n, (9)

is linear and does not require any transformation, however the solution to
this system can produce overlapping grids in concave domains, as is demon-
strated by Figure 1.

Figure 1. Grids in a concave domain generated by the solution to equations (9)
(left) and by the solution to equations (5) (right); both with respect to the Euclidian
metric

The boundary value problem (5) is transformed (see [4]) to the following
inverted problem with respect to the dependent variables si(ξ):

w(s)gkm
ξ

∂2si

∂ξk∂ξm
=

∂

∂sj

(
w(s)gji

s

)
, i, j, k,m = 1, . . . , n,

si|∂Ξn = ψi(ξ), i = 1, . . . , n,
(10)

where gij
ξ are the contravariant metric components of a monitor metric in the

grid coordinates ξ1, . . . , ξn, ψi(ξ) is the ith component of the transformation
inverse to ϕ(s). The numerical solution of (10) at the points of the reference
grid in Ξn defines the nodes of the intermediate mesh in Sn. The image of
these nodes by x(s) specifies the grid points in Sxn.

2.2. Specification of contravariant metric components. Note that
both the functional of energy (7) and the inverted grid equations in (10) are
formulated through the contravariant metric components gij

s and gij
ξ in the

coordinates s1, . . . , sn and ξ1, . . . , ξn, respectively. Therefore instead of the
covariant metric components gs

ij one can originally, if convenient, formulate
the contravariant components gij

s of the monitor metric, for example in the
form (4), namely, as

gij
s = ε(s)gij

sx +Bi
kB

j
k, i, j = 1, . . . , n, k = 1, . . . , l, (11)

where Bi
k, i = 1, . . . , n, are components of the contravariant vector Bk =

(B1
k, . . . , B

n
k ), k = 1, . . . , l.
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3. Specification of monitor metrics

3.1. Generation of vector field-aligned grids. A contravariant metric
tensor in form (11) allows one to control the angle between a normal to a
grid coordinate hypersurface and a specified vector field. As a tensor of the
first rank in formula (11) one can either take the same or a transformed
vector field. The generation of grids through such a metric is helpful for
numerical solutions of problems with strong anisotropy, in particular, prob-
lems of plasma [5]. For example, the condition of orthogonality between the
vector field B = (B1, . . . , Bn) specified at the points of a domain Sn and a
normal to the coordinate hypersurface ξ1 = const can be described as the
following equation of the quadratic form

(B · grad ξ1)2 ≡ BiBj ∂ξ
1

∂si

∂ξ1

∂sj
= 0, i, j = 1, . . . , n,

with a degenerate matrix (BiBj). This quadratic form as measure of the grid
departure from the field-alignment was used in [5] for generating nearly field-
aligned grids in the domain Sn through the minimization of the functional

L =
∫

Sn

BiBj ∂ξ
1

∂si

∂ξ1

∂sj
ds, i, j = 1, . . . , n. (12)

The integrand in the functional of energy (7) is formulated as sum of the
quadratic forms

gjk
s

∂ξi

∂sk

∂ξi

∂sj
, i, j, k = 1, . . . , n, i fixed,

multiplied by w(s), but contrary to (12) with a nondegenerate matrix (gjk
s ).

The condition of non-degeneracy is indispensable for obtaining unfolded
grids through the minimization of functional (7). Therefore, in order to
obtain grids which are both nearly field-aligned and unfolded, we have to
slightly change the matrix (BiBj) in functional (12) to make it nondegen-
erate. The matrix (gij

s ) whose elements are specified in form (11) is nonde-
generate for an arbitrary ε(s) > 0, in addition, this matrix is close to the
matrix (BiBj) when both ε(s) and Bk, k = 2, . . . , l, are small and B1 = B.
Assume this matrix (with gij

sx = δi
j) is a contravariant tensor of a monitor

metric in the domain Sn. Then equations (10), aimed at the generation of
grids provided that the angle between B and a normal to the coordinate
hypersurface is close to π/2, have the form

w(s)gkm
ξ

∂2si

∂ξk∂ξm
=

∂

∂sj

{
w(s)[(ε(s)δi

j +Bi
aB

j
a]

