
Bull. Nov. Comp.Center, Comp. Science, 37 (2014), 71–91
c⃝ 2014 NCC Publisher

Deductive formal verification of search programs
in arrays of arbitrary size for abstract register

machines

D.A. Chkliaev, V.A. Nepomniaschy

Abstract. The random-access machine invented by Aho, Hopcroft, and Ullman is
one of the several known versions of abstract register machines, which are an impor-
tant computation model. Using a formal framework developed for this architecture
in our previous work, we consider a challenging example – a search program that
computes the maximum of an integer array of an arbitrary size. Here we present
its specification in PVS and complete deductive verification, which turned out to
be rather difficult. We have also proved its best-case and worst-case complexity
measures as a function on the size of the array. We hope that our use of deductive
verification for this example is both novel and appropriate, because the fully auto-
mated techniques, such as model-checking, are not perfectly suitable either for the
verification of infinite-state programs or for the analysis of their complexity.

Keywords: abstract register machines, random-access machines, search programs,
formal specification, interactive theorem proving, verification system PVS.

1. Introduction

The formalism of ARMs (abstract register machines) [14, 3] has been used
during several decades for the formal, mathematical study of computational
algorithms and programs. However, we are not aware of any works that
systematically study the formal verification of computational programs for
ARMs.

The random-access machine suggested by Aho, Hopcroft, and Ullman
(RAM-AHU) is one of the several known versions of abstract register ma-
chines. In our previous work [6], we presented a comprehensive framework
that allows us to verify rigorously computational programs for RAM-AHU.
We represent the data structures of RAM-AHU in the language of the veri-
fication system PVS [15] and define the effect of its commands on these data
structures. After that, the executions of RAM-AHU are formalized as finite
or infinite traces of a transition system generated by the effect predicate of
its commands. The correctness properties of programs for RAM-AHU are
defined by logical formulas on traces of this transition system.

As an application of our formal model, we have presented the verification
of a simple search program for RAM-AHU that computes the larger of two
integers. We have proved not only the functional correctness of the program,

72 D.A. Chkliaev, V.A. Nepomniaschy

but also its best-case and worst-case execution time. The simplicity of the
program is indicated by the fact that it contained no loops.

The programming of more complex algorithms for RAM-AHU is a chal-
lenging task. Unlike the CPU’s used in practice, this architecture has only
one input tape and one set of registers; also, there is no additional mem-
ory that can hold the (preliminary) instructions or computational results.
Moreover, the set of RAM-AHU commands allows only programs with very
primitive control flow: there are no while- or for-statements, only uncondi-
tional jumps and conditional jumps that compare the first register to zero.
This makes the programming of loops a rather tedious task.

In this paper, our goal is to develop a program computing the maximum
of an integer array of arbitrary size. Another goal is the formal verification
of our program, which is complicated by the arbitrary length of the input
array. First, we prove that the program terminates for any input data,
which is done by showing that the loop counter always decreases to zero for
all possible paths. After that, the functional correctness of the program and
its exact complexity bounds are proved within a single formal framework.
We establish that when the program terminates, there is exactly one number
written on its output tape equal to the maximum of all elements in the input
array. The best-case and worst-case complexity measures are expressed as
functions of the size of the array.

The rest of the paper is organized as follows. Section 2 describes RAM-
AHU on the basis of [1]. In Section 3, we present our formalization of
the executions of abstract register machines. In Section 4, the RAM-AHU
data structures and its commands are specified in PVS. Section 5 presents a
specification of a search program operating on arrays of arbitrary size, first
in the RAM-AHU language and then in PVS. Specification of the functional
correctness for our program is given in Section 6, as well as the main theorem
expressing its complexity measures. Section 7 contains the verification of the
main theorem with PVS. Finally, Section 8 gives some concluding remarks
on related works and possible future work.

2. RAM-AHU machine

The random-access machine invented by Aho, Hopcroft, and Ullman [1],
which we call here RAM-AHU, is a computing device with one adder in
which the program cannot change itself (the so-called Harvard architecture).
It consists of three parts: the input tape, the main (computational) part,
and the output tape.

The input tape is a sequence of cells of an unlimited length. Each cell
contains a symbol ; it is only possible to read symbols from the input tape
but not to write them. At any moment, the reading head of the tape points
to some cell. After reading a symbol from that cell, the head moves one cell

Deductive formal verification of search programs 73

right.
The output tape is also an unlimited sequence of cells, with each cell

containing a symbol. It is only possible to write symbols to the output tape
but not to read them. At any moment, the writing head of the tape points
to some cell. After writing a symbol to that cell, the head moves one cell
right. It is not possible to change symbols that have already been written
to the output tape. For this version of the machine, all symbols that can
appear on the input or output tape are integers.

