
Joint NCC & IIS Bull., Comp. S
ien
e, 16 (2001), 29{44

 2001 NCC Publisher

A general s
hema for
onstraint

propagation

R. Gennari

Various algorithms for a
hieving di�erent levels of lo
al
onsisten
y (i.e.,
onstraint

propagation algorithms), even diverse ones for the same kind of lo
al
onsisten
y, are

present in the literature and built into existing systems. Due to their variety and diversity,

a natural quest is to sear
h for a
ommon framework. In this arti
le, we approa
h
onstraint

propagation from a general perspe
tive, by enlarging on previous algorithm s
hemata and

augmenting their expressive power: in that, further
onstraint propagation algorithms are

instan
es of our s
hema. This is due to new relations that we establish among fun
tion

sets and use to instantiate our algorithm s
hema; these relations result from abstra
ting

ommon properties of the surveyed
onstraint propagation algorithms. Hen
e, our general

approa
h is expressive enough to bring out the
ommon properties of most of the
onstraint

propagation algorithms, as well as their distin
tions.

1. Introdu
tion

Constraint programming
onsists of formulating and solving
onstraint sat-

isfa
tion problems. One of the most important te
hniques developed in that

area is lo
al
onsisten
y, whi
h is also well known as
onstraint propagation.

In general,
onstraint propagation algorithms aim at pruning the sear
h

spa
e, without adding or removing solutions. Lots of these algorithms were

devised for a
hieving di�erent levels of lo
al
onsisten
y. Besides, various

algorithms were designed and optimized for enfor
ing the same level of lo
al

onsisten
y: some of them were spe
ialized for parti
ular domains, other for

exploiting a spe
i�
 orders over variables et
. Moreover, most of
onstraint

propagation algorithms were built into the existing
onstraint programming

systems.

Due to the variety of
onstraint propagation algorithms in the literature

and their importan
e in pra
ti
e, a natural quest is to sear
h for a
ommon

\thread" among them. In [2, 3℄,
onstraint propagation algorithms were ap-

proa
hed from a general perspe
tive and many of them were proved to be

instan
es of a unique s
hema, namely the Generi
 Iteration algorithm (GI).

Lately, we generalized GI to a more expressive s
hema, in whi
h the latter

an be instantiated to more lo
al
onsisten
y algorithms than GI
an,
f. [8℄.

30 R. Gennari

In the general framework elaborated in [2, 3℄, the author pinpointed the

basi
 properties that are
ommon to most of the fun
tions for enfor
ing

lo
al
onsisten
y. Following the spirit of our previous work [8℄, we enlarge

on that approa
h in this paper: in fa
t, we do not only take into
onsideration

properties of fun
tions as in [2, 3℄; besides, we study and emphasize the role

of relations among fun
tions for enfor
ing
onstraint propagation. From our

analysis, we work out a new generalization of the GI s
hema in [1, 2℄ and of

ours in [8℄: namely, the Generi
 Iteration algorithm with Fun
tions (GIF).

This arti
le is organized as follows: �rst, we introdu
e our new algorithm

s
hema and some of its spe
ializations,
f. Se
tion 2. In Se
tion 3, we de�ne

onstraint satisfa
tion problems, some orderings over them and make expli
it

their
onne
tion with the general algorithm s
hema. Finally, we show that

our s
hema
an be instantiated to more
onstraint propagation algorithms,

like PC-4 and KS, than the previous s
hemata.

2. The GIF algorithm s
hema and its

spe
ializations

In [8℄, we introdu
ed the Generi
 Iteration algorithm with Subsumed Fun
-

tions (GISF) as a s
hema that generalizes the Generi
 Iteration algorithm

(GI) of [2, 3℄. Moreover, we proved that our s
hema is more expressive than

GI, in that some lo
al
onsisten
y algorithms are instan
es of the former

and not of the latter. In this se
tion, we introdu
e a s
hema that generalizes

GISF, too: namely, the Generi
 Iteration algorithm with Fun
tions (GIF). Af-

ter introdu
ing GIF, we spe
ialize it: �rst we re
all our previous algorithm

s
hema, namely GISF, and show that GI is an instan
e of GISF itself; �nally,

we introdu
e a new spe
ialization of GIF, the Generi
 Iteration algorithm

with In
luded Fun
tions (GIIF), and prove its
orre
tness.

2.1. The GIF algorithm s
hema

While the GI algorithm s
hema sele
ts fun
tions from one set, the GIF algo-

rithm s
hema
an
hoose fun
tions from two possibly di�erent sets. There-

fore, the GIF s
hema
an also be instantiated to lo
al
onsisten
y algorithms

that are split into two main sub-programs, like AC-4 or PC-4: one performs a

\global pruning" and the other | that is not interleaved with the former |

a
hieves the desired level of lo
al
onsisten
y by means of some kinds of

more \lo
al a
tions".

