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A general s
hema for 
onstraint

propagation

R. Gennari

Various algorithms for a
hieving di�erent levels of lo
al 
onsisten
y (i.e., 
onstraint

propagation algorithms), even diverse ones for the same kind of lo
al 
onsisten
y, are

present in the literature and built into existing systems. Due to their variety and diversity,

a natural quest is to sear
h for a 
ommon framework. In this arti
le, we approa
h 
onstraint

propagation from a general perspe
tive, by enlarging on previous algorithm s
hemata and

augmenting their expressive power: in that, further 
onstraint propagation algorithms are

instan
es of our s
hema. This is due to new relations that we establish among fun
tion

sets and use to instantiate our algorithm s
hema; these relations result from abstra
ting


ommon properties of the surveyed 
onstraint propagation algorithms. Hen
e, our general

approa
h is expressive enough to bring out the 
ommon properties of most of the 
onstraint

propagation algorithms, as well as their distin
tions.

1. Introdu
tion

Constraint programming 
onsists of formulating and solving 
onstraint sat-

isfa
tion problems. One of the most important te
hniques developed in that

area is lo
al 
onsisten
y, whi
h is also well known as 
onstraint propagation.

In general, 
onstraint propagation algorithms aim at pruning the sear
h

spa
e, without adding or removing solutions. Lots of these algorithms were

devised for a
hieving di�erent levels of lo
al 
onsisten
y. Besides, various

algorithms were designed and optimized for enfor
ing the same level of lo
al


onsisten
y: some of them were spe
ialized for parti
ular domains, other for

exploiting a spe
i�
 orders over variables et
. Moreover, most of 
onstraint

propagation algorithms were built into the existing 
onstraint programming

systems.

Due to the variety of 
onstraint propagation algorithms in the literature

and their importan
e in pra
ti
e, a natural quest is to sear
h for a 
ommon

\thread" among them. In [2, 3℄, 
onstraint propagation algorithms were ap-

proa
hed from a general perspe
tive and many of them were proved to be

instan
es of a unique s
hema, namely the Generi
 Iteration algorithm (GI).

Lately, we generalized GI to a more expressive s
hema, in whi
h the latter


an be instantiated to more lo
al 
onsisten
y algorithms than GI 
an, 
f. [8℄.
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In the general framework elaborated in [2, 3℄, the author pinpointed the

basi
 properties that are 
ommon to most of the fun
tions for enfor
ing

lo
al 
onsisten
y. Following the spirit of our previous work [8℄, we enlarge

on that approa
h in this paper: in fa
t, we do not only take into 
onsideration

properties of fun
tions as in [2, 3℄; besides, we study and emphasize the role

of relations among fun
tions for enfor
ing 
onstraint propagation. From our

analysis, we work out a new generalization of the GI s
hema in [1, 2℄ and of

ours in [8℄: namely, the Generi
 Iteration algorithm with Fun
tions (GIF).

This arti
le is organized as follows: �rst, we introdu
e our new algorithm

s
hema and some of its spe
ializations, 
f. Se
tion 2. In Se
tion 3, we de�ne


onstraint satisfa
tion problems, some orderings over them and make expli
it

their 
onne
tion with the general algorithm s
hema. Finally, we show that

our s
hema 
an be instantiated to more 
onstraint propagation algorithms,

like PC-4 and KS, than the previous s
hemata.

2. The GIF algorithm s
hema and its

spe
ializations

In [8℄, we introdu
ed the Generi
 Iteration algorithm with Subsumed Fun
-

tions (GISF) as a s
hema that generalizes the Generi
 Iteration algorithm

(GI) of [2, 3℄. Moreover, we proved that our s
hema is more expressive than

GI, in that some lo
al 
onsisten
y algorithms are instan
es of the former

and not of the latter. In this se
tion, we introdu
e a s
hema that generalizes

GISF, too: namely, the Generi
 Iteration algorithm with Fun
tions (GIF). Af-

ter introdu
ing GIF, we spe
ialize it: �rst we re
all our previous algorithm

s
hema, namely GISF, and show that GI is an instan
e of GISF itself; �nally,

we introdu
e a new spe
ialization of GIF, the Generi
 Iteration algorithm

with In
luded Fun
tions (GIIF), and prove its 
orre
tness.

