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Cellular automata simulation on surface
triangulation for diffusion processes∗

A.A. Evseev

Abstract. This paper concerns the development of techniques for the cellular
automata simulation on triangulation grids on flat and curved surfaces. The possi-
bility of the proposed techniques are shown on examples of the cellular automata
simulation of diffusion, front propagation and diffusion-limited aggregation.

1. Introduction

Most cellular automata (CA) models are created for rectangular meshes
on the plane [1, 2]. This study aimed at creating and studying cellular
automata on various triangulation meshes, which made possible to observe
the cellular automata simulation on curved surfaces in 3D space. In addition,
this approach allows us to consider CA-simulation on “real” object models
having an arbitrary shape, for example, on adaptive unstructured meshes.
Also, this method takes into account the geometry of objects. One can pass
by without drawing their attention to a wide spread of triangulation meshes
and their accessibility with an advent of a laser scanning technology.

2. Cellular automata on triangulation

2.1. Problem definition. The construction of cellular automata on trian-
gulation meshes is associated with several significant advantages of triangu-
lation. Firstly, any surface can be approximated by a mesh of triangles with
necessary accuracy. Secondly, the computational complexity of algorithms
for partitioning the area into triangles is appreciably less than when using
other polygons. Thirdly, there is a widespread tendency to specify objects
with triangulation.

This approach makes it possible to construct CA on arbitrary curved sur-
faces and to observe their evolution directly on the surface. The objectives
of this paper are the following:

• to construct methods for CA modeling on triangulation meshes;

• to study the influence of mesh parameters on CA results;
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• to compare CA on triangulation meshes with CA on rectangular
meshes;

• to construct CA for diffusion process, diffusion front propagation of
substance concentration and diffusion-limited aggregation on triangu-
lation;

• to develop a software package for modeling.

2.2. Basic definitions for the CA modeling on triangulation.
A is an alphabet of states, for example, AB = {0, 1}–– Boolean alphabet,

AR = [0, 1]–– real alphabet.
M is a naming set, for example, M = {mi : i = 1, . . . , N}.
A pair (a,m) is called the cell, where a ∈ A, m ∈M ; a is called the cell

state (denoted by a(m)).
A set of cells {(a(m),m) : m ∈M} is called the cellular array.
Each triangle of a triangulation corresponds to a certain cell. Thus, the

whole triangulation corresponds to a cellular array.

Figure 1. A template T (m) =
{m1,m2,m3} for the cell m

Template for a cell (a,m) is a set
of cell names usually neighboring to the
given cell. For example, on triangula-
tion, two cells are neighboring if the cor-
responding triangles have a common side.
Thus, each triangle can have no more
than three neighbors (Figure 1).

Transition rule is a function that de-
fines a new state of a cell depending on its
current state, states of cells with names
from T or any other values, for example,
probabilities. This function is the same
for all the cells.

Synchronous mode of operation means that transition rules are applied
to all cells from a cellular array.

Asynchronous mode of operation means that a cell is randomly chosen
from a cellular array and the transition rule being applied to it.

Global iteration is application of transition rules to |M | cells from the
cellular array M .

A sequence of cellular arrays, each being obtained as a result of the global
iteration to the previous cellular array, is called the CA-evolution.

Averaging operation is very often used for CA over Boolean alphabet
to obtain real values. It calculates an average value by some neighborhood
Tav ⊆M of a cell:

〈a〉 =
1
|Tav|

∑
m∈Tav

a(m). (1)
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Discretization is the inverse operation to averaging–– it generates Boolean
values from real values:

a′ =

{
1, r < a,

0, r ≥ a,
(2)

where a ∈ [0, 1] and r is a random number from [0, 1].

2.3. Peculiarities of using triangulation in CA. It should be noted
that triangles in triangulation may differ in size and are not necessarily
equilateral, in contrast to the squares in rectangular meshes. This should
be taken into consideration when conducting studies in cellular automata.
For example, in asynchronous CA on a rectangular mesh of squares, a ran-
dom selection of cells on a single iteration has a uniform distribution. To
achieve the independence of using a mesh, the choice of a random triangle
in triangulation should be based on its area; smaller cells (triangles with a
smaller area) change their states faster, thus, the smaller is the space, the
more likely this triangle should be chosen as random.