General s
hema for
onstraint propagation 31

Generi
 Iteration algorithm with Fun
tions (GIF)

1. d := ?;

2. G := H;

3. while G 6= ; do

4.
hoose g 2 G;

5. G := G� fgg;

6. G := G [update(G;F; g; d);

7. d := g(d)

8. od

The update operator (6th line of GIF) has to satisfy three
onditions:

A. if g(d) 6= d, then the following fun
tions have to be in update(G;F; g; d):

all f 2 F �G su
h that f(d) = d and f(g(d)) 6= g(d);

B. g(d) = d implies update(G;F; g; d) = ;;

C. if g(g(d)) 6= g(d), then g is in update(G;F; g; d).

No further restri
tions are imposed on the general s
hema. Instead, in the

following, we shall study diverse
onditions, namely properties of fun
tions

or relations among them, under whi
h that unique s
hema
an be applied to

enfor
e various forms of lo
al
onsisten
y; like, for instan
e, path
onsisten
y.

Besides, we
an express and analyze di�erent algorithms for the same level

of lo
al
onsisten
y; for example PC-1 (
f. [1℄) and PC-4 (
f. Se
tion 4). In

fa
t, those algorithms
an be instantiated to our s
hema by means of spe
i�

fun
tions.

Note 1. Suppose that g is idempotent; that is, for every d 2 D, g(g(d)) =

g(d). In this
ase, g does not need to be added to update(G;F; g; d) a

ording

to the third
ondition C;
f. [2, 3℄.

2.2. The GISF algorithm s
hema

The GISF algorithm is an instan
e of the GIF s
hema. In GISF, the sets of

fun
tions F and H are not arbitrary but related in order to guarantee that

a �xed point of all the fun
tions from H is a �xed point of all the fun
tions

from F . Pre
isely, let f and g be two fun
tions on a set D; we say that the

fun
tion g subsumes the fun
tion f i� g(d) = d implies f(d) = d. Let F and

H be two sets of fun
tions de�ned on the same set D; we say that the set

H subsumes the set F i� ea
h fun
tion of F is subsumed by a fun
tion of

H; in that
ase, we write subs(F;H) (
f. [8℄). On the overall, the
ondition

subs(F;H) guarantees that d is a �xed point of all the fun
tions from F if

it is a �xed point of all the fun
tions from H.

32 R. Gennari

Note 2. In general, it is not trivial to establish whether a fun
tion g sub-

sumes a fun
tion f . However, suppose that f and g are fun
tions de�ned

on hD;vi and that f is in
ationary with respe
t to v: i.e., for all d 2 D,

d v f(d) holds. Further, if f(d) v g(d) for every d 2 D, then g subsumes f .

The following result,
on
erning the
orre
tness of GISF, was proved

in [8℄.

Theorem 1. (GISF) Let (D;v) be a partial ordering with bottom, ?; sup-

pose that H and F are two sets of fun
tions on D; if the relation subs(F;H)

holds, then the following statements are valid.

i. Every terminating exe
ution of the GISF algorithm
omputes in d a

ommon �xed point of the fun
tions in H [F .

ii. Suppose that all the fun
tions of H [F are monotoni
. Then every

terminating exe
ution of the GISF algorithm
omputes in d the least

ommon �xed point of all the fun
tions from H and F .

iii. Suppose that H and F
ontain �nitely many fun
tions whi
h are all

in
ationary. Further, assume that the stri
t partial order on D satis�es

the as
ending
hain
ondition (ACC): namely, there are not in�nite

as
ending
hains of D elements. Then every exe
ution of the GISF

algorithm terminates. 2

Observe that subs(H;H) always holds; this means that subs is a re
exive

relation. Hen
e the GI algorithm s
hema is an instan
e of our GISF algorithm

itself; in fa
t, it is enough to set F = H in the latter to obtain the GI

algorithm of [2, 3℄. Besides, the GISF s
hema is stri
tly more \expressive"

than GI: there are lo
al
onsisten
y (pre
isely, ar

onsisten
y) algorithms

in it that are instan
es of GISF but not of GI;
f. [8℄.

2.3. The GIIF algorithm s
hema

As we have noti
ed, the GISF s
hema is already a generalization of GI and

is more expressive than the latter. Yet, there are
onstraint propagation

algorithms that are instan
es of neither GI nor GISF, like the k-
onsisten
y

algorithm of Cooper,
f. Se
tion 5. In those algorithms, the relation between

H and F is of another sort: basi
ally, H is a subset of F that
ontains all

f 2 F for whi
h f(?) 6= ?; then the update operator pi
ks out from F the

fun
tions that are still to be inspe
ted and adds them to G. The Generi

Iteration algorithm with In
luded Fun
tions (GIIF) is this new instantiation

of the GIF algorithm s
hema. In the following, we prove the partial and total

orre
tness of GIIF.

General s
hema for
onstraint propagation 33

Theorem 2 (GIIF). Let (D;v) be a partial ordering with bottom ?; sup-

pose that H and F are two sets of fun
tions on D; if H is a subset of F that

in
ludes the set ff 2 F : f(?) 6= ?g, then the following statements hold.

i. Every terminating exe
ution of the GIIF algorithm
omputes in d a

ommon �xed point of the fun
tions in F .

ii. Suppose that all the fun
tions in F are monotoni
. Then every termi-

nating exe
ution of the GIIF algorithm
omputes in d the least
ommon

�xed point of all the fun
tions from F .

iii. Suppose that F has �nitely many fun
tions whi
h are all in
ationary.