2.1. The GIF algorithm s
hema

While the GI algorithm s
hema sele
ts fun
tions from one set, the GIF algo-

rithm s
hema 
an 
hoose fun
tions from two possibly di�erent sets. There-

fore, the GIF s
hema 
an also be instantiated to lo
al 
onsisten
y algorithms

that are split into two main sub-programs, like AC-4 or PC-4: one performs a

\global pruning" and the other | that is not interleaved with the former |

a
hieves the desired level of lo
al 
onsisten
y by means of some kinds of

more \lo
al a
tions".
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Generi
 Iteration algorithm with Fun
tions (GIF)

1. d := ?;

2. G := H;

3. while G 6= ; do

4. 
hoose g 2 G;

5. G := G� fgg;

6. G := G [ update(G;F; g; d);

7. d := g(d)

8. od

The update operator (6th line of GIF) has to satisfy three 
onditions:

A. if g(d) 6= d, then the following fun
tions have to be in update(G;F; g; d):

all f 2 F �G su
h that f(d) = d and f(g(d)) 6= g(d);

B. g(d) = d implies update(G;F; g; d) = ;;

C. if g(g(d)) 6= g(d), then g is in update(G;F; g; d).

No further restri
tions are imposed on the general s
hema. Instead, in the

following, we shall study diverse 
onditions, namely properties of fun
tions

or relations among them, under whi
h that unique s
hema 
an be applied to

enfor
e various forms of lo
al 
onsisten
y; like, for instan
e, path 
onsisten
y.

Besides, we 
an express and analyze di�erent algorithms for the same level

of lo
al 
onsisten
y; for example PC-1 (
f. [1℄) and PC-4 (
f. Se
tion 4). In

fa
t, those algorithms 
an be instantiated to our s
hema by means of spe
i�


fun
tions.

Note 1. Suppose that g is idempotent; that is, for every d 2 D, g(g(d)) =

g(d). In this 
ase, g does not need to be added to update(G;F; g; d) a

ording

to the third 
ondition C; 
f. [2, 3℄.

2.2. The GISF algorithm s
hema

The GISF algorithm is an instan
e of the GIF s
hema. In GISF, the sets of

fun
tions F and H are not arbitrary but related in order to guarantee that

a �xed point of all the fun
tions from H is a �xed point of all the fun
tions

from F . Pre
isely, let f and g be two fun
tions on a set D; we say that the

fun
tion g subsumes the fun
tion f i� g(d) = d implies f(d) = d. Let F and

H be two sets of fun
tions de�ned on the same set D; we say that the set

H subsumes the set F i� ea
h fun
tion of F is subsumed by a fun
tion of

H; in that 
ase, we write subs(F;H) (
f. [8℄). On the overall, the 
ondition

subs(F;H) guarantees that d is a �xed point of all the fun
tions from F if

it is a �xed point of all the fun
tions from H.
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Note 2. In general, it is not trivial to establish whether a fun
tion g sub-

sumes a fun
tion f . However, suppose that f and g are fun
tions de�ned

on hD;vi and that f is in
ationary with respe
t to v: i.e., for all d 2 D,

d v f(d) holds. Further, if f(d) v g(d) for every d 2 D, then g subsumes f .

The following result, 
on
erning the 
orre
tness of GISF, was proved

in [8℄.

Theorem 1. (GISF) Let (D;v) be a partial ordering with bottom, ?; sup-

pose that H and F are two sets of fun
tions on D; if the relation subs(F;H)

holds, then the following statements are valid.

i. Every terminating exe
ution of the GISF algorithm 
omputes in d a


ommon �xed point of the fun
tions in H [ F .

ii. Suppose that all the fun
tions of H [ F are monotoni
. Then every

terminating exe
ution of the GISF algorithm 
omputes in d the least


ommon �xed point of all the fun
tions from H and F .

iii. Suppose that H and F 
ontain �nitely many fun
tions whi
h are all

in
ationary. Further, assume that the stri
t partial order on D satis�es

the as
ending 
hain 
ondition (ACC): namely, there are not in�nite

as
ending 
hains of D elements. Then every exe
ution of the GISF

algorithm terminates. 2

Observe that subs(H;H) always holds; this means that subs is a re
exive

relation. Hen
e the GI algorithm s
hema is an instan
e of our GISF algorithm

itself; in fa
t, it is enough to set F = H in the latter to obtain the GI

algorithm of [2, 3℄. Besides, the GISF s
hema is stri
tly more \expressive"

than GI: there are lo
al 
onsisten
y (pre
isely, ar
 
onsisten
y) algorithms

in it that are instan
es of GISF but not of GI; 
f. [8℄.

2.3. The GIIF algorithm s
hema

As we have noti
ed, the GISF s
hema is already a generalization of GI and

is more expressive than the latter. Yet, there are 
onstraint propagation

algorithms that are instan
es of neither GI nor GISF, like the k-
onsisten
y

algorithm of Cooper, 
f. Se
tion 5. In those algorithms, the relation between

H and F is of another sort: basi
ally, H is a subset of F that 
ontains all

f 2 F for whi
h f(?) 6= ?; then the update operator pi
ks out from F the

fun
tions that are still to be inspe
ted and adds them to G. The Generi


Iteration algorithm with In
luded Fun
tions (GIIF) is this new instantiation

of the GIF algorithm s
hema. In the following, we prove the partial and total


orre
tness of GIIF.
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Theorem 2 (GIIF). Let (D;v) be a partial ordering with bottom ?; sup-

pose that H and F are two sets of fun
tions on D; if H is a subset of F that

in
ludes the set ff 2 F : f(?) 6= ?g, then the following statements hold.

i. Every terminating exe
ution of the GIIF algorithm 
omputes in d a


ommon �xed point of the fun
tions in F .

ii. Suppose that all the fun
tions in F are monotoni
. Then every termi-

nating exe
ution of the GIIF algorithm 
omputes in d the least 
ommon

�xed point of all the fun
tions from F .

iii. Suppose that F has �nitely many fun
tions whi
h are all in
ationary.