The computational part of RAM-AHU consists of a program, a program
counter, and memory. The program for RAM-AHU is a finite sequence of
commands; each command can have a label. It is assumed that the program
is not stored in the memory, so it cannot change itself during its execution
(which corresponds to the so-called Harvard architecture). There are com-
mands for arithmetical operations, conditional and unconditional jumps,
input/output operations and some others.

At any moment of time during the program execution, the program
counter points to some of its commands that should be executed at the
next step of the computation. After the command with some index k is per-
formed, the counter automatically moves to the command with the index
k+ 1 (i.e. the next command). The only exception is made for conditional
and unconditional jumps, as well as the command HALT which stops the
computation. If the counter no longer points to any command (i.e. exceeds
the length of the program), this means that there are no more commands
to be executed, so the computation is over.

The memory of RAM-AHU is a sequence of registers r0, r1, . . . r i,. . . ;
each register can store an arbitrary integer. It is assumed that there is no
upper limit to the number of registers that can be used. This idealization
is reasonable when the size of the task is small enough to fit in the main
memory of the machine. The first register r0,called the adder, participates
in all arithmetical operations (it can also store an arbitrary integer).

The initial state of RAM-AHU is determined by the chosen program
and its input data. In any initial state, there are some symbols on its
input tape (i.e. the input data), all registers are empty, the output tape
is also empty, and the program counter points to the first command of
the program. After the execution of each command, the program counter
changes as described above until it eventually exceeds the length of the
program and the computation stops. It is also possible that this event never
happens (i.e. there is always some command waiting to be executed), and
this leads to a non-terminating computation.

Each command of RAM-AHU consists of two parts – its operation code
and its address. The command’s address is either an operand or a label of
some command in the program; in some cases it can also be empty. An
operand a can be of one of the three types:

74 D.A. Chkliaev, V.A. Nepomniaschy

1. The expression = i means the integer i itself and is called a literal.

2. The expression i means the content of the register i(i cannot be neg-
ative).

3. The expression *i means the use of indirect addressing, i.e. the value
of this operand is the content of the register j, where j is the integer
located in the register i. If j <0, the program should stop.

If some command has an operand a, we can define the value v(a) of this
operand. The definition of the function v uses another function c: for each
natural number i, c(i) is the content of the register i. Using the informal
definition of the expressions = i, i and ∗i given above, we define the value
of an arbitrary operand a as follows:

• v(=i) = i,

• v(i) = c(i),

• v(*i) = c(c(i)).

There are 12 types of commands in the programs for RAM-AHU: LOAD,
STORE, ADD, SUB, MULT, DIV, READ, WRITE, JUMP, JGTZ, JZERO
and HALT. For the first eight commands (their meaning is clear from their
names) the address is an operand. For the commands JUMP, JGTZ and
JZERO, the address is a label, and for the command HALT, the address is
empty. JUMP is an unconditional jump instruction, whereas JGTZ (“jump
if greater than zero”) and JZERO (“jump if equal to zero”) are conditional
jump instructions. The HALT command terminates the program execution.

The following list defines the effect of each command. Here the sign ←
denotes an assignment, and the function floor(x) gives the greatest integer
that is less than or equal to x. Undefined commands and commands with
an illegal value of the address are equivalent to the command HALT.

1. LOAD a. Effect: c(0) ← v(a)

2. STORE i. Effect: c(i) ← c(0)
STORE ∗i. Effect: c(c(i)) ← c(0)

3. ADD a. Effect: c(0) ← c(0) + v(a)

4. SUB a. Effect: c(0) ← c(0) - v(a)

5. MULT a. Effect: c(0) ← c(0) * v(a)

6. DIV a. Effect: c(0) ← floor(c(0) / v(a))

7. READ i. Effect: c(i) ← the next input symbol.
READ ∗i. Effect: c(c(i))← the next input symbol. In both cases, the
head of the input tape moves one cell right.

Deductive formal verification of search programs 75

8. WRITE a. Effect: v(a) is printed in the cell of the output tape which
is currently observed by its head. After that, the head moves one cell
right.

9. JUMP b. Effect: the program counter moves to the command with
the label b.

10. JGTZ b. Effect: If c(0) >0, the program counter moves to the com-
mand with the label b or otherwise to the next command.

11. JZERO b. Effect: If c(0) = 0, the program counter moves to the
command with the label b or otherwise to the next command.