Further, assume that the stri
t partial order on D satis�es the as
end-

ing
hain
ondition (ACC): namely, there are not in�nite as
ending

hains of D elements. Then every exe
ution of the GIIF algorithm

terminates.

Proof. We just need to prove the �rst item, the proof of the other two is

like in [8℄ for the
ase of GISF. Consider the predi
ate I de�ned by

8 f (f 2 F �G ^ f 2 H ! f(d) = d):

The predi
ate I is established by the assignment G := H; in fa
t, if f 2

F � G, then f 62 H, hen
e I trivially holds. Now, suppose that I holds

before a while-loop is entered. After an iteration of the while-body, only

the inspe
ted fun
tion g of F
an be added to F�G, just in
ase of g(g(d)) =

g(d); hen
e, for the new
omputed value of d after the exe
ution of thewhile-

body, we have that I still holds. Thereby, I is an invariant of the while-loop.

Upon the termination of the algorithm, G is empty and H = F \H, so I

implies I

0

, de�ned by

8 f (f 2 H ! f(d) = d);

hen
e the predi
ate I

0

holds as well. The predi
ate I

0

guarantees that d is a

�xed point of all the fun
tions from H. We
laim that d is a �xed point of all

the fun
tions from F , too, by de�nition of update. Let ? =: d

0

; : : : ; d

n

:= d

be the sequen
e from D
omputed by the GIIF algorithm, so that, for every

i = 0; : : : ; (n � 1), d

i+1

= g

i+1

(d

i

), where g

i+1

2 F , su
h a sequen
e exists

be
ause we assume that the algorithm terminates. Suppose that there exists

f 2 (F � H) su
h that f(d

n

) 6= d

n

; observe that f 62 H implies that

f(d

0

) = d

0

. Sin
e the sequen
e is �nite, f(d

n

) 6= d

n

and f(d

0

) = d

0

, there

must be a maximal i = 0; : : : ; (n�1) su
h that f(d

i

) = d

i

and f(d

j

) 6= d

j

for

all j su
h that i < j � n. Then update(G;F; g

i+1

;D) adds G the fun
tion

f , be
ause of
ondition A; noti
e that f
annot be removed from G in any

34 R. Gennari

subsequent iteration of the while-loop, be
ause of the
onditions C and

f(d

j

) 6= d

j

for all j for whi
h i < j � n. Hen
e G is not empty after

pro
essing g

n

, whi
h is absurd. 2

3. Constraint satisfa
tion problems and partial

orderings

In order to apply the GIF algorithm s
hema over CSP's, we need to de-

�ne proper orders among CSP's. In the following, we introdu
e di�erent

orderings that vary a

ording to the lo
al
onsisten
y algorithms whi
h are

surveyed in the arti
le.

3.1. Constraint satisfa
tion problems

Consider a �nite sequen
e X of di�erent variables, say x

1

; : : : ; x

n

for n >

0, with asso
iated domains D

1

; : : : ;D

n

. A
onstraint sequen
e s, brie
y
-

sequen
e, on n > 0 is a stri
tly growing sequen
e of di�erent integers from

1; : : : ; n. Let D be the Cartesian produ
t D

1

� � � � � D

n

and s be the
-

sequen
e i

1

; : : : ; i

m

on n. Then we denote by D(s) the Cartesian produ
t

D

i

1

�� � ��D

i

n

. For instan
e, if D

1

= f0g, D

2

= f2; 6g, D

3

= f4g and s is the

-sequen
e 1; 3, thenD(s) is the set f(0; 4)g. Further, we shall denote by d(s)

an element of D(s), for a tuple d of D

1

�� � ��D

n

: i.e., if s is the
-sequen
e

i

1

; : : : ; i

m

on n and d = (d

1

; : : : ; d

n

), then d(s) is the tuple (d

i

1

; : : : ; d

i

m

).

Given two
-sequen
es on n of equal length m � n, say s = i

1

; : : : ; i

m

and

t = j

1

; : : : ; j

m

, we write s <

s
h

t if, for all k = 1; : : : ; l < m, we have that

i

k

= j

k

and i

l

< j

l

. Moreover, we write s <

s
h

t if s and t are
-sequen
es on

n and the length of s is stri
tly less than that of t. Hen
e the relation <

s
h

is a total order on
-sequen
es on n.

De�nition 1. Let X be a sequen
e of n > 0 di�erent variables with do-

mains D

1

; : : : ;D

n

, the set D be the Cartesian produ
t D

1

� � � � �D

n

and s

be a
-sequen
e on n; a
onstraint on s is a subset of D(s). Then we write

C(s), or C when no
onfusion
an arise. A
onstraint satisfa
tion problem

on X, brie
y CSP, is a triple P := hX;D; Ci, where D is the sequen
e of do-

mains D

1

; : : : ;D

n

and C is a sequen
e of
onstraints C(s

1

); : : : ; C(s

n

), that

is ordered a

ording to the order s

1

<

s
h

� � � <

s
h

s

n

on
-sequen
es.

