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A general schema for constraint
propagation

R. Gennari

Various algorithms for achieving different levels of local consistency (i.e., constraint
propagation algorithms), even diverse ones for the same kind of local consistency, are
present in the literature and built into existing systems. Due to their variety and diversity,
a natural quest is to search for a common framework. In this article, we approach constraint
propagation from a general perspective, by enlarging on previous algorithm schemata and
augmenting their expressive power: in that, further constraint propagation algorithms are
instances of our schema. This is due to new relations that we establish among function
sets and use to instantiate our algorithm schema; these relations result from abstracting
common properties of the surveyed constraint propagation algorithms. Hence, our general
approach is expressive enough to bring out the common properties of most of the constraint
propagation algorithms, as well as their distinctions.

1. Introduction

Constraint programming consists of formulating and solving constraint sat-
isfaction problems. One of the most important techniques developed in that
area is local consistency, which is also well known as constraint propagation.
In general, constraint propagation algorithms aim at pruning the search
space, without adding or removing solutions. Lots of these algorithms were
devised for achieving different levels of local consistency. Besides, various
algorithms were designed and optimized for enforcing the same level of local
consistency: some of them were specialized for particular domains, other for
exploiting a specific orders over variables etc. Moreover, most of constraint
propagation algorithms were built into the existing constraint programming
systems.

Due to the variety of constraint propagation algorithms in the literature
and their importance in practice, a natural quest is to search for a common
“thread” among them. In [2, 3], constraint propagation algorithms were ap-
proached from a general perspective and many of them were proved to be
instances of a unique schema, namely the Generic Iteration algorithm (GI).
Lately, we generalized GI to a more expressive schema, in which the latter
can be instantiated to more local consistency algorithms than GI can, cf. [8].
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In the general framework elaborated in [2, 3], the author pinpointed the
basic properties that are common to most of the functions for enforcing
local consistency. Following the spirit of our previous work [8], we enlarge
on that approach in this paper: in fact, we do not only take into consideration
properties of functions as in [2, 3]; besides, we study and emphasize the role
of relations among functions for enforcing constraint propagation. From our
analysis, we work out a new generalization of the GI schema in [1,2] and of
ours in [8]: namely, the Generic Tteration algorithm with Functions (GIF).

This article is organized as follows: first, we introduce our new algorithm
schema and some of its specializations, cf. Section 2. In Section 3, we define
constraint satisfaction problems, some orderings over them and make explicit
their connection with the general algorithm schema. Finally, we show that
our schema can be instantiated to more constraint propagation algorithms,
like PC-4 and KS, than the previous schemata.

2. The GIF algorithm schema and its
specializations

In [8], we introduced the Generic Iteration algorithm with Subsumed Func-
tions (GISF) as a schema that generalizes the Generic Iteration algorithm
(GI) of [2, 3]. Moreover, we proved that our schema is more expressive than
GI, in that some local consistency algorithms are instances of the former
and not of the latter. In this section, we introduce a schema that generalizes
GISF, too: namely, the Generic Iteration algorithm with Functions (GIF). Af-
ter introducing GIF, we specialize it: first we recall our previous algorithm
schema, namely GISF, and show that GI is an instance of GISF itself; finally,
we introduce a new specialization of GIF, the Generic Iteration algorithm
with Included Functions (GIIF), and prove its correctness.

2.1. The GIF algorithm schema

While the GI algorithm schema selects functions from one set, the GIF algo-
rithm schema can choose functions from two possibly different sets. There-
fore, the GIF schema can also be instantiated to local consistency algorithms
that are split into two main sub-programs, like AC-4 or PC-4: one performs a
“olobal pruning” and the other — that is not interleaved with the former —
achieves the desired level of local consistency by means of some kinds of
more “local actions”.
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GENERIC ITERATION ALGORITHM WITH FUNCTIONS (GIF)
1.d:=1;

2. G:= H,;

3. while G # () do

4. choose g € G,

5. G:=G—{g};

6. G := G Uupdate(G, F,g,d);

7. d := g(d)