Another aspect that is worth to be highlighted is the closure of borders
in rectangular meshes. Because of a simple structure, the borders of a
rectangular mesh often close, forming a torus. On triangulation (on the
plane), there is no such a possibility, due to the complexity of the area.
In this paper, when considering concrete CA models on triangulation, the
possibility of closing the borders is ignored. This is because the plane case
is usually not interesting, and for curved surfaces in a 3D space, a closed
triangulation (without boundary triangles) is often considered. A triangle
is the boundary one if it has less than three neighbors, otherwise it is the
internal one.

In addition, a significant role plays the fact that each internal cell of a
triangulation has three neighbors, as opposed to four neighbors in a rectan-
gular mesh.

3. Cellular automata diffusion on rectangular meshes

3.1. The basic algorithm of CA-diffusion on rectangular meshes.
Diffusion is a process of random walk of particles, which leads to equalization
of the concentration in space. In the 2D continuous case with the constant
diffusion coefficient d, this process is described by the Laplace equation

∂u

∂t
= d

(
∂2u

∂x2
+
∂2u

∂y2

)
,

where u(x, y, t) is concentration of a substance in the Cartesian space with
the coordinates x, y at time t.
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Classic CA-diffusion models have Boolean alphabet and evolution as a
sequence of Boolean arrays. The state of a cell (0 or 1) determines pres-
ence or absence of a unit mass, which has no speed. The CA-diffusion on
rectangular meshes has already been thoroughly studied [3].

One of CA models of diffusion is the naive diffusion [4]. This is the most
primitive model of diffusion, which directly reflects the concept of the process
as a random walk of particles (cells in state 1) in an attempt to equalize the
concentration of a substance in space. In this case, the mode of operation
is asynchronous, which corresponds to the nature of the process. The cells
neighborhood is its nearest four neighbors. The way of functioning is such
that at each iteration a random cell is selected, which changes its value with
one of its neighbors, chosen with equal probability. Such a rule shows the
implementation of the law of conservation of mass, and random selection of
one of the neighbors corresponds to the chaotic motion of particles, according
to the definition of the diffusion process.

Another CA model of diffusion is CA-diffusion with Margolus neighbor-
hood [4]. For brevity, we call it TM-diffusion of the first letters of the names
of its authors, as is customary in Western literature. TM-diffusion is more
popular than the naive diffusion, for the two reasons. Firstly, it has the
property, which mathematicians call “elegance” that is a combination of
simplicity and efficiency. Secondly, there is a rigorous mathematical proof
that it approximates the Laplace operator [5]. The cellular array is divided
into two subsets, each consisting of blocks containing four cells. The CA
functioning occurs in the synchronous mode. Each iteration is divided into
two cycles. In the even-numbered cycles, transition rules are applied to
the even-numbered blocks, while on the odd–– to the odd-numbered blocks.
Transition rules are such that the states in a cell block are shifted with equal
probability either clockwise or counterclockwise. By reducing the values of
probability as well as manipulating with time and space steps, it is possi-
ble to simulate the diffusion process with a diffusion coefficient in a wide
range [1].

There are two possible ways to verify that CA really simulates the diffu-
sion process: analytical and experimental. The analytical proof exists only
for one CA-model, i.e., for TM-diffusion. The experimental proof consists
in the CA model execution and comparing the evolution of CA with an
equation solution on a certain set of iterations.

3.2. Diffusion front propagation on rectangular meshes. Front prop-
agation is a process with a uniform distribution of particles, eventually filling
the whole area. The front propagation can be simulated by cellular automata
composition. This means that a few rules are consistently applied to a cellu-
lar array at each iteration. Cellular automata composition reflects well real
physical processes, because in most cases, it includes several phenomena [6].
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The front propagation of CA is applied in a sequence of rules:

• a global iteration of diffusion is executed;

• the resulting array is averaged according to formula (1);

• a flow is added: in each cell, the concentration u is replaced by the
value 0.5u(1− u);

• discretization is performed by formula (2).