If s is a
-sequen
e on n, then fsg is the
orresponding set of integers o
-

urring in s; for instan
e, if s is the
-sequen
e 1; 3; 4, then fsg is the set

f1; 3; 4g. Observe that every set of i � n integers uniquely determines the

-sequen
e s on n to whi
h it
orresponds; in fa
t a
-sequen
e is a stri
tly

growing sequen
e of integers, so, for example, the set f1; 3; 4g determines the

General s
hema for
onstraint propagation 35

-sequen
e 1; 3; 4. A
-subsequen
e of s is just a
-sequen
e t on n su
h that

ftg is a subset of fsg. Consider a CSP P on n variables and a
-sequen
e

s = i

1

; : : : ; i

k

on n. The set I(s) of all
onsistent instantiations relative to

s is the set of all d 2 D(s) su
h that d(t) 2 C(t), for all C(t) of P on a

-subsequen
e t of s.

A solution to a CSP P on n variables is a tuple of I(s), where s is the

-sequen
e of all integers 1; : : : ; n; then I(s) is the solution set of P , usually

written as Sol(P). A CSP P is globally
onsistent i� D = Sol(P). Two

CSP's on the same sequen
e of variables X are equivalent i� they have the

same solution set.

3.2. Partial orderings

So far, we have an algorithm s
hema, namely GIF, that is able to
ompute the

ommon �xed point of fun
tions de�ned on a partial ordering with bottom.

We aim at applying the GIF algorithm to CSP's and instantiating it to some

lo
al
onsisten
y algorithms that modify
onstraints. Hen
e, we need to feed

the GIRF algorithm with suitable fun
tions that are
apable of modifying

onstraints, as well as to devise a partial order between problems. In the

following, we de�ne the orderings that we shall use lately in this arti
le;
f.

also [1℄ and [4℄ for similar ones.

De�nition 2. Consider a CSP P and all its
onstraints C

1

; : : : ; C

n

. The

ompletion of P is the CSP

�

P that has the same sequen
e of variables and

domains as P , but the
onstraints of whi
h are as follows: for ea
h
-sequen
e

s on n, if C(s) 2 C, then C(s) is the
onstraint on s of

�

P ; otherwise C(s) is

D [s℄. We say that a CSP P is
omplete i� P =

�

P .

However, if we work with binary CSP's P (CSP's that have only binary

onstraints), the
hoi
e of

�

P is not optimal: we may add too many
onstraints

to P . Hen
e, we re�ne the above de�nition as follows.

De�nition 3. Consider a CSP P on n > 0 variables, a natural number

k not greater than n, two CSP's

�

P

k

and

�

P

s

k

that have the same sequen
e

of variables and domains as P . Then

�

P

k

is the k-
ompletion of P if the

onstraints of P

k

are all the k-ary
onstraints of

�

P ; the problem P is k-

omplete i� P =

�

P

k

. Whilst

�

P

s

k

is the k-strong
ompletion of P i� the

onstraints of

�

P

s

k

are all the i-ary
onstraints of

�

P for every 0 < i � k, the

problem P is k-strong
omplete i� P =

�

P

s

k

.

A CSP P and its
ompletions de�ned above are equivalent problems. Fur-

thermore, a CSP P on n variables is n-strong
omplete i� it is
omplete.

36 R. Gennari

De�nition 4. Consider a CSP P and the Cartesian produ
t C of all the

onstraints of

�

P . The
onstraint order of P is the binary relation v de�ned

as follows: given two subsets B and B

0

of C, B v B

0

i� B � B

0

.

Let F(C) be a family of subsets ofC to whi
hC belongs. Then hF(C);v;Ci

is a
onstraint ordering of P and its bottom is C.

It is immediate to verify that the binary relation introdu
ed above is a

partial order, be
ause so is �. Moreover, the Cartesian produ
ts C is the

bottom of v.

Observe that, given a CSP P , there is always a
onstraint ordering of P ,

namely, the one based on the power set }(C). Yet, we may want to deal only

with
onstraints of a �xed arity, like in path or k-
onsisten
y algorithms;

hen
e we restri
t the above introdu
ed order as follows.

De�nition 5. Consider a CSP P and the Cartesian produ
t C

k

of all the

onstraints of

�

P

k

. The k-
onstraint order of P is the restri
tion of v to

subsets of C

k

: we write it as v

k

. Let F(C

k

) be a family of subsets of C

k

to whi
h C

k

belongs. Then hF(C

k

);v

k

;C

k

i is a k-
onstraint ordering of P

with bottom C

k

.

Consider now the Cartesian produ
t C

s

k

of all the
onstraints of

�

P

s

k

. The

k-strong
onstraint order of P is the restri
tion of v to subsets of C

s

k

: we

write it as v

s

k

. Let F(C

s

k

) be a family of subsets of C

s

k

to whi
h C

s

k

belongs.

Then hF(C

s

k

);v

s

k

;C

s

k

i is a k-
onstraint ordering of P the bottom of whi
h

is C

s

k

.

Indeed, the restri
tion of }(C) to k-ary relations gives rise to a k-
onstraint

ordering of P ;
onsidering the restri
tion to all i-ary relations of }(C), for

ea
h 0 < i � k, we obtain a k-strong
onstraint ordering of P .

4. The path
onsisten
y algorithm PC-4

The PC-4 algorithm was designed in [10℄; however, here we refer to its
or-

re
ted form given in [9℄. This algorithm enfor
es path
onsisten
y on binary

CSP's. In this se
tion, we prove that PC-4 is an instan
e of the GISF algo-

rithm s
hema; hen
e, in the following, we restri
t our attention to binary

CSP's.