Further, assume that the stri
t partial order on D satis�es the as
end-

ing 
hain 
ondition (ACC): namely, there are not in�nite as
ending


hains of D elements. Then every exe
ution of the GIIF algorithm

terminates.

Proof. We just need to prove the �rst item, the proof of the other two is

like in [8℄ for the 
ase of GISF. Consider the predi
ate I de�ned by

8 f (f 2 F �G ^ f 2 H ! f(d) = d):

The predi
ate I is established by the assignment G := H; in fa
t, if f 2

F � G, then f 62 H, hen
e I trivially holds. Now, suppose that I holds

before a while-loop is entered. After an iteration of the while-body, only

the inspe
ted fun
tion g of F 
an be added to F�G, just in 
ase of g(g(d)) =

g(d); hen
e, for the new 
omputed value of d after the exe
ution of thewhile-

body, we have that I still holds. Thereby, I is an invariant of the while-loop.

Upon the termination of the algorithm, G is empty and H = F \H, so I

implies I

0

, de�ned by

8 f (f 2 H ! f(d) = d);

hen
e the predi
ate I

0

holds as well. The predi
ate I

0

guarantees that d is a

�xed point of all the fun
tions from H. We 
laim that d is a �xed point of all

the fun
tions from F , too, by de�nition of update. Let ? =: d

0

; : : : ; d

n

:= d

be the sequen
e from D 
omputed by the GIIF algorithm, so that, for every

i = 0; : : : ; (n � 1), d

i+1

= g

i+1

(d

i

), where g

i+1

2 F , su
h a sequen
e exists

be
ause we assume that the algorithm terminates. Suppose that there exists

f 2 (F � H) su
h that f(d

n

) 6= d

n

; observe that f 62 H implies that

f(d

0

) = d

0

. Sin
e the sequen
e is �nite, f(d

n

) 6= d

n

and f(d

0

) = d

0

, there

must be a maximal i = 0; : : : ; (n�1) su
h that f(d

i

) = d

i

and f(d

j

) 6= d

j

for

all j su
h that i < j � n. Then update(G;F; g

i+1

;D) adds G the fun
tion

f , be
ause of 
ondition A; noti
e that f 
annot be removed from G in any
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subsequent iteration of the while-loop, be
ause of the 
onditions C and

f(d

j

) 6= d

j

for all j for whi
h i < j � n. Hen
e G is not empty after

pro
essing g

n

, whi
h is absurd. 2

3. Constraint satisfa
tion problems and partial

orderings

In order to apply the GIF algorithm s
hema over CSP's, we need to de-

�ne proper orders among CSP's. In the following, we introdu
e di�erent

orderings that vary a

ording to the lo
al 
onsisten
y algorithms whi
h are

surveyed in the arti
le.

3.1. Constraint satisfa
tion problems

Consider a �nite sequen
e X of di�erent variables, say x

1

; : : : ; x

n

for n >

0, with asso
iated domains D

1

; : : : ;D

n

. A 
onstraint sequen
e s, brie
y 
-

sequen
e, on n > 0 is a stri
tly growing sequen
e of di�erent integers from

1; : : : ; n. Let D be the Cartesian produ
t D

1

� � � � � D

n

and s be the 
-

sequen
e i

1

; : : : ; i

m

on n. Then we denote by D(s) the Cartesian produ
t

D

i

1

�� � ��D

i

n

. For instan
e, if D

1

= f0g, D

2

= f2; 6g, D

3

= f4g and s is the


-sequen
e 1; 3, thenD(s) is the set f(0; 4)g. Further, we shall denote by d(s)

an element of D(s), for a tuple d of D

1

�� � ��D

n

: i.e., if s is the 
-sequen
e

i

1

; : : : ; i

m

on n and d = (d

1

; : : : ; d

n

), then d(s) is the tuple (d

i

1

; : : : ; d

i

m

).

Given two 
-sequen
es on n of equal length m � n, say s = i

1

; : : : ; i

m

and

t = j

1

; : : : ; j

m

, we write s <

s
h

t if, for all k = 1; : : : ; l < m, we have that

i

k

= j

k

and i

l

< j

l

. Moreover, we write s <

s
h

t if s and t are 
-sequen
es on

n and the length of s is stri
tly less than that of t. Hen
e the relation <

s
h

is a total order on 
-sequen
es on n.