12. HALT. Effect: the execution of the program stops.

3. A formalization of abstract register machines

Our methods of specification are not specific to RAM-AHU but can be used
in principle to model the behavior of any abstract register machine. They
have significant similarities to the methods we previously used to specify and
verify distributed protocols in [4] and [5]. In our approach, the behavior of an
abstract register machine is defined by the notion of a state, representing a
snapshot of the state-of-affairs during the execution of its program, and a set
of commands. The state includes all information present in the machine at
any time: its program, the value of its registers and the program counter, the
input and output tapes. Each command changes the values of some variables
in the state when it is executed; commands can have an arbitrary number of
parameters. Commands are formally specified by an effect predicate which
relates the states before and after the command execution. The process of
computation on an abstract register machine begins in an initial state which
includes a particular program and a particular input tape.

The computation on an abstract register machine (for an initial state)
terminates if and only if it eventually reaches a final state, i.e. a state where
it is no longer possible to execute any command. For RAM-AHU, it is easy
to see that a state is final if and only if the value of the program counter
exceeds the length of the program, so the counter no longer points to any
command. The definitions of the final state and the effect predicate are
closely related: if a state s1 is final and Effect is the effect predicate for our
machine, then for any other state s2 we should have Effect(s1, s2) = false.
On the other hand, if a state s1 is not final, then the effect predicate should
transform it into another state s2. RAM-AHU is fully deterministic, so for
any non-final state s1 there exists exactly one state s2 such that Effect(s1,
s2) = true.

The complete execution of an abstract register machine (for some initial
state) is defined by the notion of a complete run. A complete run R is

76 D.A. Chkliaev, V.A. Nepomniaschy

either an infinite or a finite sequence of states which satisfies the following
conditions:

• If R is infinite, then it is a sequence of the form s0s1 . . . s isi+1. . . ,
where si (i ≥ 0) are states, s0 is the initial state of the machine, and
each pair of states (si, si+1) is related by the effect predicate.

• If R is finite, then it is a sequence of the form s0s1 . . . s isi+1. . . sn,
where si (0 ≤ i ≤ n) are states, s0 is the initial state of the machine,
each pair of states (si, si+1) is related by the effect predicate, and the
state sn is final.

In our PVS specification of the states of RAM-AHU, the program is rep-
resented by the variable program, and the program counter by the variable
pCounter. For an arbitrary state st, this allows us to define formally the
notion of a final state by the following predicate isFinal (note that in PVS
the elements of a sequence are enumerated starting with 0, not with 1):

isFinal(st) = (pCounter(st) ≥ length(program(st)))

In the PVS specification, the definition of complete runs is implemented
by giving the initial state Ini (for a particular program and a particular
input tape) and the effect predicate Effect, i.e. the Boolean predicate on
pairs (si, si+1). We define the abstract datatype Runs, which includes both
the infinite and finite sequences of states. Suppose R is a variable of the
type Runs. If R is infinite, then it is a complete run if the following two
properties are met:

1) R(0) = Ini ;
2) for each natural index i, we have Effect(R(i), R(i + 1)) = true.
If R is finite and is of length Len, then R is a complete run if Len >0 and

the following three properties are satisfied (where the function last gives the
last element of a sequence):

1) R(0) = Ini ;
2) for each natural index isuch that i <Len - 1, we have Effect(R(i), R(i

+ 1)) = true;
3) isFinal(last(R)) = true.

4. Implementation of RAM-AHU machine in PVS

4.1. Data structures of the machine in PVS

The PVS system [15], created at the Stanford Research Institute, is widely
used for formal specification and verification of complex computer protocols
and systems, especially in the area of fault-tolerant computing. It consists
of a specification language, a large number of predefined theories and an

Deductive formal verification of search programs 77

interactive prover, as well as documentation, tutorials and examples illus-
trating the use of PVS in several domains. In our previous work [6], we
already used PVS to verify a simple search program.

To model RAM-AHU in PVS, we need to define the structure of its
states. The state should include the program of the machine, the value of
its registers and of the program counter, the input and output tapes. Since
any program is a sequence of commands, we need to specify the structure
of the machine commands.