8. od

The update operator (6th line of GIF) has to satisfy three conditions:

A. if g(d) # d, then the following functions have to be in update(G, F, g, d):
all f € F — G such that f(d) =d and f(g(d)) # g(d);

B. g(d) = d implies update(G, F, g,d) = 0;
C. if g(g(d)) # g(d), then g is in update(G, F, g,d).

No further restrictions are imposed on the general schema. Instead, in the
following, we shall study diverse conditions, namely properties of functions
or relations among them, under which that unique schema can be applied to
enforce various forms of local consistency; like, for instance, path consistency.
Besides, we can express and analyze different algorithms for the same level
of local consistency; for example PC-1 (cf. [1]) and PC-4 (cf. Section 4). In
fact, those algorithms can be instantiated to our schema by means of specific
functions.

Note 1. Suppose that g is idempotent; that is, for every d € D, g(g(d)) =
g(d). In this case, g does not need to be added to update(G, F, g, d) according
to the third condition C; cf. [2,3].

2.2. The GISF algorithm schema

The GISF algorithm is an instance of the GIF schema. In GISF, the sets of
functions F' and H are not arbitrary but related in order to guarantee that
a fixed point of all the functions from H is a fixed point of all the functions
from F'. Precisely, let f and g be two functions on a set D; we say that the
function g subsumes the function f iff g(d) = d implies f(d) = d. Let F' and
H be two sets of functions defined on the same set D; we say that the set
H subsumes the set F iff each function of F' is subsumed by a function of
H; in that case, we write subs(F, H) (cf. [8]). On the overall, the condition
subs(F, H) guarantees that d is a fixed point of all the functions from F' if
it is a fixed point of all the functions from H.
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Note 2. In general, it is not trivial to establish whether a function g sub-
sumes a function f. However, suppose that f and g are functions defined
on (D,C) and that f is inflationary with respect to C: i.e., for all d € D,
d C f(d) holds. Further, if f(d) C g(d) for every d € D, then g subsumes f.

The following result, concerning the correctness of GISF, was proved
in [8].

Theorem 1. (GISF) Let (D,C) be a partial ordering with bottom, L; sup-
pose that H and F' are two sets of functions on D; if the relation subs(F, H)
holds, then the following statements are valid.

i. Every terminating execution of the GISF algorithm computes in d a
common fized point of the functions in H U F.

1. Suppose that all the functions of H U F are monotonic. Then every
terminating execution of the GISF algorithm computes in d the least
common fixed point of all the functions from H and F.

i1i. Suppose that H and F contain finitely many functions which are all
inflationary. Further, assume that the strict partial order on D satisfies
the ascending chain condition (ACC): namely, there are not infinite
ascending chains of D elements. Then every ezxecution of the GISF
algorithm terminates. O

Observe that subs(H, H) always holds; this means that subs is a reflexive
relation. Hence the GI algorithm schema is an instance of our GISF algorithm
itself; in fact, it is enough to set FF = H in the latter to obtain the GI
algorithm of [2, 3]. Besides, the GISF schema is strictly more “expressive”
than GI: there are local consistency (precisely, arc consistency) algorithms
in it that are instances of GISF but not of GI; cf. [8].

2.3. The GIIF algorithm schema

As we have noticed, the GISF schema is already a generalization of GI and
is more expressive than the latter. Yet, there are constraint propagation
algorithms that are instances of neither GI nor GISF, like the k-consistency
algorithm of Cooper, cf. Section 5. In those algorithms, the relation between
H and F is of another sort: basically, H is a subset of F' that contains all
f € F for which f(L) # L; then the update operator picks out from F' the
functions that are still to be inspected and adds them to G. The Generic
Iteration algorithm with Included Functions (GIIF) is this new instantiation
of the GIF algorithm schema. In the following, we prove the partial and total
correctness of GIIF.
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Theorem 2 (GIIF). Let (D,C) be a partial ordering with bottom L; sup-
pose that H and F' are two sets of functions on D; if H is a subset of F' that
includes the set {f € F' : f(L)# L}, then the following statements hold.

i. Every terminating execution of the GIIF algorithm computes in d a
common fized point of the functions in F.