It should be noted that the flow addition and discretization are oper-
ations that do not depend on the type of a mesh, so they can be easily
extended to a 3D case on a triangulation mesh.

4. CA-diffusion on triangulation on the plane

4.1. The basic algorithm of CA-diffusion on triangulation on plane.
Let us consider a mesh consisting of equilateral triangles. The rules for CA
would be similar to the case on a rectangular mesh, but probability of choos-
ing one of the neighbors will be 1/3. Tests of this cellular automaton are
carried out over Boolean alphabet. At the initial time, several closely-spaced
particles are inserted in the middle of the mesh. In Figure 2, the work of
automaton is shown (the plane is of gray color).

As seen from the figure, particles uniformly propagate in all the direc-
tions. Thus, there is a visual analogy with a CA on a rectangular mesh
(a more formal comparison will be introduced below). This effect was
achieved due to the fact that all triangles are identical (equilateral). But
since the task is to move beyond limitations of using a mesh, the rules for
cellular automaton were selected for any type of a mesh. The neighbor with
a smaller side of a triangle is selected likely that with a bigger side. Such a
rule was experimentally found:

pi =
1/li∑3

j=1 1/lj
. (3)

Here pi is the probability of selecting a neighbor with the length li of the
corresponding side in the triangle.

As an example, consider CA-diffusion on an unstructured grid (Figure 3).
Despite a relatively small number of triangles in triangulation (4129), the
diffusion process distributes particles only in the middle of the area for a
long time, since the size of triangles in this place is much smaller than that
at the edges. But after a sufficiently long time, particles move outside the
boundaries of the inner circle with a high density of the mesh.
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Figure 2. The diffusion process on the equilateral triangles mesh

Figure 3. The diffusion process on adaptive mesh
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4.2. Averaging in CA-diffusion on triangulation on the plane. Let
us describe the algorithm of averaging by circle for cellular automaton on
triangulation. We consider the center of each triangle of triangulation and
draw a circle with a certain radius from this center. Let n be the total
number of cells caught in this circle and n1 be the number of cells in state 1.
Thus, the concentration value will be determined by the formula:

u =
n1

n
, (4)

where n 6= 0 regardless of the radius, because the considered triangle is
known to lie in this circle.

Figure 4. Diffusion process with averaging by circle

If we appropriately select a radius of the circle for averaging, we will
obtain an obvious picture (Figure 4). A disadvantage of this algorithm is
its computational complexity, forming O(N2), where N is the number of
triangles in triangulation. In this regard, we will consider another algorithm
for averaging with much less computational complexity — averaging by the
nearest neighbors. The essence of this algorithm is to consider only the
neighboring cells and computing ν1 –– the number of cells in state 1 among
them. Thus,

u =
ν1

ν + 1
, (5)

where ν is the number of neighbors, ν ∈ {0, 1, 2, 3}.
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Figure 5. Diffusion process with averaging by the nearest neighbors

In the approach in question, the number of possible concentration values
is only seven: 0, 1/4, 1/3, 1/2, 2/3, 3/4, 1. However, the computational
complexity of this algorithm is O(N), where N is the number of triangles
in triangulation. This gain was achieved by introducing a naming function,
which returns three neighbors by the triangle.

Despite of the small number of possible concentration values, the picture
still turns to be obvious. In the center of the initial state accumulation of
concentration keeps higher values for a long time, but eventually reaches its
uniform distribution throughout the area (Figure 5).

This algorithm can be extended to the neighborhood of order 2, that is, to
include into consideration neighbors of the second level. The picture will be
more obvious. Similarly, the algorithm can be extended to the neighborhood
of order n.