In the informal definition of a program, only some of its commands have
labels, and these labels are represented by words in a natural language. In
PVS, it is much more convenient to have a label for every command, and
to represent labels by natural numbers. A label equal to 0 is interpreted
as absence of a label, and “real” labels are modeled by positive natural
numbers. For this reason, any command is represented by a record with two
fields: its label and its body. The body of a command belongs to the abstract
datatype CommandBody, which is rather complex and is presented in the
next section. Assuming that the type CommandBody is already defined, we
can define the type Commands as follows:

Commands: TYPE = [# label : nat,

body : CommandBody #]

The complete data structure for the states of RAM-AHU is given by the
PVS type RAMstates, which is defined as follows:

RAMstates : TYPE =

[# program : finite\textunderscore sequence[Commands],

pCounter : nat,

registers : sequence[int],

inputTape : sequence[int],

inputHead : nat,

outputTape : sequence[int],

outputHead : nat #]

The meaning of the fields in the type RAMstates is rather obvious: the
program is represented by a finite sequence of commands, the field pCounter
models the program counter, the field registers represents the infinite se-
quence of registers, where each register can hold an integer. The input tape
and the output tape are also modeled as infinite sequences of integers. The
field inputHead points to the cell of the input tape that should be read dur-
ing the next read command, and the field outputHead points to the cell of
the output tape that is due to be written during the next write command.

Suppose that we have a program SomeProg (i.e. a finite sequence of the
type Commands) and an input tape SomeInputTape for it (i.e. a sequence

78 D.A. Chkliaev, V.A. Nepomniaschy

of integers of unlimited length). The initial state for SomeProg and SomeIn-
putTape is defined in a rather obvious way: they are included in the state,
an empty sequence EmptyIntSeq (i.e. a sequence consisting of only zeros)
is assigned to the fields registers and outputTape, and 0 is assigned to the
program counter and the variables inputHead and outputHead. So the ini-
tial state for SomeProg and SomeInputTape is represented by the following
constant SomeIniState of the type RAMstates:

SomeIniState : RAMstates =

(# program :$=$ SomeProg,

pCounter := 0,

registers := EmptyIntSeq,

inputTape := SomeInputTape

inputHead := 0,

outputTape := EmptyIntSeq,

outputHead := 0 #)

4.2. Commands of the machine in PVS

It was already said in the previous subsection that any command of RAM-
AHU is represented by a record with two fields: its label and its body. The
body belongs to the abstract datatype CommandBody shown below.

CommandBody [IntOpType : TYPE] : DATATYPE

BEGIN

load(typeop : IntOpType, intop : int) : load?

store(dir : bool, natop : nat) : store?

add(typeop : IntOpType, intop : int) : add?

sub(typeop : IntOpType, intop : int) : sub?

mult(typeop : IntOpType, intop : int) : mult?

div(typeop : IntOpType, intop : int) : div?

read(dir : bool, natop : nat) : read?

write(typeop : IntOpType, intop : int) : write?

jump(labop : posnat) : jump?

jgtz(labop : posnat) : jgtz?

jzero(labop : posnat) : jzero?

halt : halt?

END CommandBody

The type CommandBody has another type IntOpType as a parameter.
A variable typeop (“type of operand”) of the type IntOpType indicates the
meaning of the integer operand intop in some commands. It can have one

Deductive formal verification of search programs 79

of three values: lit, dir, or indir. If typeop is equal to lit, then the integer
operand in the corresponding command should be interpreted as a literal. If
typeop = dir, then intop means the index of a register with direct addressing,
and if typeop = indir, then intop means the index of a register with indirect
addressing.

The meaning of the commands and their parameters in the type Com-
mandBody should be rather obvious, because it completely corresponds to
their informal definition in Section 2. We have already explained the param-
eters typeop and intop of the commands LOAD, ADD, SUB, MULT, DIV
and WRITE. The commands STORE and READ have a natural parameter
natop, and a Boolean parameter dir that indicates the meaning of natop.
If dir = true, natop means the index of a register with direct addressing,
and if dir = false, natop means the index of a register with indirect ad-
dressing. The commands JUMP, JGTZ and JZERO have a positive natural
parameter labop indicating the label of the command to which the program
counter should jump if some condition is satisfied. The command HALT
has no parameters.

To obtain the complete runs for RAM-AHU according to the method
presented in Section 3, we need to define the effect predicate Effect, i.e. a
Boolean predicate on pairs of states. This was done separately for each of
the 12 commands of the machine. The effect predicates for most commands
are rather large and cumbersome, and we see no need to present all of them
here, because they correspond very closely to the intuitive meaning of the
commands given in Section 2. To illustrate our approach, we only show the
effect of commands HALT and LOAD.