1. Suppose that all the functions in F are monotonic. Then every termi-
nating execution of the GIIF algorithm computes in d the least common
fized point of all the functions from F.

i1i. Suppose that F' has finitely many functions which are all inflationary.
Further, assume that the strict partial order on D satisfies the ascend-
ing chain condition (ACC): namely, there are not infinite ascending
chains of D elements. Then every execution of the GIIF algorithm
terminates.

Proof. We just need to prove the first item, the proof of the other two is
like in [8] for the case of GISF. Consider the predicate I defined by

Vf(feEF-GANfeH — f(d)=d).

The predicate I is established by the assignment G := H; in fact, if f €
F — G, then f ¢ H, hence I trivially holds. Now, suppose that I holds
before a while-loop is entered. After an iteration of the while-body, only
the inspected function g of F' can be added to F—G, just in case of g(g(d)) =
g(d); hence, for the new computed value of d after the execution of the while-
body, we have that I still holds. Thereby, I is an invariant of the while-loop.
Upon the termination of the algorithm, G is empty and H = FN H, so [
implies I’, defined by

Vi(feH— f(d)=d);

hence the predicate I’ holds as well. The predicate I’ guarantees that d is a
fixed point of all the functions from H. We claim that d is a fixed point of all
the functions from F', too, by definition of update. Let | =:dy,...,d, :==d
be the sequence from D computed by the GIIF algorithm, so that, for every
i=0,...,(n—1), dis1 = gi+1(d;), where g;11 € F, such a sequence exists
because we assume that the algorithm terminates. Suppose that there exists
f € (F — H) such that f(d,) # d,; observe that f ¢ H implies that
f(dy) = dy. Since the sequence is finite, f(d,) # d, and f(dy) = do, there
must be a maximal ¢ = 0,..., (n—1) such that f(d;) = d; and f(d;) # d; for
all j such that i < j < n. Then update(G, F, g;+1,D) adds G the function
f, because of condition A; notice that f cannot be removed from G in any
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subsequent iteration of the while-loop, because of the conditions C and
f(dj) # dj for all j for which ¢« < j < n. Hence G is not empty after
processing g,, which is absurd. O

3. Constraint satisfaction problems and partial
orderings

In order to apply the GIF algorithm schema over CSP’s, we need to de-
fine proper orders among CSP’s. In the following, we introduce different
orderings that vary according to the local consistency algorithms which are
surveyed in the article.

3.1. Constraint satisfaction problems

Consider a finite sequence X of different variables, say z1,...,z, for n >
0, with associated domains D1,...,D,. A constraint sequence s, briefly c-
sequence, on n > 0 is a strictly growing sequence of different integers from
1,...,n. Let D be the Cartesian product Dy x --- x D, and s be the c-
sequence i1, ...,4, on n. Then we denote by D(s) the Cartesian product
D;, x---x D, . For instance, if D1 = {0}, Dy = {2,6}, D3 = {4} and s is the
c-sequence 1,3, then D(s) is the set {(0,4)}. Further, we shall denote by d(s)
an element of D(s), for a tuple d of Dy x --- X Dy: i.e., if s is the c-sequence
ily-«.yim on n and d = (dy,...,dy,), then d(s) is the tuple (d;,,...,d;, ).
Given two c-sequences on n of equal length m < n, say s = iy,...,4, and
t=41,-.-,Jm, We write s <, t if, for all £ = 1,...,] < m, we have that
i = jr and 4; < j;. Moreover, we write s <., t if s and ¢ are c-sequences on
n and the length of s is strictly less than that of . Hence the relation <
is a total order on c-sequences on n.

Definition 1. Let X be a sequence of n > (0 different variables with do-
mains Dy, ..., Dy, the set D be the Cartesian product Dy X --- X Dy, and s
be a c-sequence on n; a constraint on s is a subset of D(s). Then we write
C(s), or C when no confusion can arise. A constraint satisfaction problem
on X, briefly CSP, is a triple P := (X, D,C), where D is the sequence of do-
mains Dy,..., D, and C is a sequence of constraints C(s1),...,C(sy), that
is ordered according to the order s1 <gcp -+ <seh Sp ON c-sequences.