4.1. Preliminaries

Given a
onstraint C(i; j) and any its subset B(i; j), the transposed B(i; j)

is the relation B(j; i) the elements of whi
h are all pairs (d; d

0

) su
h that

(d

0

; d) 2 B(i; j). The transposed relations will help us to better des
ribe the

PC-4 algorithm; however, given a CSP P and a
onstraint C(i; j) of it, C(j; i)

General s
hema for
onstraint propagation 37

is not a
onstraint of P , a

ording to De�nition 1. The PC-4 algorithm is

split into two parts, as explained in the following.

The �rst part. Suppose we are given a
onstraint C(i; j) of the input CSP

(i.e., i < j) and a variable x

k

of the problem su
h that k 6= i; j. For ea
h

(a; b) 2 C(i; j), the algorithm
he
ks whether there exists
 in D

k

su
h that

(a;
) 2 C(i; k) and (
; b) 2 C(k; j); if
 exists, then Total := Total + 1,

S

iak

:= S

iak

[f(j; b)g and S

jbk

:= S

jbk

[f(i; a)g. After the sear
h for

supports in D

k

is
omplete, Counter [(i; a; j; b); k℄ is set to Total and so is

Counter [(j; b; i; a); k℄. If (a; b) has no supports in D

k

(i.e. Total is 0), then

the algorithm sets M [i; a; j; b℄ and M [j; b; i; a℄ to 1 in order to re
ord that

either (a; b) or (b; a) are to be eliminated. So the set List is initialized with

all the tuples (i; a; j; b) for whi
h M is 1.

The se
ond part. The se
ond part
onsists of a while-loop that termi-

nates when List is empty. An element (i; a; j; b) is
hosen and deleted from

List. Then all pairs (k;
), su
h that (a;
) 2 C(i; k) and (
; b) 2 C(k; j),

are
he
ked. Suppose that (a;
) is no longer supported in C(i; k) or (
; b)

is no longer supported in C(k; j) (i.e., Counter [(i; a; k;
); j℄ = 0 or

Counter [(j; b; k;
); i℄ = 0); if (a;
) or (
; a), and (
; b) or (b;
) have not

been removed yet (i.e., M [i; a; k;
℄ = 0 and M [j; b; k;
℄ = 0), then they are

deleted and the e�e
ts of their removal are propagated by adding (i; a; k;
)

and (j; b; k;
) to List.

4.2. PC4 is an instan
e of GISF

While ar

onsisten
y algorithms remove elements from domains

(
f. [8℄), path
onsisten
y algorithms delete pairs from binary
onstraints.

Consider the 2-
onstraint
losure of P and the Cartesian produ
t C

2

of its

onstraints; hen
e, our fun
tions are of the form f : B �! B, where B is a

subset of C

2

. As in the
ase of (G)AC-4 (
f. [8℄), we shall instantiate GISF

with two sets of fun
tions, H and F : the fun
tions of H perform a \global"

a
tion, so to speak, and take
are of the �rst part of the algorithm used to

reate List; the fun
tions of F have a more \lo
al" behavour.

For the sake of readability, we introdu
e a new relation that we shall

use for de�ning our fun
tions:
onsider a subset B of C

2

; assuming that

0 < i < j � n, the pair (a; b) 2 B(i; j) belongs to Del(B; i; j; k) i�, for all

 2 D

k

,

(a;
) 62 B(i; k) _ (
; b) 62 B(k; j):

Noti
e that the relation Del(B; i; j; k) is a subset of B(i; j).

1. For every
onstraint C(i; j) of the given P

2

, k = 1; : : : ; n, k 6= i; j, and

(a; b) 2 C(i; j), we de�ne a fun
tion �(i; a; j; b; k)(B) := B

0

,

38 R. Gennari

where B; B

0

� C

2

and ea
h B(r;m)

0

is de�ned as follows:

B(r;m)

0

:=

8

>

<

>

:

B(r;m)� f(a; b)g if r = i; m = j and (a; b) 2 Del(B; i; j; k);

B(r;m) otherwise:

Basi
ally, �(i; a; j; b; k) removes (a; b) from B(i; j) i� there is no
 2 D

k

su
h

that (a;
) 2 B(i; k) and (
; b) 2 B(k; j).

2. Let us
onsider two
onstraints C(i; k) and C(k; j) of C

2

, or their trans-

posed; further, let us
hoose (a;
) 2 C(i; k) and (
; b) 2 C(k; j). Then we

de�ne two new di�erent fun
tions, namely �(i; a; j; b; k;
)(B) := B

0

and

�(j; b; i; a; k;
)(B) := B

00

, in the following way:

B(r;m)

0

:=

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

B(i; k)� f(a;
)g if r = i; m = k; i < k and

(a;
) 2 Del(B; i; k; j);

B(k; i)� f(
; a)g if r = k; m = i; k < i and

(
; a) 2 Del(B; k; i; j);

B(r;m) otherwise;

B(r;m)

00

:=

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

B(k; j)� f(
; b)g if r = k; m = j; k < j and

(
; b) 2 Del(B; k; j; i);

B(j; k)� f(b;
)g if r = j; m = k; j < k and

(b;
) 2 Del(B; j; k; i);

B(r;m) otherwise:

Intuitively, the fun
tion �(i; a; j; b; k;
) removes (a;
) ((
; a) if k < i) from

B(i; k) (from B(k; i) if k < i) i� a or
 have lost their unique support b in

D

j

; whilst �(j; b; i; a; k;
) removes the pair (
; b) ((b;
) if j < k) from B(k; j)

(from B(j; k) if j < k) i�
 or b have lost their unique support a in D

i

.