}
, (13)

i, j, k,m = 1, . . . , n, a = 1, . . . , l.
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3.2. A monitor metric for generating grids adapted to the gradient
of a function. An efficient expression of the monitor metric for providing
grid clustering in the zones of a large variation of the function f(s) =
(f1(s), . . . , f l(s)) was found in [6]. It has the following form

gs
ij = gxs

ij +
∂f

∂si
· ∂f

∂sj
, i, j = 1, . . . , n. (14)

A formula for the contravariant elements was described in [4]. In partic-
ular, when gxs

ij = δi
j , f(s) is a scalar-valued function f(s), then

gij
s = δi

j −
1

1 + | grad f |2
∂f

∂si

∂f

∂sj
, i, j = 1, . . . , n. (15)

3.3. A monitor metric for generating grids adapted to the values
of a function. For generating a numerical grid with the node clustering
in the zones of large values of the function v(s), the measure of departure
from a required grid can be expressed in the form

σ(s) = g[v](s)gkl
sx

∂ξi

∂sk

∂ξi

∂sl
, i, j, k, l = 1, . . . , n, (16)

where g[v] is a positive operator such that g[v](s) is large (small) where
v(s) is small (large). This measure for generating adaptive grids in domains
was introduced in [7, 8]. Consequently, the contravariant elements of the
monitor metric are the following:

gij(s) = g[v](s)gij
sx, i, j = 1, . . . , n. (17)

This contravariant metric tensor can also be used for providing the node
clustering in the zones of a large variation of the function f(s) by introducing
for this purpose a function v(gradf) such that v is large where | gradf | is
large, and vice versa.

3.4. Monitor metrics for generating balanced grids. For computing
balanced numerical grids that are field-aligned and adaptive to the values
of one function and/or to variations of another function, a natural way for
defining a monitor metric consists in combining the corresponding metrics,
i.e., the contravariant metric elements are to have the form

gij(s) = w1(s)gij
al + w2(s)gij

adg + w3(s)gij
adv, i, j = 1, . . . , n, (18)

where wi(s) ≥ 0, i = 1, 2, 3, are weight functions specifying a contribution
of the contravariant elements gij

al , g
ij
adg, and gij

adv formulated by (11), (15),
and (17), respectively.

There may be other effective ways for combining the corresponding tensor
components, in particular, for generating grids that are field-aligned and
adaptive to the values of a function f(s), adequate results demonstrates the
formula
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gij(s) = g[f ](s)gij
al , i, j = 1, . . . , n. (19)

4. Numerical experiments

4.1. Numerical grids aligned to vector-fields. For generating field-
aligned numerical grids we used equations (10). These equations were solved
in a two-dimensional physical domain X2. We assumed S2 = X2 and Ξ2 to
be either as a square or a triangal with a uniform grid. The vector-field B
was specified by

B =
(
− ∂g

∂s2
,
∂g

∂s1

)
,

where g(s) is a model function. The vector-field chosen is subject to the
requirement for magnetic fields: div B = 0.

For generating a grid with a family of the grid coordinates aligned with
the vector field B, we assumed

gij
s = ε(s)δi

j +BiBj , i, j = 1, 2.

The function ε(s) was formulated through the following boundary layer type
functions [9]

ϕ(x, δ) =


M exp(−x/δ),
Mδα/(δ + x)α, α > 0,

M(δ + x)α, 0 < α < 1,

−M ln(1 + x/δ)/ ln δ,

where x ≥ 0, 0 < δ � 1, M = const, assuming ε(s) = ϕ(|B(s)|2, δ).
This function has small positive values when |B| ∼ 1, and close to 1 when
|B| = 0. Such functions help solutions to equations (10) switch from one
mode to another.

Figures 2 and 3 demonstrate isocontours of the functions g(s) and pic-
tures of the corresponding grids. There were used the following expressions
for g(s) and ε(s): in Figure 2

g(s) = v(s2)(1− v(s2))[(s1 − 0.5)2 + 2(v(s2)− 0.5)2],

ε(s) =
( 0.3

0.3 + |B|2
)5

;

in Figure 3

g(s) = v(s2)(1− v(s2))[(s1 − 0.5)2 + 1.5(v(s2)− 0.5)2],

ε(s) = 0.1 exp
(
− |B|

0.07

)
,

where

v(s2) = 0.5
[
1 + tanh

(s2 − 0.5
0.2

)]
.
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Figure 2

Figure 3

4.2. Pure adaptation to the gradient of a function f(s). For gen-
erating grids with the node clustering in the zones of large values of the
gradient of a function, the contravariant elements of the monitor metric
were taken in form (15).