If s is a c-sequence on n, then {s} is the corresponding set of integers oc-
curring in s; for instance, if s is the c-sequence 1,3,4, then {s} is the set
{1,3,4}. Observe that every set of i < n integers uniquely determines the
c-sequence s on n to which it corresponds; in fact a c-sequence is a strictly
growing sequence of integers, so, for example, the set {1, 3,4} determines the
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c-sequence 1,3,4. A c-subsequence of s is just a c-sequence ¢ on n such that
{t} is a subset of {s}. Consider a CSP P on n variables and a c-sequence
§ = i1,...,i on n. The set I(s) of all consistent instantiations relative to
s is the set of all d € D(s) such that d(t) € C(t), for all C(t) of P on a
c-subsequence t of s.

A solution to a CSP P on n variables is a tuple of I(s), where s is the
c-sequence of all integers 1,...,n; then I(s) is the solution set of P, usually
written as Sol(P). A CSP P is globally consistent iff D = Sol(P). Two
CSP’s on the same sequence of variables X are equivalent iff they have the
same solution set.

3.2. Partial orderings

So far, we have an algorithm schema, namely GIF, that is able to compute the
common fixed point of functions defined on a partial ordering with bottom.
We aim at applying the GIF algorithm to CSP’s and instantiating it to some
local consistency algorithms that modify constraints. Hence, we need to feed
the GIRF algorithm with suitable functions that are capable of modifying
constraints, as well as to devise a partial order between problems. In the
following, we define the orderings that we shall use lately in this article; cf.
also [1] and [4] for similar ones.

Definition 2. Consider a CSP P and all its constraints C,...,C,. The
completion of P is the CSP P that has the same sequence of variables and
domains as P, but the constraints of which are as follows: for each c-sequence
s on n, if C(s) € C, then C(s) is the constraint on s of P; otherwise C(s) is
D [s]. We say that a CSP P is complete iff P = P.

However, if we work with binary CSP’s P (CSP’s that have only binary
constraints), the choice of P is not optimal: we may add too many constraints
to P. Hence, we refine the above definition as follows.

Definition 3. Consider a CSP P on n > 0 variables, a natural number
k not greater than n, two CSP’s P, and 15,? that have the same sequence
of variables and domains as P. Then P} is the k-completion of P if the
constraints of P, are all the k-ary constraints of P; the problem P is k-
complete iff P = P,. Whilst P,j is the k-strong completion of P iff the
constraints of P,j are all the i-ary constraints of P for every 0 < i < k, the
problem P is k-strong complete iff P = P,j.

A CSP P and its completions defined above are equivalent problems. Fur-
thermore, a CSP P on n variables is n-strong complete iff it is complete.
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Definition 4. Consider a CSP P and the Cartesian product C of all the
constraints of P. The constraint order of P is the binary relation T defined
as follows: given two subsets B and B’ of C, BC B' iff BD B'.

Let F(C) be a family of subsets of C to which C belongs. Then (F(C),C, C)
is a constraint ordering of P and its bottom is C'.

It is immediate to verify that the binary relation introduced above is a
partial order, because so is D. Moreover, the Cartesian products C' is the
bottom of C.

Observe that, given a CSP P, there is always a constraint ordering of P,
namely, the one based on the power set p(C'). Yet, we may want to deal only
with constraints of a fixed arity, like in path or k-consistency algorithms;
hence we restrict the above introduced order as follows.

Definition 5. Consider a CSP P and the Cartesian product C}, of all the
constraints of P. The k-constraint order of P is the restriction of C to
subsets of C: we write it as Cf. Let F(C) be a family of subsets of C}
to which C} belongs. Then (F(C}),Cg, Ck) is a k-constraint ordering of P
with bottom C|.