De�nition 1. Let X be a sequen
e of n > 0 di�erent variables with do-

mains D

1

; : : : ;D

n

, the set D be the Cartesian produ
t D

1

� � � � �D

n

and s

be a 
-sequen
e on n; a 
onstraint on s is a subset of D(s). Then we write

C(s), or C when no 
onfusion 
an arise. A 
onstraint satisfa
tion problem

on X, brie
y CSP, is a triple P := hX;D; Ci, where D is the sequen
e of do-

mains D

1

; : : : ;D

n

and C is a sequen
e of 
onstraints C(s

1

); : : : ; C(s

n

), that

is ordered a

ording to the order s

1

<

s
h

� � � <

s
h

s

n

on 
-sequen
es.

If s is a 
-sequen
e on n, then fsg is the 
orresponding set of integers o
-


urring in s; for instan
e, if s is the 
-sequen
e 1; 3; 4, then fsg is the set

f1; 3; 4g. Observe that every set of i � n integers uniquely determines the


-sequen
e s on n to whi
h it 
orresponds; in fa
t a 
-sequen
e is a stri
tly

growing sequen
e of integers, so, for example, the set f1; 3; 4g determines the
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-sequen
e 1; 3; 4. A 
-subsequen
e of s is just a 
-sequen
e t on n su
h that

ftg is a subset of fsg. Consider a CSP P on n variables and a 
-sequen
e

s = i

1

; : : : ; i

k

on n. The set I(s) of all 
onsistent instantiations relative to

s is the set of all d 2 D(s) su
h that d(t) 2 C(t), for all C(t) of P on a


-subsequen
e t of s.

A solution to a CSP P on n variables is a tuple of I(s), where s is the


-sequen
e of all integers 1; : : : ; n; then I(s) is the solution set of P , usually

written as Sol(P ). A CSP P is globally 
onsistent i� D = Sol(P ). Two

CSP's on the same sequen
e of variables X are equivalent i� they have the

same solution set.

3.2. Partial orderings

So far, we have an algorithm s
hema, namely GIF, that is able to 
ompute the


ommon �xed point of fun
tions de�ned on a partial ordering with bottom.

We aim at applying the GIF algorithm to CSP's and instantiating it to some

lo
al 
onsisten
y algorithms that modify 
onstraints. Hen
e, we need to feed

the GIRF algorithm with suitable fun
tions that are 
apable of modifying


onstraints, as well as to devise a partial order between problems. In the

following, we de�ne the orderings that we shall use lately in this arti
le; 
f.

also [1℄ and [4℄ for similar ones.

De�nition 2. Consider a CSP P and all its 
onstraints C

1

; : : : ; C

n

. The


ompletion of P is the CSP

�

P that has the same sequen
e of variables and

domains as P , but the 
onstraints of whi
h are as follows: for ea
h 
-sequen
e

s on n, if C(s) 2 C, then C(s) is the 
onstraint on s of

�

P ; otherwise C(s) is

D [s℄. We say that a CSP P is 
omplete i� P =

�

P .

However, if we work with binary CSP's P (CSP's that have only binary


onstraints), the 
hoi
e of

�

P is not optimal: we may add too many 
onstraints

to P . Hen
e, we re�ne the above de�nition as follows.

De�nition 3. Consider a CSP P on n > 0 variables, a natural number

k not greater than n, two CSP's

�

P

k

and

�

P

s

k

that have the same sequen
e

of variables and domains as P . Then

�

P

k

is the k-
ompletion of P if the


onstraints of P

k

are all the k-ary 
onstraints of

�

P ; the problem P is k-


omplete i� P =

�

P

k

. Whilst

�

P

s

k

is the k-strong 
ompletion of P i� the


onstraints of

�

P

s

k

are all the i-ary 
onstraints of

�

P for every 0 < i � k, the

problem P is k-strong 
omplete i� P =

�

P

s

k

.

A CSP P and its 
ompletions de�ned above are equivalent problems. Fur-

thermore, a CSP P on n variables is n-strong 
omplete i� it is 
omplete.
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De�nition 4. Consider a CSP P and the Cartesian produ
t C of all the


onstraints of

�

P . The 
onstraint order of P is the binary relation v de�ned

as follows: given two subsets B and B

0

of C, B v B

0

i� B � B

0

.

Let F(C) be a family of subsets ofC to whi
hC belongs. Then hF(C);v;Ci

is a 
onstraint ordering of P and its bottom is C.

It is immediate to verify that the binary relation introdu
ed above is a

partial order, be
ause so is �. Moreover, the Cartesian produ
ts C is the

bottom of v.

Observe that, given a CSP P , there is always a 
onstraint ordering of P ,

namely, the one based on the power set }(C). Yet, we may want to deal only

with 
onstraints of a �xed arity, like in path or k-
onsisten
y algorithms;

hen
e we restri
t the above introdu
ed order as follows.