The effect of the HALT command is very simple: the program counter
becomes equal to the length of the program, so it no longer points to any
command of the program (note that if the program length is Len, then its
elements are enumerated from 0 to Len – 1). So if s0 and s1 are arbitrary
states, the effect is defined as follows:

haltEffect(s0, s1) : bool =

s1 = s0 WITH [pCounter := length(program(s0))]

The LOAD command has two parameters: an integer operand intop
and its type typeop with possible values lit, dir or indir. If if s0 and s1
are arbitrary states, then the effect of the LOAD command with arbitrary
parameters intop1 and typeop1 is defined as follows:

loadEffect(s0, typeop1, intop1, s1) : bool =

CASES typeop1 OF

lit: loadLitEffect(s0, intop1, s1),

dir: IF intop1 >= 0 THEN loadDirEffect(s0, intop1, s1)

ELSE haltEffect(s0, s1) ENDIF,

80 D.A. Chkliaev, V.A. Nepomniaschy

indir: IF intop1 >= 0 THEN loadIndirEffect(s0, intop1, s1)

ELSE haltEffect(s0, s1) ENDIF

ENDCASES

So, it is clear from this definition that the effect is defined according to
three possible values of the parameter typeop1. If typeop1 = lit, then intop1
is a literal that should be loaded into the adder. This is defined by the
predicate loadLitEffect :

loadLitEffect(s0, intop1, s1) : bool =

s1 = s0 WITH

[registers := registers(s0) WITH [(0) := intop1],

pCounter := pCounter(s0) + 1]

If typeop1 = dir, then intop1 is the index of the register that should be
loaded into the adder. This is defined by the predicate loadDirEffect given
below; it uses the predicate loadLitEffect for loading a literal. If intop1 <0,
the LOAD command has illegal parameters and should have the same effect
as the HALT command.

loadDirEffect(s0, natop1, s1) : bool =

loadLitEffect(s0, registers(s0)(natop1), s1)

Finally, if typeop1 = indir, then intop1 is the index of the register that
should be loaded into the adder via indirect addressing. This is defined
by the predicate loadIndirEffect which is given below; it uses the predicate
loadDirEffect for loading based on direct addressing. Again, if intop1 <0,
the LOAD command has illegal parameters and should have the same effect
as the HALT command.

loadIndirEffect(s0, natop1, s1) : bool =

IF registers(s0)(natop1) >= 0

THEN loadDirEffect(s0, registers(s0)(natop1), s1)

ELSE haltEffect(s0, s1) ENDIF

5. Search program and its specification in PVS

5.1. Our search program for an array of arbitrary size

The aim of our search program is to compute the maximum of an arbitrary
number of integers located in the beginning of the input tape; they are
preceded by the size of the array N. Initially, the input tape contains the
size of the array N and all its elements. The program starts by reading N
and the first element of the array, which becomes a potential maximum.
After that, it has a loop to examine all remaining elements of the array.

Deductive formal verification of search programs 81

The first statement of the loop uses the value of N - 1 to check whether
there are still items to be read. During each iteration of the loop, we read
one remaining element and compare it to the maximum of the elements
that have already been read; the larger of these numbers becomes the new
potential maximum. The number of the remaining elements serves as a loop
counter, and it is decreased by one before each subsequent iteration of the
loop. After there are no more elements to be read, we conclude that the
potential maximum is the largest element of the array, and we write it to the
output tape. Below we list the commands of the program. Three of them
have a label, indicating a beginning of the loop, a jump to a value greater
than zero, and the first command after the loop, respectively.

READ 0
READ 1
SUB =1

beginl: JZERO leavel
STORE 3
READ 2
LOAD 1
SUB 2
JGTZ gzero
LOAD 2
STORE 1

gzero: LOAD 3
SUB =1
JUMP beginl

leave1: WRITE 1
HALT

It is easy to see how our program computes the largest of all numbers
in the input array. The first command reads the size of the array N and
places it into the adder. After that, the second command reads the first
integer from the array and places it into the register with index 1. The
third command subtracts 1 from the adder, so it now contains N – 1.

After that, the command labeled beginl is the first command in a loop.
It checks whether N – 1 = 0. If it is so, then the array has only one element.
Therefore, it is the maximum, so we can immediately exit the loop. The
program counter moves to the command with label leavel, which writes the
first element of the array from the register with index 1 to the output tape,
and finally the HALT command terminates the computation.

However, if N – 1 >0 (remember that N >0), this means that there
are still elements of the input array waiting to be read from the tape. So
we proceed with the loop in order to compare the first element with these
remaining elements. Firstly, the STORE command stores the value of N − 1
into the register with index 3 for later use as a loop counter. Next, the

82 D.A. Chkliaev, V.A. Nepomniaschy

READ command reads the second integer from the array, and places it into
the register with index 2.