Consider now the Cartesian product C§ of all the constraints of P¢. The
k-strong constraint order of P is the restriction of C to subsets of Cj: we
write it as C}. Let F(C7,) be a family of subsets of Cj, to which C}, belongs.
Then (F(C}),Cj, C}) is a k-constraint ordering of P the bottom of which
is Cf.

Indeed, the restriction of p(C') to k-ary relations gives rise to a k-constraint
ordering of P; considering the restriction to all i-ary relations of p(C), for
each 0 <4 < k, we obtain a k-strong constraint ordering of P.

4. The path consistency algorithm PC-4

The PC-4 algorithm was designed in [10]; however, here we refer to its cor-
rected form given in [9]. This algorithm enforces path consistency on binary
CSP’s. In this section, we prove that PC-4 is an instance of the GISF algo-
rithm schema; hence, in the following, we restrict our attention to binary
CSP’s.

4.1. Preliminaries

Given a constraint C'(i,7) and any its subset B(4,j), the transposed B(i,7)
is the relation B(4,%) the elements of which are all pairs (d,d’) such that
(d',d) € B(i,7). The transposed relations will help us to better describe the
PC-4 algorithm; however, given a CSP P and a constraint C (1, j) of it, C'(4,1)
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is not a constraint of P, according to Definition 1. The PC-4 algorithm is
split into two parts, as explained in the following.

The first part. Suppose we are given a constraint C(7, j) of the input CSP
(i.e., i < j) and a variable zj of the problem such that k£ # 4,j. For each
(a,b) € C(1,7), the algorithm checks whether there exists ¢ in Dy, such that
(a,c) € C(i,k) and (c,b) € C(k,j); if ¢ exists, then Total := Total + 1,
Siake = Siake U {(4,0)} and Sjpre = Sjpke U {(7,a)}. After the search for
supports in Dy is complete, Counter [(i,a, j,b), k] is set to Total and so is
Counter[(j,b,1,a),k]. If (a,b) has no supports in Dy, (i.e. Total is 0), then
the algorithm sets M [i, a,j,b] and M [4,b,4,a] to 1 in order to record that
either (a,b) or (b,a) are to be eliminated. So the set List is initialized with
all the tuples (i,a, 7, b) for which M is 1.

The second part. The second part consists of a while-loop that termi-
nates when List is empty. An element (i, a, j,b) is chosen and deleted from
List. Then all pairs (k,c), such that (a,c¢) € C(i,k) and (¢,b) € C(k,7),
are checked. Suppose that (a,c) is no longer supported in C(7,k) or (c,b)
is no longer supported in C(k,j) (i.e., Counter|(i,a,k,c),j] = 0 or
Counter [(j,b,k,c),i] = 0); if (a,c) or (c,a), and (c,b) or (b,c) have not
been removed yet (i.e., M [i,a,k,c] =0 and M [4,b, k,c] = 0), then they are
deleted and the effects of their removal are propagated by adding (7, a, k, ¢)
and (4,b,k,c) to List.

4.2. PC4 is an instance of GISF

While arc consistency algorithms remove elements from domains
(cf. [8]), path consistency algorithms delete pairs from binary constraints.
Consider the 2-constraint closure of P and the Cartesian product C5 of its
constraints; hence, our functions are of the form f: B — B, where B is a
subset of C5. As in the case of (G)AC-4 (cf. [8]), we shall instantiate GISF
with two sets of functions, H and F: the functions of H perform a “global”
action, so to speak, and take care of the first part of the algorithm used to
create List; the functions of F' have a more “local” behavour.

For the sake of readability, we introduce a new relation that we shall
use for defining our functions: consider a subset B of C; assuming that
0 < i < j < n, the pair (a,b) € B(i,j) belongs to Del(B;1i,j; k) iff, for all
c € Dy,

(a,¢) & B(i, k) V (¢, b) & B(k, j).
Notice that the relation Del(B;i,j; k) is a subset of B(i, 7).

