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Numerical models of the electrostatic shock waves*

G.I. Dudnikova, E.A. Berendeev, A.A. Efimova

Abstract. The self-consistent evolution of the ion-acoustic collisionless shock with
shock-reflected ions is numerically studied with kinetic simulations. We want to
compare different approaches to the shock simulation based on the PIC-method.
The results of one-dimensional fully kinetic simulation for both plasma components
with the real ion-to-electron mass ratio are compared with those obtained for two
different forms of the electron density distribution in terms of the wave electrostatic
potential. One distribution corresponds to the Boltzmann approach, the other —to
the approach of the adiabatically trapped electrons.

Introduction

The origin of cosmic rays has a significant influence on the processes in the
near-Earth space. By now it has not been precisely determined and still is
one of the main questions in cosmology. Observational astronomical data
suggest that the source of these rays is the supernova explosions and the
acceleration on the front of a collisionless shock wave can be the generation
mechanism. The difficulty of confirming this assumption is complicated due
to the recent observations made with the use of modern complex equipment,
which raised a number of new questions and the need to revise generally ac-
cepted hypotheses and theories. The formation of shock waves excluding
collision has been investigated since the 60s of the 20th century [1, 2]. How-
ever, our understanding of collisionless shocks, including their structure and
mechanisms whereby they accelerate particles, remains incomplete.

The possibility of using supercomputers enabled one to carry out more
detailed simulations of shock waves. Mathematical modeling makes possi-
ble to study in detail the mechanism of acceleration of cosmic rays on the
front of the collisionless shock wave and its dependence on environmental
parameters.

Here we present the results of numerical modeling of an ion-acoustic
collisionless shock based on the one-dimensional kinetic approximation for
ions. The reflection effictiveness, the velocity distribution of reflected parti-
cles and the shock electrostatic structure are studied in terms of the shock
parameters.

*Supported by the Russian Scientific Foundation under Grant 16-11-10028, and the
RFBR under Grants 16-31-00304, 16-01-00209.



10 G.I. Dudnikova, E.A. Berendeev, A.A. Efimova

The most complete description is possible with the Vlasov kinetic equa-
tions for electrons and ions and Maxwell’s equations. Nevertheless, the
problems in numerical implementation of this model, associated with essen-
tial differences in spatial and temporal scales for electron and ion plasma
components are complicated even for calculations with modern computer
systems. We take into account two different cases of electron spatial distri-
bution. The first case is the Boltzmann distribution [1]. The second case
is the adiabatically trapped electrons [3, 4]. These two cases are similar in
that they both predict the steadily propagating solitons that have limiting
Mach numbers M.

1. Statement of the problem

We consider the classical problem of the decay of the initial density discon-
tinuity. The self-consistent evolution of an ion-acoustic collisionless shock
with shock-reflected ions is numerically studied by kinetic simulations. The
density profile has the shape of a step. We measure the density of fully
ionized hydrogen plasma components in terms of the unperturbed density
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where xq is the break position, L is the area size.

In the PIC-method, we ensure a high enough resolution to resolve low-
density regions, sharp gradients and the dynamics of both electrons and ions
by taking at least 100 particles per cell and the spatial resolution better than
0.05Ap, where Ap is the Debye length.

The results of the one-dimensional fully kinetic simulations for the ion
plasma component are compared with two different forms of the electron
density distribution in terms of the wave electrostatic potential. The electron
distribution corresponds to:
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e the kinetic approach,
e the Boltzmann approach, and

e the adiabatically trapped electrons.

The kinetic approach. In order to consider the ions that are reflected
and escape from the shock, to incorporate the ion reflection into the global
shock structure and to investigate its effect on the shock itself, we use the
kinetic plasma description. The plasma dynamics is governed by the Vlasov
equations for the distribution functions of the plasma components:
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and Poisson’s equation for the electrostatic field:
divE = —Ap = 47p, (2)

where f; . is the particle distribution function of plasma electrons and ions,
E is the electric field, v is the velocity of the particles, p is the electric charge
density, and g; . is the charge of particles. The electric charge density p is
defined by equation

p=e [ (i~ 1) do

The hybrid approach. In this approach, the kinetic equation for the ion
distribution function is used:
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Poisson’s equation (2) is used to describe the electrostatic field.
The charge density is calculated by the integration for ions and from the
potential for electrons:
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For this problem we want to compare two different approaches for elec-
tron density. The first one is the well-known Boltzmann approach (see [1]).
In this case, the charge density is described by the Boltzmann function:

e
Pe = €Xppo, o= kf? (3)
In the second case, the electron charge density is described by the Gure-

vich function [3]. The corresponding analytical expression for the Gurevich
function was obtained by Malkov [4]:
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2. The solution to governing equations