In the remaining part of the loop, we compute the maximum of the first
two elements of the array, and place it into the register with index 1. To
achieve that, the LOAD command loads the value of the first element into
the adder. After that, the SUB command subtracts the second element from
the first one and places the result into the adder. If its value is greater than
0, then the larger of the two elements is already in the register with index 1.
Therefore, as a result of the JGTZ command, the program counter moves
to the command labeled gzero. However, if the opposite is true, then the
LOAD and STORE commands are executed, which change the value in the
register with index 1 from the first element of the array to the second one. In
both cases, when the program counter arrives at the command LOAD 3, the
larger of the first two elements is located in the register with index 1. If there
are still array elements waiting to be read from the tape, we must compare
this maximum with these remaining elements; otherwise we must exit the
loop and write the maximum value to the output tape. In order to check
that, at the end of the loop the LOAD and SUB commands compute the
value of N – 2 and place it into the adder. After that, the JUMP command
unconditionally moves the program counter to the beginning of the loop,
where we determine whether to start the next iteration of the loop or to
exit the loop. The subsequent iterations of the loop proceed in a completely
similar manner.

5.2. The implementation of our search program in PVS

It is fairly straightforward to implement our search program in PVS. The
resulting PVS version consists of 16 commands numbered from com0 to
com15 which are given below. The text labels beginl, gzero and leavel are
replaced here by the natural numbers 5, 10 and 15.

com0 : Commands = (# label := 0, body := read(TRUE, 0) #)

com1 : Commands = (# label := 0, body := read(TRUE, 1) #)

com2 : Commands = (# label := 0, body := sub(lit, 1) #)

com3 : Commands = (# label := 5, body := jzero(15) #)

com4 : Commands = (# label := 0, body := store(TRUE, 3) #)

com5 : Commands = (# label := 0, body := read(TRUE, 2) #)

com6 : Commands = (# label := 0, body := load(dir, 1) #)

Deductive formal verification of search programs 83

com7 : Commands = (# label := 0, body := sub(dir, 2) #)

com8 : Commands = (# label := 0, body := jgtz(10) #)

com9 : Commands = (# label := 0, body := load(dir, 2) #)

com10 : Commands = (# label := 0, body := store(TRUE, 1) #)

com11 : Commands = (# label := 10, body := load(dir, 3) #)

com12 : Commands = (# label := 0, body := sub(lit, 1) #)

com13 : Commands = (# label := 0, body := jump(5) #)

com14 : Commands = (# label := 15, body := write(dir, 1) #)

com15 : Commands = (# label := 0, body := halt #)

We constructed a PVS program SearchProg consisting of these 16 com-
mands which looks as follows.

SearchProg : finite_sequence[Commands] =

(# length := 16,

seq := (LAMBDA (k : below[16]):

COND

k = 0 -> com0, k = 1 -> com1, k = 2 -> com2,

k = 3 -> com3, k = 4 -> com4, k = 5 -> com5,

k = 6 -> com6, k = 7 -> com7, k = 8 -> com8,

k = 9 -> com9, k = 10 -> com10, k = 11 -> com11,

k = 12 -> com12, k = 13 -> com13, k = 14 -> com14,

k = 15 -> com15

ENDCOND)

#)

We also defined the input tape InputSeq on which the computation of
SearchProg should begin. The size of an integer array which will be searched
by the program is defined by an arbitrary natural number N that must be
positive.

N : posnat

The array itself is defined as a finite sequence of integers of length N . To
achieve that, we define the PVS type FinArrayN that contains all possible
finite sequences of integers of length N.

84 D.A. Chkliaev, V.A. Nepomniaschy

finseq : VAR finite_sequence[int]

FinArrayGZ : TYPE = { finseq | length(finseq) > 0 }

finarr : VAR FinArrayGZ

FinArrayN : TYPE = { finarr | length(finarr) = N }

After that, an array InputArray is defined as an arbitrary constant of
the type FinArrayN.

InputArray : FinArrayN

Finally, the input tape InputSeq is defined as a sequence which begins
with the size of the array N . After that, it contains all elements from
InputArray followed by a string of zeros. The definition of InputSeq is given
below.

InputSeq : sequence[int] =

LAMBDA k : IF k = 0 THEN N

ELSE IF k < N + 1 THEN seq(InputArray)(k - 1)

ELSE 0 ENDIF

ENDIF

Since N and InputArray are arbitrary constants, it is clear from this
definition of InputSeq that it models any possible input tape for the program
SearchProg.

The initial state SearchIni of RAM-AHU for SearchProg and InputSeq is
defined in the same way as was presented in Section 4: they are included in
the state, an empty sequence EmptyIntSeq (i.e. a sequence consisting of only
zeros) is assigned to the fields registers and outputTape, and 0 is assigned
to the program counter and the variables inputHead and outputHead. After
that, we can use our definitions from Section 3 and obtain the set of complete
runs for SearchIni.