Figure 4 shows the grids adapted to the gradient of the following func-
tions: to the left

f(s) = 0.05 tanh
(ϕ(s)

0.05

)
, ϕ(s) = 100(s1 − 0.5)2 + 16(s2 − 0.5)2 − 1;

to the right

f(s) = 0.06 tanh
(ϕ1(s)

0.05

)
+ 0.08 tanh

(ϕ2(s)
0.1

)
,

ϕ1(s) = (s1 − 0.5)2 + (s2 − 0.5)2 − 0.5,

ϕ2(s) = s2 − 0.5− 0.8 sin(6(s1 + 0.3)).
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Figure 4

4.3. Pure adaptation to the values of a function f(s). The con-
travariant elements of the monitor metric are specified as gij

s = δi
jf(s).

Figure 5 demonstrates the grids adapted to the values of the following
functions: to the left

f(ϕ) = exp(−0.7ϕ),

ϕ(s) = exp
[
− 1

0.35
sin2

(
0.7

(
(s2 − 0.01)2

0.0625
+

(s1 − 0.5)2

0.0225
− 1

))]
;

to the right

f(ϕ) =
( 0.3

0.3 + ϕ

)3
,

ϕ(s) = exp
(
−ψ1(s)

0.005

)
+ exp

(
−ψ2(s)

0.005

)
+ 0.3 exp

(
−ψ3(s)2

0.002

)
,

ψ1(s) = (s1 − 0.35)2 + (s2 − 0.35)2,

Figure 5
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ψ2(s) = (s1 − 0.65)2 + (s2 − 0.35)2,

ψ3(s) = s2 − (s1 − 0.5)2 − 0.1.

The right grid in Figure 5 was generated with the boundary adaptation

with respect to the function 5 exp
(
−ψ3(s)2

0.01

)
.

4.4. Balanced grids. For computing balanced numerical grids that are
field-aligned and adaptive to the values of one function and to variations of
another function, we used formula (18), written in the following form:

gij(s) = (1− α)gij
al + α

(
(1− β)gij

adg + βgij
adv

)
, i, j = 1, . . . , n;

gij
al = δi

jε(s) +BiBj , gij
adv = δi

jf1(ϕ1),

gij
adg = δi

j −
1

1 + | grad f2(ϕ2)|2
∂f2(ϕ2)
∂si

∂f2(ϕ2)
∂sj

.

Figure 6

Some balanced grids are shown in Figure 6. The first picture of this figure
demonstrates the grid aligned to the vector-field B and adapted to values
of the function f1(ϕ1). The second picture demonstrates the grid aligned to
the same vector-field and adapted to the gradients of the function f2(ϕ2).
The third picture demonstrates the grid aligned to the same vector-field and
adapted to values of one function and the gradients of the other. These grids
were generated with the help of the following functions and parameters:

f1(ϕ1) =
( 0.6

0.6 + ϕ1

)3
, ϕ1(s) =

( 0.01
0.01 +R2

)5
,

f2(ϕ2) = 0.05 tanh
( ϕ2

0.03

)
, ϕ2(s) = R2 − 0.2,

R2 = (s1 − 0.5)2 + (s2 − 0.5)2,

g(s) = v(s2)(1− v(s2))[(s1 − 0.5)2 + 2(v(s2)− 0.5)2],
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v(s2) = 0.5
[
1 + tanh

(s2 − 0.5
0.2

)]
;

1) α = ε(s) =
( 0.3

0.3 + |B|2
)6
, β = 1,

2) α = ε(s) =
( 0.3

0.3 + |B|2
)8
, β = 0,

3) α = ε(s) =
( 0.3

0.3 + |B|2
)5
, β = exp(−(f1)2/0.1).

Figure 7

Figure 7 illustrates a balanced grid aligned to a magnetic field and
adapted to the numerical error (the first picture), the alignment error (the
second picture), and the scaled grid density (the third picture).
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