The PIC-method (see [5, 6]) is used to solve the Vlasov equation. In this
method, plasma is simulated by a set of separate particles, each charac-
terized by the motion of many physical particles. The characteristics of the
Vlasov equation describe the trajectories of particles. The equations of these
characteristics for the particle j are described as

d{L‘j dvj q;
—d —w;, —L = LE(x)).
a0 at m; ()

The electrostatic field is obtained by the direct integration of the charge

density (;—E = 47p, which, in turn, is calculated from the individual particle
positions.x

For solving the equations of motion of particles, an organic time-re-
versible and second order leapfrog algorithm is applied. The spatial second
order accuracy is obtained by calculating the electric field and the charge
density on staggered grids.

3. The results of simulation

Let us compare two different statements of the problem in question. In the
first case, the electron density is described by (3). In the last case, it is
described by (4).

The Mach number of the shock wave is an important parameter for
determining the character of the plasma flows, M = V;/Cs, V; is the shock
wave velocity. The charge density (Figure 1a) has the soliton structure and
corresponds to the laminar regime.
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Figure 1. The charge density (a) and the phase space (b) for the initial maximum
density ny/ny = 2 and the time step 20 w;il
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From Figure 2, we see that if the
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Figure 3. The phase space for a) Boltzmann approach and b) Gurevich approach

The Mach number, at which the wave is tipping is equal to 3.2.

The ions reflected from the shock are clearly visible on the phase plane.
The ions are reflected at a single point, where the potential reaches its
maximum and the electric field has a jump. The number of ions reflected
from the shock increases with the growth of the flow velocity. It is clearly
seen that when the ions begin to reflect from the soliton tip, the classical
single solution bifurcates into a more complex structure that comprises the
leading soliton, the periodic wave train is downstream of it and the foot is
occupied by the reflected ions. This foot is supported by the reflected ions
and also accelerates them somewhat further.

In Figure 4, there is a time history of the maximum ion density and
the number of emitted particles. We can see fluctuations in the graph, and
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it can be seen that the density
o9 maxima correspond to a maxi-
50000 um emission of particles.

The influence of the number of
particles per cell on the solution
has been observed. In the fully ki-
netic approach, we set the veloc-
20000 ity spread for both electrons and
1 ions. As is shown in our previous
“J10000  studies [7, 8], the number of par-
] ticles per cell is a very important
=0 parameter for the PIC-simulation.
It is the phase space with the time
step equal to 74, and with 10 and
500 particles per cell (Figure 5).
One can see that these pictures
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Figure 4. The time history of the max-
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Figure 5. The phase space for 10 (a) and 500 (b) particles per cell
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Figure 6. The charge density for 10 (a), 250 (b), and 500 (b) particles per cell



Numerical models of the electrostatic shock waves 15

differ in significant ways from each other. In Figure 6, the charge density
is shown for the number of particles per cell from 50 to 500. The result is
similar, but maximum amplitudes are different, and we have to choose more
than 100 particles per cell for calculations.

Conclusion

Numerical simulations of the ion-acoustic collisionless shock are performed
using 1D kinetic approximation both for electrons and ions with the real
mass ratio as well as within a hybrid approach. The reflection effectiveness,
velocity distribution of reflected particles, and shock electrostatic structure
are studied in terms of the shock parameters. The solution extends a classic
soliton solution beyond the critical Mach number M = 1.6 for the Boltzmann
approach and M = 3.2 for the Gurevich approach, where the soliton ceases
to exist because of the upstream ion reflection.

These purely electrostatic simulations are relevant to the microphysics of
particle reflection of the shock front including the cosmic ray loaded shocks.
The influence of the number of particles per cell on the solution has been
investigated and its optimal value has been determined.
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