De�nition 5. Consider a CSP P and the Cartesian produ
t C

k

of all the


onstraints of

�

P

k

. The k-
onstraint order of P is the restri
tion of v to

subsets of C

k

: we write it as v

k

. Let F(C

k

) be a family of subsets of C

k

to whi
h C

k

belongs. Then hF(C

k

);v

k

;C

k

i is a k-
onstraint ordering of P

with bottom C

k

.

Consider now the Cartesian produ
t C

s

k

of all the 
onstraints of

�

P

s

k

. The

k-strong 
onstraint order of P is the restri
tion of v to subsets of C

s

k

: we

write it as v

s

k

. Let F(C

s

k

) be a family of subsets of C

s

k

to whi
h C

s

k

belongs.

Then hF(C

s

k

);v

s

k

;C

s

k

i is a k-
onstraint ordering of P the bottom of whi
h

is C

s

k

.

Indeed, the restri
tion of }(C) to k-ary relations gives rise to a k-
onstraint

ordering of P ; 
onsidering the restri
tion to all i-ary relations of }(C), for

ea
h 0 < i � k, we obtain a k-strong 
onstraint ordering of P .

4. The path 
onsisten
y algorithm PC-4

The PC-4 algorithm was designed in [10℄; however, here we refer to its 
or-

re
ted form given in [9℄. This algorithm enfor
es path 
onsisten
y on binary

CSP's. In this se
tion, we prove that PC-4 is an instan
e of the GISF algo-

rithm s
hema; hen
e, in the following, we restri
t our attention to binary

CSP's.

4.1. Preliminaries

Given a 
onstraint C(i; j) and any its subset B(i; j), the transposed B(i; j)

is the relation B(j; i) the elements of whi
h are all pairs (d; d

0

) su
h that

(d

0

; d) 2 B(i; j). The transposed relations will help us to better des
ribe the

PC-4 algorithm; however, given a CSP P and a 
onstraint C(i; j) of it, C(j; i)
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is not a 
onstraint of P , a

ording to De�nition 1. The PC-4 algorithm is

split into two parts, as explained in the following.

The �rst part. Suppose we are given a 
onstraint C(i; j) of the input CSP

(i.e., i < j) and a variable x

k

of the problem su
h that k 6= i; j. For ea
h

(a; b) 2 C(i; j), the algorithm 
he
ks whether there exists 
 in D

k

su
h that

(a; 
) 2 C(i; k) and (
; b) 2 C(k; j); if 
 exists, then Total := Total + 1,

S

iak


:= S

iak


[ f(j; b)g and S

jbk


:= S

jbk


[ f(i; a)g. After the sear
h for

supports in D

k

is 
omplete, Counter [(i; a; j; b); k℄ is set to Total and so is

Counter [(j; b; i; a); k℄. If (a; b) has no supports in D

k

(i.e. Total is 0), then

the algorithm sets M [i; a; j; b℄ and M [j; b; i; a℄ to 1 in order to re
ord that

either (a; b) or (b; a) are to be eliminated. So the set List is initialized with

all the tuples (i; a; j; b) for whi
h M is 1.

The se
ond part. The se
ond part 
onsists of a while-loop that termi-

nates when List is empty. An element (i; a; j; b) is 
hosen and deleted from

List. Then all pairs (k; 
), su
h that (a; 
) 2 C(i; k) and (
; b) 2 C(k; j),

are 
he
ked. Suppose that (a; 
) is no longer supported in C(i; k) or (
; b)

is no longer supported in C(k; j) (i.e., Counter [(i; a; k; 
); j℄ = 0 or

Counter [(j; b; k; 
); i℄ = 0); if (a; 
) or (
; a), and (
; b) or (b; 
) have not

been removed yet (i.e., M [i; a; k; 
℄ = 0 and M [j; b; k; 
℄ = 0), then they are

deleted and the e�e
ts of their removal are propagated by adding (i; a; k; 
)

and (j; b; k; 
) to List.

4.2. PC4 is an instan
e of GISF

While ar
 
onsisten
y algorithms remove elements from domains

(
f. [8℄), path 
onsisten
y algorithms delete pairs from binary 
onstraints.

Consider the 2-
onstraint 
losure of P and the Cartesian produ
t C

2

of its


onstraints; hen
e, our fun
tions are of the form f : B �! B, where B is a

subset of C

2

. As in the 
ase of (G)AC-4 (
f. [8℄), we shall instantiate GISF

with two sets of fun
tions, H and F : the fun
tions of H perform a \global"

a
tion, so to speak, and take 
are of the �rst part of the algorithm used to


reate List; the fun
tions of F have a more \lo
al" behavour.

For the sake of readability, we introdu
e a new relation that we shall

use for de�ning our fun
tions: 
onsider a subset B of C

2

; assuming that

0 < i < j � n, the pair (a; b) 2 B(i; j) belongs to Del(B; i; j; k) i�, for all


 2 D

k

,

(a; 
) 62 B(i; k) _ (
; b) 62 B(k; j):

Noti
e that the relation Del(B; i; j; k) is a subset of B(i; j).