6. Specification of the correctness property and the
complexity bounds

The correctness property for the program SearchProg is as follows: it termi-
nates for any N and any elements of the array InputArray and, in the last
state of its complete run, there is exactly one number written on its output
tape equal to the maximum of all elements in InputArray. Since InputArray
has an arbitrary number of elements, namely N , it is not trivial to define
its maximum. To achieve that, we use a powerful mechanism available in

Deductive formal verification of search programs 85

PVS – recursive functions. Firstly, if finarr is some finite sequence of inte-
gers with at least 2 elements, we define an auxiliary function SubSeq(finarr)
(not shown here) which removes from finarr its last element. After that, for
an arbitrary nonempty sequence of integers finarr, we recursively define the
functionMaxValue(finarr) as follows. If finarr has exactly one element, then
MaxValue(finarr) is equal to that element. Otherwise, MaxValue(finarr) is
defined as a maximum of MaxValue(SubSeq(finarr)) and the last element
of finarr. The complete definition in PVS looks as follows (the measure
function is needed to guarantee that recursion terminates):

MaxValue(finarr) : RECURSIVE int =

IF length(finarr) = 1 THEN seq(finarr)(0)

ELSE max(MaxValue(SubSeq(finarr)), seq(finarr)(length(finarr) - 1))

ENDIF

MEASURE length(finarr)

If crun is an arbitrary complete run, we can use the function MaxValue
and define the correctness property for it as follows (here the function last
gives the last element of a finite sequence):

Correct(crun) =
fin?(crun) &
outputHead(last(crun)) = 1 &
outputTape(last(crun))(0) = MaxValue(InputArray)

We proved in PVS the following theorem called Main which establishes
not only the functional correctness of any complete run for our program,
but also the lower and upper bounds on the number of states in it:

∀ crun : Correct(crun) &
length(crun) ≥ 9*(N – 1) + 7 &
length(crun) ≤ 11*(N – 1) + 7 Main

It is clear from the theorem Main that all executions of our search pro-
gram consist of at least 9*(N – 1) + 6 and at most 11*(N – 1) + 6 com-
mands, because the number of states in any finite run exceeds the number
of commands by 1. For example, if some run is a sequence of states s0
s1 s2 s3, then there are exactly 3 commands leading from s0 to s3. So
the theorem Main implies that the best-case execution time of the program
SearchProg is 9*(N – 1) + 6 commands, and its worst-case execution time is
11*(N – 1) + 6 commands. For example, if N = 1, all executions of the
program consist of exactly 6 commands, and if N = 2, they consist of at
least 15 and at most 17 commands.

The proof of the theorem Main consists of about 175 PVS theorems and
lemmas. Checking the proof takes less than 4 minutes on a regular PC. In
the next section, we present the proof itself.

86 D.A. Chkliaev, V.A. Nepomniaschy

7. Proof of the theorem Main

Like all PVS proofs, the proof of the theorem Main is structured as a tree.
The root of our tree is the theorem Main, and most of its leaves are lemmas
InfIniLem, InfEffLem, FinIniLem, FinEffLem and FinLastLem, which will
be given below. These lemmas, which we call elementary lemmas, follow
directly from the definition of complete runs as it was given in Section 3.
We only need to replace in that general definition the initial state Ini by its
instance SearchIni for the program SearchProg.

The lemmas InfIniLem and InfEffLem describe the basic properties of
infinite complete runs. The lemma InfIniLem expresses that the first state
in any infinite complete run must be equal to the initial state. It follows
directly from clause 1 in the definition of infinite complete runs.

∀ crun : inf?(crun) ⇒ crun(0) = SearchIni InfIniLem

The elementary lemma InfEffLem means that in any infinite complete
run each state should be obtained from the previous state according to the
effect predicate. It follows directly from clause 2 in the definition of infinite
complete runs.

∀ crun : inf?(crun) ⇒ ∀ i : Effect(crun(i), crun(i + 1)) InfEffLem

The lemmas FinIniLem, FinEffLem and FinLastLem describe the ele-
mentary properties of finite complete runs. The lemma FinIniLem expresses
that any finite complete run must have at least one state and its first state
must be equal to the initial state. It follows directly from clause 1 in the
definition of finite complete runs.

∀ crun : fin?(crun) ⇒ length(crun) >0 & crun(0) = SearchIni FinIniLem

The lemma FinEffLem means that in any finite complete run each state
should be obtained from the previous state according to the effect predicate.
It follows directly from clause 2 in the definition of finite complete runs.