1. For every constraint C(i,j) of the given Po, k =1,...,n, k # i, j, and
(a,b) € C(i,7), we define a function = (i,a,j,b;k)(B) := B',
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where B, B’ C C5 and each B(r,m)’ is defined as follows:

B(r,m) — {(a,b)} if r =i, m = j and (a,b) € Del(B;1i,7j; k),

B(r,m) =

B(r,m)

Basically, 7 (i, a, 7, b; k) removes (a, b) from B(i, 7) iff there is no ¢ € Dy such
that (a,c) € B(i,k) and (¢,b) € B(k, j).

. Let us consider two constraints C(i,k) and C(k,j) of Cg, or their trans-
posed; further, let us choose (a,c) € C(i,k) and (c,b) € C(k,7). Then we
define two new different functions, namely = (i,a,7,b;k,c)(B) := B’ and

otherwise.

7(4,b,1,a;k,c)(B) := B", in the following way:

(

\

Intuitively, the function 7 (i, a, j, b; k, ¢) removes (a,c) ((¢,a) if k& < i) from
B(i, k) (from B(k,i) if k < 1) iff a or ¢ have lost their unique support b in
Dj; whilst 7(j,b,1, a; k, ) removes the pair (¢, b) ((b,c) if j < k) from B(k, j)
(from B(j, k) if j < k) iff ¢ or b have lost their unique support a in D;.

Notice that, for every function 7 (i,a,j,b;k) € H and =« (i,a,k,c;j,b) € F,

B(ia k) - {(aa C)}

B(k,i) = {(¢,a)}

B(r,m)

Bk, 7) = {(c;b)}

B(j; k) = {(b,0)}

B(r,m)

the following relation holds, if ¢ < j:

ifr=4,m=k, 1<k and
(a,c) € Del(Bsi, k; j),

ifr=%k, m=1, k<iand
(c,a) € Del(B;k,i; j),

otherwise;

ifr=k m=j7 k<jand
(c,b) € Del(B;k, ji i),

ifr=4,m=k%, j<kand
(b,c) € Del(B; j, k;1),

otherwise.

m(iy a,§,b;k)(B) € 7(i, a, k, ¢; j, 0) (B);

otherwise the following is true if j < 4:
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(4, a1, b;k)(B) € 7(i, a, k, c; j,b)(B).
Thereby subs(F, H) holds. Now, we can define update as follows.

e If w(i,a,j,b;k)(B) = B, then update(G, F, (i, a,j,b; k), B) = 0. Oth-
erwise, the set update(G, F, (i, a, j, b; k), B) contains all the following
functions:

1. w(i,a,j,b;k,c) such that (a,c¢) € B(i,k), (c,
furthermore, for all ¥’ € D;, we have that (c, '
2. 7(4,b,4,a;k,c) such that (a,c) € B(i, k), (c,
furthermore, for all o’ € D;, we have that (a, ¢

) € B(k,j) and
¢ B(k, j);
) € B(k,j) and
& B(i, k).

e If 7(i,a,7,b;k,c)(B) = B, then update(G, F,n(i,a,j,b;k,c),B) = 0.
Otherwise, the set update(G, F, (i, a, j, b; k,c), B) contains all the fol-
lowing functions:

~ o~

~ N

1. 7(i,a,k,c;l,e) such that (a,e) € B(i,l) and (e,c) € B(l, k) and
furthermore, for all ¢ € Dy, different from ¢, we have that (e, ') ¢
B(l,k);

2. m(k,c,i,a;l,e) such that (a,e) € B(i,l) and (e,c) € B(l,k) and
furthermore, for all ' € D; different from a, we have that (a’,e) ¢
B(i,1).

The update operator above satisfies A and B; the last condition, C, is
trivially fulfilled, because all of the considered functions are inflationary,
cf. Note 1.

Corollary 1 (GISF for path consistency). Consider a CSP P := (X, D,
C) with the associated 2-constraint order and the sets of functions H and F
as defined above. If D is finite, then every execution of the GISF algorithm

terminates computation of the greatest path consistent problem equivalent
with P.

Proof. Indeed a fixed point of the functions from H is a path consistent
problem equivalent to the given one. As subs(F, H) holds, a fixed point of
the functions from H is a fixed point of the functions from F', too. Further-
more, if all domains are finite, so is H U F'. Our statement follows now from
Theorem 1. O

We are left to prove that the PC-4 algorithm is indeed an instance of
GISF.