1. For every 
onstraint C(i; j) of the given P

2

, k = 1; : : : ; n, k 6= i; j, and

(a; b) 2 C(i; j), we de�ne a fun
tion �(i; a; j; b; k)(B) := B

0

,



38 R. Gennari

where B; B

0

� C

2

and ea
h B(r;m)

0

is de�ned as follows:

B(r;m)

0

:=

8

>

<

>

:

B(r;m)� f(a; b)g if r = i; m = j and (a; b) 2 Del(B; i; j; k);

B(r;m) otherwise:

Basi
ally, �(i; a; j; b; k) removes (a; b) from B(i; j) i� there is no 
 2 D

k

su
h

that (a; 
) 2 B(i; k) and (
; b) 2 B(k; j).

2. Let us 
onsider two 
onstraints C(i; k) and C(k; j) of C

2

, or their trans-

posed; further, let us 
hoose (a; 
) 2 C(i; k) and (
; b) 2 C(k; j). Then we

de�ne two new di�erent fun
tions, namely �(i; a; j; b; k; 
)(B) := B

0

and

�(j; b; i; a; k; 
)(B) := B

00

, in the following way:

B(r;m)

0

:=

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

B(i; k)� f(a; 
)g if r = i; m = k; i < k and

(a; 
) 2 Del(B; i; k; j);

B(k; i)� f(
; a)g if r = k; m = i; k < i and

(
; a) 2 Del(B; k; i; j);

B(r;m) otherwise;

B(r;m)

00

:=

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

B(k; j)� f(
; b)g if r = k; m = j; k < j and

(
; b) 2 Del(B; k; j; i);

B(j; k)� f(b; 
)g if r = j; m = k; j < k and

(b; 
) 2 Del(B; j; k; i);

B(r;m) otherwise:

Intuitively, the fun
tion �(i; a; j; b; k; 
) removes (a; 
) ((
; a) if k < i) from

B(i; k) (from B(k; i) if k < i) i� a or 
 have lost their unique support b in

D

j

; whilst �(j; b; i; a; k; 
) removes the pair (
; b) ((b; 
) if j < k) from B(k; j)

(from B(j; k) if j < k) i� 
 or b have lost their unique support a in D

i

.

Noti
e that, for every fun
tion �(i; a; j; b; k) 2 H and �(i; a; k; 
; j; b) 2 F ,

the following relation holds, if i < j:

�(i; a; j; b; k)(B) � �(i; a; k; 
; j; b)(B);

otherwise the following is true if j < i:
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�(j; a; i; b; k)(B) � �(i; a; k; 
; j; b)(B):

Thereby subs(F;H) holds. Now, we 
an de�ne update as follows.

� If �(i; a; j; b; k)(B) = B, then update(G;F; �(i; a; j; b; k); B) = ;. Oth-

erwise, the set update(G;F; �(i; a; j; b; k); B) 
ontains all the following

fun
tions:

1. �(i; a; j; b; k; 
) su
h that (a; 
) 2 B(i; k), (
; b) 2 B(k; j) and

furthermore, for all b

0

2 D

j

, we have that (
; b

0

) 62 B(k; j);

2. �(j; b; i; a; k; 
) su
h that (a; 
) 2 B(i; k), (
; b) 2 B(k; j) and

furthermore, for all a

0

2 D

i

, we have that (a

0

; 
) 62 B(i; k).

� If �(i; a; j; b; k; 
)(B) = B, then update(G;F; �(i; a; j; b; k; 
); B) = ;.

Otherwise, the set update(G;F; �(i; a; j; b; k; 
); B) 
ontains all the fol-

lowing fun
tions:

1. �(i; a; k; 
; l; e) su
h that (a; e) 2 B(i; l) and (e; 
) 2 B(l; k) and

furthermore, for all 


0

2 D

k

di�erent from 
, we have that (e; 


0

) 62

B(l; k);

2. �(k; 
; i; a; l; e) su
h that (a; e) 2 B(i; l) and (e; 
) 2 B(l; k) and

furthermore, for all a

0

2 D

i

di�erent from a, we have that (a

0

; e) 62

B(i; l).

The update operator above satis�es A and B; the last 
ondition, C, is

trivially ful�lled, be
ause all of the 
onsidered fun
tions are in
ationary,


f. Note 1.

Corollary 1 (GISF for path 
onsisten
y). Consider a CSP P := hX;D;

Ci with the asso
iated 2-
onstraint order and the sets of fun
tions H and F

as de�ned above. If D is �nite, then every exe
ution of the GISF algorithm

terminates 
omputation of the greatest path 
onsistent problem equivalent

with P .

Proof. Indeed a �xed point of the fun
tions from H is a path 
onsistent

problem equivalent to the given one. As subs(F;H) holds, a �xed point of

the fun
tions from H is a �xed point of the fun
tions from F , too. Further-

more, if all domains are �nite, so is H [F . Our statement follows now from

Theorem 1. 2

We are left to prove that the PC-4 algorithm is indeed an instan
e of

GISF.