Noti
e that, for every fun
tion �(i; a; j; b; k) 2 H and �(i; a; k;
; j; b) 2 F ,

the following relation holds, if i < j:

�(i; a; j; b; k)(B) � �(i; a; k;
; j; b)(B);

otherwise the following is true if j < i:

General s
hema for
onstraint propagation 39

�(j; a; i; b; k)(B) � �(i; a; k;
; j; b)(B):

Thereby subs(F;H) holds. Now, we
an de�ne update as follows.

� If �(i; a; j; b; k)(B) = B, then update(G;F; �(i; a; j; b; k); B) = ;. Oth-

erwise, the set update(G;F; �(i; a; j; b; k); B)
ontains all the following

fun
tions:

1. �(i; a; j; b; k;
) su
h that (a;
) 2 B(i; k), (
; b) 2 B(k; j) and

furthermore, for all b

0

2 D

j

, we have that (
; b

0

) 62 B(k; j);

2. �(j; b; i; a; k;
) su
h that (a;
) 2 B(i; k), (
; b) 2 B(k; j) and

furthermore, for all a

0

2 D

i

, we have that (a

0

;
) 62 B(i; k).

� If �(i; a; j; b; k;
)(B) = B, then update(G;F; �(i; a; j; b; k;
); B) = ;.

Otherwise, the set update(G;F; �(i; a; j; b; k;
); B)
ontains all the fol-

lowing fun
tions:

1. �(i; a; k;
; l; e) su
h that (a; e) 2 B(i; l) and (e;
) 2 B(l; k) and

furthermore, for all

0

2 D

k

di�erent from
, we have that (e;

0

) 62

B(l; k);

2. �(k;
; i; a; l; e) su
h that (a; e) 2 B(i; l) and (e;
) 2 B(l; k) and

furthermore, for all a

0

2 D

i

di�erent from a, we have that (a

0

; e) 62

B(i; l).

The update operator above satis�es A and B; the last
ondition, C, is

trivially ful�lled, be
ause all of the
onsidered fun
tions are in
ationary,

f. Note 1.

Corollary 1 (GISF for path
onsisten
y). Consider a CSP P := hX;D;

Ci with the asso
iated 2-
onstraint order and the sets of fun
tions H and F

as de�ned above. If D is �nite, then every exe
ution of the GISF algorithm

terminates
omputation of the greatest path
onsistent problem equivalent

with P .

Proof. Indeed a �xed point of the fun
tions from H is a path
onsistent

problem equivalent to the given one. As subs(F;H) holds, a �xed point of

the fun
tions from H is a �xed point of the fun
tions from F , too. Further-

more, if all domains are �nite, so is H [F . Our statement follows now from

Theorem 1. 2

We are left to prove that the PC-4 algorithm is indeed an instan
e of

GISF.

Theorem 2 (GISF for PC-4). PC-4 is an instan
e of the GISF algorithm

s
hema.

40 R. Gennari

Proof. The �rst part of the PC4 algorithm is reprodu
ed by iterating GISF

with the fun
tions fromH, none of whi
h is any longer introdu
ed by update.

For every
onstraint C(i; j) of P

2

(line 2 of PC-4), k = 1; : : : ; n (line 3 of

PC-4) and (a; b) 2 C(i; j) (line 4 and 5 of PC-4), the �rst for-loop of the

PC-4 algorithm
he
ks whether there exists
 2 D

k

that supports a and b; if

there is no su
h
, then (a; b) is removed from C(i; j) and the e�e
ts of its

removal are propagated. The fun
tion g(i; a; j; b; k) has a similar behaviour:

it removes the pair (a; b) i� there is no support in D

k

for a and b; then

the e�e
ts of the removal of (a; b) are propagated by means of the update

operator.

After inspe
ting all fun
tions from H, we feed GISF with the fun
tions from

F that are added by update; so we
an reprodu
e the se
ond part of the

PC-4 algorithm, namely, the se
ond for-loop, by
hoosing the fun
tions

�(i; a; j; b; k;
) and �(j; b; i; a; k;
),
onse
utively. 2

5. The KS algorithm

The KS algorithm by Cooper [5℄ is an optimization of the synthesis algorithm

by Freuder [7℄. The algorithm by Cooper
an enfor
e either k-
onsisten
y

or k-strong
onsisten
y over a CSP. In this se
tion, we prove that the GIIF

s
hema
an be instantiated to the KS algorithm.