Theorem 2 (GISF for PC-4). PC-4 is an instance of the GISF algorithm
schema.
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Proof. The first part of the PC4 algorithm is reproduced by iterating GISF
with the functions from H, none of which is any longer introduced by update.
For every constraint C(i,j) of P, (line 2 of PC-4), k = 1,...,n (line 3 of
PC-4) and (a,b) € C(i,7) (line 4 and 5 of PC-4), the first for-loop of the
PC-4 algorithm checks whether there exists ¢ € Dy that supports a and b; if
there is no such ¢, then (a,b) is removed from C(i,7) and the effects of its
removal are propagated. The function g(i,a, 7, b; k) has a similar behaviour:
it removes the pair (a,b) iff there is no support in Dy for a and b; then
the effects of the removal of (a,b) are propagated by means of the update
operator.

After inspecting all functions from H, we feed GISF with the functions from
F' that are added by update; so we can reproduce the second part of the
PC-4 algorithm, namely, the second for-loop, by choosing the functions
7(i,a,j,b; k,c) and 7w (j,b,1,a;k,c), consecutively. O

5. The KS algorithm

The XS algorithm by Cooper [5] is an optimization of the synthesis algorithm
by Freuder [7]. The algorithm by Cooper can enforce either k-consistency
or k-strong consistency over a CSP. In this section, we prove that the GIIF
schema can be instantiated to the KS algorithm.

5.1. Preliminaries

The concepts of arc and path consistency were generalized in [7] to k con-
sistency. Given a CSP P on n variables and an integer 1 < k < n, consider
a c-sequence § := i1,...,1r on n. Consider a positive integer j &€ s and
1 <j <mn, and a c-sequence s’ on {s} U{j}; then a k-consistent instantia-
tion d of I(s) is a projection (over s) of a (k + 1)-consistent instantiation of
I(s") iff there exists d' € I(s') such that d'(s) =d. A CSP P on n variables
is 1-consistent iff, for every ¢ = 1,...,n, the set I(i) is not empty. A CSP
P on n variables is (k 4 1)-consistent for 0 < k < n iff any k-consistent in-
stantiation is a projection of a (k4 1)-consistent instantiation. Furthermore,
the CSP P is k-strong consistent iff it is i-consistent for each 0 <7 < k. In
particular, P on n variables is consistent if it is n-strong consistent.

The KS algorithm is split into two main sub-programs: the initializa-
tion process takes place in the first step; then the pruning of k-inconsistent
values from domains begins the second step. The second sub-program con-
sists of two main actions: the algorithm chooses a tuple d that is already
removed from C(t), for ¢ of length ¢; if i < k, the effects of the removal
of d are first propagated considering all (i + 1)-consistent instantiations d’
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such that d'(t) = d; if i > 1, the effects of the removal of d are propagated
considering all (7 — 1)-consistent instantiations d' such that d’ = d(s) for all
c-subsequences s of ¢ of length (i — 1).

5.2. GIIF can enforce k and k-strong consistency

Given a c-sequence s on n of length 0 < 7 < k, let us choose an element
d € D(s). Consider Cj}, and, if (1 + 1) < k, a c-sequence s' of length
(i + 1), a c-subsequence of which is s; furthermore, if (i — 1) > 0, choose a
c-subsequence s~ of s whose length is (i — 1). Then we consider any subset
B of C,. We can now define two subsets, the first of B(s') and the second
of B(s7), that will help us to better describe our functions. Suppose that
d & B(s); then we have that

dt € Del™(B(s1),d) iff d=d"(s),

d= € Del~(B(s7),d) iff d(s7)=d andVa(a € B(s)=a(s™)#d).
Instead, if d € B(s), then both Del™(B(s"),d) and Del*(B(s),d) are
empty.