Theorem 2 (GISF for PC-4). PC-4 is an instan
e of the GISF algorithm

s
hema.
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Proof. The �rst part of the PC4 algorithm is reprodu
ed by iterating GISF

with the fun
tions fromH, none of whi
h is any longer introdu
ed by update.

For every 
onstraint C(i; j) of P

2

(line 2 of PC-4), k = 1; : : : ; n (line 3 of

PC-4) and (a; b) 2 C(i; j) (line 4 and 5 of PC-4), the �rst for-loop of the

PC-4 algorithm 
he
ks whether there exists 
 2 D

k

that supports a and b; if

there is no su
h 
, then (a; b) is removed from C(i; j) and the e�e
ts of its

removal are propagated. The fun
tion g(i; a; j; b; k) has a similar behaviour:

it removes the pair (a; b) i� there is no support in D

k

for a and b; then

the e�e
ts of the removal of (a; b) are propagated by means of the update

operator.

After inspe
ting all fun
tions from H, we feed GISF with the fun
tions from

F that are added by update; so we 
an reprodu
e the se
ond part of the

PC-4 algorithm, namely, the se
ond for-loop, by 
hoosing the fun
tions

�(i; a; j; b; k; 
) and �(j; b; i; a; k; 
), 
onse
utively. 2

5. The KS algorithm

The KS algorithm by Cooper [5℄ is an optimization of the synthesis algorithm

by Freuder [7℄. The algorithm by Cooper 
an enfor
e either k-
onsisten
y

or k-strong 
onsisten
y over a CSP. In this se
tion, we prove that the GIIF

s
hema 
an be instantiated to the KS algorithm.

5.1. Preliminaries

The 
on
epts of ar
 and path 
onsisten
y were generalized in [7℄ to k 
on-

sisten
y. Given a CSP P on n variables and an integer 1 � k < n, 
onsider

a 
-sequen
e s := i

1

; : : : ; i

k

on n. Consider a positive integer j 62 s and

1 � j � n, and a 
-sequen
e s

0

on fsg [ fjg; then a k-
onsistent instantia-

tion d of I(s) is a proje
tion (over s) of a (k + 1)-
onsistent instantiation of

I(s

0

) i� there exists d

0

2 I(s

0

) su
h that d

0

(s) = d. A CSP P on n variables

is 1-
onsistent i�, for every i = 1; : : : ; n, the set I(i) is not empty. A CSP

P on n variables is (k + 1)-
onsistent for 0 < k � n i� any k-
onsistent in-

stantiation is a proje
tion of a (k+1)-
onsistent instantiation. Furthermore,

the CSP P is k-strong 
onsistent i� it is i-
onsistent for ea
h 0 < i � k. In

parti
ular, P on n variables is 
onsistent if it is n-strong 
onsistent.

The KS algorithm is split into two main sub-programs: the initializa-

tion pro
ess takes pla
e in the �rst step; then the pruning of k-in
onsistent

values from domains begins the se
ond step. The se
ond sub-program 
on-

sists of two main a
tions: the algorithm 
hooses a tuple d that is already

removed from C(t), for t of length i; if i < k, the e�e
ts of the removal

of d are �rst propagated 
onsidering all (i + 1)-
onsistent instantiations d

0
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su
h that d

0

(t) = d; if i > 1, the e�e
ts of the removal of d are propagated


onsidering all (i� 1)-
onsistent instantiations d

0

su
h that d

0

= d(s) for all


-subsequen
es s of t of length (i� 1).

5.2. GIIF 
an enfor
e k and k-strong 
onsisten
y

Given a 
-sequen
e s on n of length 0 < i � k, let us 
hoose an element

d 2 D(s). Consider C

s

k

and, if (i + 1) < k, a 
-sequen
e s

+

of length

(i + 1), a 
-subsequen
e of whi
h is s; furthermore, if (i � 1) > 0, 
hoose a


-subsequen
e s

�

of s whose length is (i� 1). Then we 
onsider any subset

B of C

s

k

. We 
an now de�ne two subsets, the �rst of B(s

+

) and the se
ond

of B(s

�

), that will help us to better des
ribe our fun
tions. Suppose that

d 62 B(s); then we have that

d

+

2 Del

+

(B(s

+

); d) i� d = d

+

(s);

d

�

2 Del

�

(B(s

�

); d) i� d(s

�

) = d

�

and 8 a (a 2 B(s)) a(s

�

) 6= d

�

):

Instead, if d 2 B(s), then both Del

+

(B(s

+

); d) and Del

+

(B(s

�

); d) are

empty.