5.1. Preliminaries

The
on
epts of ar
 and path
onsisten
y were generalized in [7℄ to k
on-

sisten
y. Given a CSP P on n variables and an integer 1 � k < n,
onsider

a
-sequen
e s := i

1

; : : : ; i

k

on n. Consider a positive integer j 62 s and

1 � j � n, and a
-sequen
e s

0

on fsg [fjg; then a k-
onsistent instantia-

tion d of I(s) is a proje
tion (over s) of a (k + 1)-
onsistent instantiation of

I(s

0

) i� there exists d

0

2 I(s

0

) su
h that d

0

(s) = d. A CSP P on n variables

is 1-
onsistent i�, for every i = 1; : : : ; n, the set I(i) is not empty. A CSP

P on n variables is (k + 1)-
onsistent for 0 < k � n i� any k-
onsistent in-

stantiation is a proje
tion of a (k+1)-
onsistent instantiation. Furthermore,

the CSP P is k-strong
onsistent i� it is i-
onsistent for ea
h 0 < i � k. In

parti
ular, P on n variables is
onsistent if it is n-strong
onsistent.

The KS algorithm is split into two main sub-programs: the initializa-

tion pro
ess takes pla
e in the �rst step; then the pruning of k-in
onsistent

values from domains begins the se
ond step. The se
ond sub-program
on-

sists of two main a
tions: the algorithm
hooses a tuple d that is already

removed from C(t), for t of length i; if i < k, the e�e
ts of the removal

of d are �rst propagated
onsidering all (i + 1)-
onsistent instantiations d

0

General s
hema for
onstraint propagation 41

su
h that d

0

(t) = d; if i > 1, the e�e
ts of the removal of d are propagated

onsidering all (i� 1)-
onsistent instantiations d

0

su
h that d

0

= d(s) for all

-subsequen
es s of t of length (i� 1).

5.2. GIIF
an enfor
e k and k-strong
onsisten
y

Given a
-sequen
e s on n of length 0 < i � k, let us
hoose an element

d 2 D(s). Consider C

s

k

and, if (i + 1) < k, a
-sequen
e s

+

of length

(i + 1), a
-subsequen
e of whi
h is s; furthermore, if (i � 1) > 0,
hoose a

-subsequen
e s

�

of s whose length is (i� 1). Then we
onsider any subset

B of C

s

k

. We
an now de�ne two subsets, the �rst of B(s

+

) and the se
ond

of B(s

�

), that will help us to better des
ribe our fun
tions. Suppose that

d 62 B(s); then we have that

d

+

2 Del

+

(B(s

+

); d) i� d = d

+

(s);

d

�

2 Del

�

(B(s

�

); d) i� d(s

�

) = d

�

and 8 a (a 2 B(s)) a(s

�

) 6= d

�

):

Instead, if d 2 B(s), then both Del

+

(B(s

+

); d) and Del

+

(B(s

�

); d) are

empty.

1. Consider a
-sequen
e s on n of length 1 � i < k, a tuple d 2 D(s) and

any subset B of C

s

k

; then we de�ne the fun
tion �

+

(s; i; d)(B) := B

0

,

where B

0

:= B

0

1

� : : :�B

0

n

and, for every t, we have

B(t)

0

:=

8

>

>

>

<

>

>

>

:

B(t)�Del

+

(B(t); d) if s is a
-subsequen
e of t

and the length of t is i+ 1;

B(t) otherwise:

Basi
ally, �

+

(s; i; d) removes all the tuples of length (i+1) a proje
tion

of whi
h is d, if d is not in B(s).

2. Consider a
-sequen
e s on n of length 1 < i � k, a tuple d 2 D(s) and

any subset B of C

s

k

; then we de�ne the fun
tion �

�

(s; i; d)(B) := B

0

,

where B

0

:= B

0

1

� : : :�B

0

n

and, for every t, we have

B(t)

0

:=

8

>

>

>

<

>

>

>

:

B(t)�Del

�

(B(t); d) if t is a
-subsequen
e of s

and the length of t is i� 1;

B(t) otherwise:

Basi
ally, �

�

(s; i; d) removes all the tuples of length (i � 1) that are

proje
tions of d but of no other i-
onsistent instantiation, if d 62 B(s).

42 R. Gennari

We instantiate G with the subset H of all fun
tions �

+

(s; i; d) and �

�

(s; i; d)

su
h that d 62 C(s); observe that the fun
tions modifying C

s

k

are among

those of H. Then the update operator will take
are of adding all the fun
-

tions of F we need for enfor
ing (strong) k-
onsisten
y.

� If �

+

(s; i; d)(B) = B, then update(G;F; �

+

(s; i; d); B) = ;. Otherwise,

the set update(G;F; �

+

(s; i; d); B)
ontains all fun
tions �

+

(s

0

; i; d

0

),

for ea
h s

0

a
-subsequen
e of whi
h is s and the length is (i+1), and

d

0

2 Del

+

(B(s

0

); d).

� If �

�

(s; i; d)(B) = B, then update(G;F; �

�

(s; i; d); B) = ;. Otherwise,

the set update(G;F; �

�

(s; i; d); B)
ontains all fun
tions �

+

(s

0

; i; d

0

),

for ea
h
-subsequen
e s

0

of s the length of whi
h is (i � 1), and d

0

2

Del

�

(B(s

0

); d).

Corollary 1 (GIIF for k and k-strong
onsisten
y). Consider a CSP

P with a �nite variable domain.