4.3. Comparison of CA-diffusion on triangulation with CA-diffu-
sion on rectangular meshes. Let us introduce a criterion of correspon-
dence of the constructed CA with cellular automata on rectangular meshes.
Because of the existence of CA-diffusion model only for the planar case, the
comparison is possible only in this case. We will consider a square area spec-
ified by equilateral triangles. Because the diffusion is the process of random
walk of particles, comparison on Boolean alphabets is not interesting. Let
us consider automata with averaging by circle.
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Figure 6 illustrates the comparison of
real values of concentration

u =
u1 + u2

2
←→ u0, (6) Figure 6

where u0, u1, u2 are concentration values corresponding to cells.
Thus, one value of concentration in a square mesh is associated with

arithmetic average of concentrations of two neighboring cells in the trian-
gulation. In this approach, the number of cells in the cellular array on
triangulation is twice as large as that in the rectangular. So, the randomly
chosen cell is often empty, which subsequently, with high probability, also
swaps with an empty cell. This leads to the fact that non-empty cells are
rarely selected, therefore, the diffusion process is slower and the concentra-
tion of substances is high.

Figure 7. Comparison of CA-diffusion on triangulation (the number of iterations
is doubled) with CA on a rectangular mesh and graph of normal distribution
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To attain the correspondence with values of concentrations, we will twice
conduct more iterations on the triangulation mesh. The comparison is made
on the cells located on the horizontal midline of the cell arrays. For clear-
ness, Figure 7 also contains a graph of the normal distribution, reflecting an
analytical solution of the Laplace equation.

The criteria of compliance for CA on triangulation and on a rectangular
mesh is assumed to be the analogy of the diagrams on the horizontal midline.

5. CA-diffusion on triangulation (curved surface)

5.1. The basic algorithm. With a full toolkit for further research, we
will consider the behavior of CA on curved surfaces in a 3D space. The
only difficulty in this case is averaging by a circle. If we form the sphere
from the center of a triangle, the match is not achieved: cells located on the
opposite side of the mesh can get into the scope, which is unacceptable. For
obtaining real values of the substance concentration, we will use averaging
by nearest neighbors. The considered mesh is the bone surface, specified by
triangulation [7]. At the initial state the concentration is included into a
small area of the bone (Figure 8).

As seen from the figure, the particles spread evenly over the entire surface
of the bone after some time. And in the CA simulation, particles propagate
in all directions homogeneously. The constructed automaton reflects the
physical process on a complex surface.

Figure 8. Diffusion process on the bone
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5.2. Diffusion front propagation on curved surface. Let us consider
CA of front propagation on triangulation. The considered mesh is again
the bone surface with the initial state, as in Section 4.1. The process of
diffusion front propagation on such a mesh can be interpreted as spread of
some inflammation from the local area to the entire surface of the bone.

Figure 9. The front propagation process on the bone

A front propagates uniformly in all the directions and eventually covers
the entire surface of the bone, which corresponds to definition of the process.

5.3. Diffusion-limited aggregation on triangulation for curved sur-
face. The latter (above-considered) CA is a diffusion-limited aggregation
cellular automaton.

At the initial state, 10 % of particles are randomly scattered throughout
the mesh. One cell is the “source”, it has another color and does not move.
Other particles move in random directions but in contact with the “source”
stop moving and change their color. The result of CA is shown in Figure 10.

5.4. Field of application. As noted above, the application area is not
limited for modeling of only physical processes. The CA-diffusion can be
used in many areas, up to computer games and image processing. The
difference may be only in interpretation of this process in the case of its
application. In models of propagation of any liquids or gases, one of com-
ponents of the process is diffusion. Thus, the results of this paper can be
used to construct more complex composite CA, in which one of the rules of
operation will be diffusion.
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Figure 10. Diffusion-limited aggregation on the bone

6. Conclusion

We have obtained CA models of diffusion, diffusion-limited aggregation and
the diffusion front propagation for any curved surface in a 3D space, specified
by triangulation. The results are qualitatively similar to CA on rectangular
meshes and can serve as a good basis for modeling various processes. From
the above-mentioned arguments, we can conclude that the use of CA-diffu-
sion is not limited by physical processes, and can be interpreted differently
depending on a concrete problem. An example with the propagation of in-
flammation on the bone can be used in medicine. Note the importance of
composition of cellular automata: most models of spatial dynamics have a
diffusion component (for example, the considered process of diffusion front
propagation). These algorithms can be applied to other cellular automaton
models.
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