1. Consider a 
-sequen
e s on n of length 1 � i < k, a tuple d 2 D(s) and

any subset B of C

s

k

; then we de�ne the fun
tion �

+

(s; i; d)(B) := B

0

,

where B

0

:= B

0

1

� : : :�B

0

n

and, for every t, we have

B(t)

0

:=

8

>

>

>

<

>

>

>

:

B(t)�Del

+

(B(t); d) if s is a 
-subsequen
e of t

and the length of t is i+ 1;

B(t) otherwise:

Basi
ally, �

+

(s; i; d) removes all the tuples of length (i+1) a proje
tion

of whi
h is d, if d is not in B(s).

2. Consider a 
-sequen
e s on n of length 1 < i � k, a tuple d 2 D(s) and

any subset B of C

s

k

; then we de�ne the fun
tion �

�

(s; i; d)(B) := B

0

,

where B

0

:= B

0

1

� : : :�B

0

n

and, for every t, we have

B(t)

0

:=

8

>

>

>

<

>

>

>

:

B(t)�Del

�

(B(t); d) if t is a 
-subsequen
e of s

and the length of t is i� 1;

B(t) otherwise:

Basi
ally, �

�

(s; i; d) removes all the tuples of length (i � 1) that are

proje
tions of d but of no other i-
onsistent instantiation, if d 62 B(s).
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We instantiate G with the subset H of all fun
tions �

+

(s; i; d) and �

�

(s; i; d)

su
h that d 62 C(s); observe that the fun
tions modifying C

s

k

are among

those of H. Then the update operator will take 
are of adding all the fun
-

tions of F we need for enfor
ing (strong) k-
onsisten
y.

� If �

+

(s; i; d)(B) = B, then update(G;F; �

+

(s; i; d); B) = ;. Otherwise,

the set update(G;F; �

+

(s; i; d); B) 
ontains all fun
tions �

+

(s

0

; i; d

0

),

for ea
h s

0

a 
-subsequen
e of whi
h is s and the length is (i+1), and

d

0

2 Del

+

(B(s

0

); d).

� If �

�

(s; i; d)(B) = B, then update(G;F; �

�

(s; i; d); B) = ;. Otherwise,

the set update(G;F; �

�

(s; i; d); B) 
ontains all fun
tions �

+

(s

0

; i; d

0

),

for ea
h 
-subsequen
e s

0

of s the length of whi
h is (i � 1), and d

0

2

Del

�

(B(s

0

); d).

Corollary 1 (GIIF for k and k-strong 
onsisten
y). Consider a CSP

P with a �nite variable domain.

� If we instantiate GIIG only with fun
tions of type �

+

, then the algo-

rithm terminates, 
omputing the greatest k-
onsistent problem that is

equivalent to the input one.

� If we instantiate GIIF with all the above de�ned fun
tions, then the

algorithm terminates, 
omputing the greatest k-strong 
onsistent prob-

lem that is equivalent to the input one.

Proof. Observe that a �xed point of all the fun
tions �

+

and �

�

is a k-

strong 
onsistent problem equivalent to the given one; as well, if we just

instantiate F and H with the �

+

fun
tions, then we enfor
e k-
onsisten
y.

As the variable domains are �nite, so is F ; furthermore, the relation H � F

holds and H 
ontains all the fun
tions that modify the bottom C

s

k

. So we


an apply Theorem 2. 2

Now we 
an prove that KS is an instan
e of the GIIF algorithm s
hema.

Theorem 2 (GIIF for KS). The KS algorithm is an instan
e of GIIF.

Proof. The instantiation of List (that 
ontains the elements to be removed)

in KS is reprodu
ed by the instantiation G := H in GIIF. The se
ond sub-

program of the KS algorithm is split into two parts. The fun
tions of the

form �

+

take 
are of the �rst part, while the fun
tions of the form �

�

are

employed in the se
ond. 2

Note 1. As remarked in [5℄, the KS algorithm only enfor
es k-
onsisten
y if

the se
ond step of the se
ond subprogram is never exe
uted. So does the GIIF

algorithm if we use only the fun
tions of the form �

+

, 
f. also Corollary 1.
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6. Con
lusions

In this paper, we enlarged on previous algorithm s
hemata for lo
al 
on-

sisten
y ([2, 8℄), establishing a more expressive s
hema, namely GIF, spe-


ializations of whi
h the previous s
hemata turned out to be. After analyz-

ing various algorithms for a
hieving di�erent levels of lo
al 
onsisten
y, we

brought out some of the relations among the sets of fun
tions that are suÆ-


ient for 
orre
tness of GIF and ne
essary for instantiating it to most of the


onstraint propagation algorithms: a

ording to the relation held and the

fun
tions 
hosen, we obtain a spe
ialization of GIF for a spe
i�
 lo
al 
on-

sisten
y algorithm. In this paper, we surveyed the PC-4 and KS, and proved

that they are all instan
es of spe
ializations of GIF; in a previous work ([8℄),

we did it for AC-4, AC-5 and their generalization for hyper ar
 
onsisten
y;


f. also [2, 3℄ for many other 
onstraint propagation algorithms whi
h GI,

hen
e GIF, 
an be instantiated to.
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