� If we instantiate GIIG only with fun
tions of type �

+

, then the algo-

rithm terminates,
omputing the greatest k-
onsistent problem that is

equivalent to the input one.

� If we instantiate GIIF with all the above de�ned fun
tions, then the

algorithm terminates,
omputing the greatest k-strong
onsistent prob-

lem that is equivalent to the input one.

Proof. Observe that a �xed point of all the fun
tions �

+

and �

�

is a k-

strong
onsistent problem equivalent to the given one; as well, if we just

instantiate F and H with the �

+

fun
tions, then we enfor
e k-
onsisten
y.

As the variable domains are �nite, so is F ; furthermore, the relation H � F

holds and H
ontains all the fun
tions that modify the bottom C

s

k

. So we

an apply Theorem 2. 2

Now we
an prove that KS is an instan
e of the GIIF algorithm s
hema.

Theorem 2 (GIIF for KS). The KS algorithm is an instan
e of GIIF.

Proof. The instantiation of List (that
ontains the elements to be removed)

in KS is reprodu
ed by the instantiation G := H in GIIF. The se
ond sub-

program of the KS algorithm is split into two parts. The fun
tions of the

form �

+

take
are of the �rst part, while the fun
tions of the form �

�

are

employed in the se
ond. 2

Note 1. As remarked in [5℄, the KS algorithm only enfor
es k-
onsisten
y if

the se
ond step of the se
ond subprogram is never exe
uted. So does the GIIF

algorithm if we use only the fun
tions of the form �

+

,
f. also Corollary 1.

General s
hema for
onstraint propagation 43

6. Con
lusions

In this paper, we enlarged on previous algorithm s
hemata for lo
al
on-

sisten
y ([2, 8℄), establishing a more expressive s
hema, namely GIF, spe-

ializations of whi
h the previous s
hemata turned out to be. After analyz-

ing various algorithms for a
hieving di�erent levels of lo
al
onsisten
y, we

brought out some of the relations among the sets of fun
tions that are suÆ-

ient for
orre
tness of GIF and ne
essary for instantiating it to most of the

onstraint propagation algorithms: a

ording to the relation held and the

fun
tions
hosen, we obtain a spe
ialization of GIF for a spe
i�
 lo
al
on-

sisten
y algorithm. In this paper, we surveyed the PC-4 and KS, and proved

that they are all instan
es of spe
ializations of GIF; in a previous work ([8℄),

we did it for AC-4, AC-5 and their generalization for hyper ar

onsisten
y;

f. also [2, 3℄ for many other
onstraint propagation algorithms whi
h GI,

hen
e GIF,
an be instantiated to.

Referen
es

[1℄ K.R. Apt, The Rough Guide to Constraint Propagation, Pro
. of the 5th In-

ternational Conferen
e on Prin
iples and Pra
ti
e of Constraint Programming

(CP'99), Springer-Verlag Le
ture Notes in Computer S
ien
e 1713, pp. 1{23.

[2℄ K.R. Apt, The Rough Guide to Constraint Propagation, Pro
. of the 5th In-

ternational Conferen
e on Prin
iples and Pra
ti
e of Constraint Programming

(CP'99), Springer-Verlag Le
ture Notes in Computer S
ien
e 1713, pp. 1{23.

[3℄ K.R. Apt, The Role of Commutativity in Constraint Propagation Algorithms,

ACM TOPLAS, 22(6), pp. 1002{1036, 2000.

[4℄ S. Bistarelli, R. Gennari and F. Rossi, Constraint Propagation for Soft Con-

straint Satisfa
tion Problems: Generalization and Termination Conditions,

Pro
. of the 6th International Conferen
e on Prin
iples and Pra
ti
e of Con-

straint Programming (CP2000), Springer-Verlag Le
ture Notes in Computer

S
ien
e, 1894, pp. 83{97.

[5℄ M. Cooper, An Optimal k-Consisten
y Algorithm, Arti�
ial Intelligen
e, 41,

pp. 89{95, 1989.

[6℄ R. De
heter and Peter van Beek, Lo
al and Global Relational Consisten
y,

Theoreti
al Computer S
ien
e, 173, pp. 283{308, 1997.

[7℄ E.C. Freuder, Synthesizing
onstraint expressions, Communi
ation of ACM,

21, pp. 958{966, 1978.

[8℄ R. Gennari, Ar
 Consisten
y via Iterations of Subsumed Fun
tions, Pro
. of

Computational Logi
 2000 (CL2000), Springer-Verlag Le
ture Notes in Com-

puter S
ien
e, 1861, pp. 358{372.

44 R. Gennari

[9℄ C.-C. Han and C.-H. Lee, Comments on Mohr and Henderson's Path Consis-

ten
y Algorithm, Arti�
ial Intelligen
e, 36, pp. 125{130, 1986.

[10℄ R. Mohr and T.C. Henderson, Ar
 and Path Consisten
y Revisited, Arti�
ial

Intelligen
e, 28, pp. 225{233, 1986.

[11℄ U. Montanari, Networks of
onstraints: Fundamental properties and appli
a-

tions to pi
ture pro
essing, Information S
ien
e, 7(2), pp.95{132, 1974.