1. Consider a c-sequence s on n of length 1 <4 < k, a tuple d € D(s) and
any subset B of C§; then we define the function n*(s,4,d)(B) := B,
where B’ := B} x ... x B} and, for every ¢, we have

B(t) — Del™(B(t),d) if s is a c-subsequence of ¢
and the length of ¢ is ¢ + 1,

B(t) otherwise.

Basically, 71 (s, 1, d) removes all the tuples of length (i+1) a projection
of which is d, if d is not in B(s).

2. Consider a c-sequence s on n of length 1 < ¢ < k, a tuple d € D(s) and
any subset B of Cj}; then we define the function 7 (s,4,d)(B) := B/,
where B’ := B X ... x B! and, for every ¢, we have

B(t) — Del (B(t),d) iftis a c-subsequence of s
and the length of ¢ is ¢ — 1,

B(t) otherwise.

Basically, 7~ (s, ,d) removes all the tuples of length (i — 1) that are
projections of d but of no other i-consistent instantiation, if d ¢ B(s).
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We instantiate G with the subset H of all functions 7+ (s,4,d) and 7 (s, ,d)
such that d € C(s); observe that the functions modifying C} are among
those of H. Then the update operator will take care of adding all the func-
tions of F' we need for enforcing (strong) k-consistency.

o If 7% (s,i,d)(B) = B, then update(G, F,n " (s,4,d), B) = 0. Otherwise,
the set update(G, F,n"(s,4,d), B) contains all functions 7+ (s',i,d'),
for each s’ a c-subsequence of which is s and the length is (7 + 1), and
d' € Del™(B(s"),d).

e If 7= (s,1,d)(B) = B, then update(G, F, 7~ (s,1,d), B) = (). Otherwise,
the set update(G, F,7 (s,i,d), B) contains all functions =t (s',i,d’),
for each c-subsequence s’ of s the length of which is (i — 1), and d' €
Del= (B(s'),d).

Corollary 1 (GIIF for k¥ and k-strong consistency). Consider a CSP
P with a finite variable domain.

e If we instantiate GIIG only with functions of type w, then the algo-
rithm terminates, computing the greatest k-consistent problem that is
equivalent to the input one.

o [If we instantiate GIIF with all the above defined functions, then the
algorithm terminates, computing the greatest k-strong consistent prob-
lem that is equivalent to the input one.

Proof. Observe that a fixed point of all the functions 7 and 7~ is a k-
strong consistent problem equivalent to the given one; as well, if we just
instantiate ' and H with the 7+ functions, then we enforce k-consistency.
As the variable domains are finite, so is F'; furthermore, the relation H C F
holds and H contains all the functions that modify the bottom Cj;. So we
can apply Theorem 2. O

Now we can prove that KS is an instance of the GIIF algorithm schema.
Theorem 2 (GIIF for KS). The KS algorithm is an instance of GIIF.

Proof. The instantiation of List (that contains the elements to be removed)
in KS is reproduced by the instantiation G := H in GIIF. The second sub-
program of the KS algorithm is split into two parts. The functions of the
form 7T take care of the first part, while the functions of the form 7 are
employed in the second. O

Note 1. As remarked in [5], the KS algorithm only enforces k-consistency if
the second step of the second subprogram is never executed. So does the GIIF
algorithm if we use only the functions of the form 7, cf. also Corollary 1.
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6. Conclusions

In this paper, we enlarged on previous algorithm schemata for local con-
sistency ([2, 8]), establishing a more expressive schema, namely GIF, spe-
cializations of which the previous schemata turned out to be. After analyz-
ing various algorithms for achieving different levels of local consistency, we
brought out some of the relations among the sets of functions that are suffi-
cient for correctness of GIF and necessary for instantiating it to most of the
constraint propagation algorithms: according to the relation held and the
functions chosen, we obtain a specialization of GIF for a specific local con-
sistency algorithm. In this paper, we surveyed the PC-4 and KS, and proved
that they are all instances of specializations of GIF; in a previous work ([8]),
we did it for AC-4, AC-5 and their generalization for hyper arc consistency;
cf. also [2,3] for many other constraint propagation algorithms which GI,
hence GIF, can be instantiated to.
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