∀ crun : fin?(crun) ⇒
∀ i : i <length(crun) – 1 ⇒ Effect(crun(i), crun(i + 1)) FinEffLem

Finally, the elementary lemma FinLastLem expresses that the last state
of any finite complete run should be final (in the sense defined in Section
3). It follows from clause 3 in the definition of finite complete runs.

∀ crun : fin?(crun) ⇒ isFinal(last(crun)) FinLastLem

Now we continue with the proof. Let crun be an arbitrary complete run
which can be either infinite or finite. Below we consider both possible cases.

The case of an infinite complete run. If crun is infinite, our goal is
to prove that this is impossible, i.e. obtain a contradiction. This is done by
showing that the program counter in an infinite run will eventually exceed
the length of the program. We proved the following lemmas BeforeLoop

Deductive formal verification of search programs 87

and BadCounter which describe how the program counter changes before
reaching the first command in the loop and after that, respectively. The
lemma BeforeLoop expresses that in the state with index 3 (i.e. the state
that is obtained after the execution of the first 3 commands) the counter
points to the command com3, i.e. the first command in the loop, and the
value of the adder is equal to N – 1.

∀ crun : inf?(crun) ⇒
(pCounter(crun(3)) = 3 & registers(crun(3))(0) = N – 1) BeforeLoop

We do not give here the proof of the lemma BeforeLoop, but it is easy:
it is sufficient to examine the effect of the commands com0, com1 and com2
(which was explained in Section 4). Next, the lemma BadCounter expresses
that if there is a state with some index j in which the program counter is
equal to 3 (i.e. it points to the first command in the loop) and the value
of the adder is equal to some arbitrary natural number k, then there exists
some index nsuch that in the state with index n, the program counter is
equal to 16.

∀ crun, j, k : inf?(crun) & pCounter(crun(j)) = 3 &
registers(crun(j))(0) = k ⇒
∃n : pCounter(crun(n)) =16 BadCounter

The proof of the lemma BadCounter will be given later. Using the
lemmas BeforeLoop and BadCounter, we can prove the termination of our
program. Indeed, the lemma BeforeLoop gives us pCounter(crun(3)) = 3
and registers(crun(3))(0) = N – 1. If in the lemma BadCounter we now
take j = 3 and k = N – 1, we obtain that there exists some index nsuch
that pCounter(crun(n)) = 16. Applying the lemma InfEffLem to the state
with index n, we obtain Effect(crun(n), crun(n + 1)) = true. However, this
leads to a contradiction with the definition of the effect predicate, because
a state with such a large value of the program counter cannot be related
to any other state by the effect predicate. This means that crun cannot
be infinite, which establishes the termination of our program for any input
data.

Proof of the lemma BadCounter. In the proof of the lemma Bad-
Counter, we first prove an additional lemma AdderZero, which expresses
that after the program counter reaches the first command in the loop, the
value of the adder will eventually decrease to 0 from an arbitrary natural
number k (after some iterations of the loop).

∀ crun, j, k : inf?(crun) & pCounter(crun(j)) = 3 &
registers(crun(j))(0) = k ⇒
∃m : pCounter(crun(m)) =3 & registers(crun(m))(0) = 0 AdderZero

The lemma AdderZero is proved by induction on the index k. The basis

88 D.A. Chkliaev, V.A. Nepomniaschy

of the induction is obvious. However, the proof of the induction step is quite
complex, so we can only explain its general idea here. Suppose we are in
the beginning of the loop, and the adder is equal to k+ 1. By examining
all actions in the loop, including the jump instructions, we prove that the
adder decreases exactly by one during a single iteration of the loop. So it
will decrease to k after a single iteration. We can now apply the induction
hypothesis and conclude that the adder will decrease to 0 after a few more
iterations of the loop. This completes the proof of AdderZero.

Using the lemma AdderZero, it is easy to prove the lemma BadCounter.
Indeed, if we are currently in the beginning of the loop and the adder is
equal to zero, it will reach the value of 16 after the actions com3, com14
and com15 are executed.

The case of a finite complete run. If crun is finite, our aim is to
prove that eventually, after at least 9*(N – 1) + 6 and at most 11*(N –
1) +6 commands, the final state will be reached in which the output tape
contains exactly one value MaxValue(InputArray). To show this, we must
first prov the following complicated lemma EndLoopReached.

∀ crun : fin?(crun) ⇒ EndLoopReached
∃i : i ≥ 9*(N – 1) + 3 & i ≤ 11*(N – 1) + 3 & length(crun) >i &

pCounter(crun)(i) = 3 &
registers(crun)(0) = 0 & registers(crun)(1) = MaxValue(InputArray) &
outputHead(crun)(0) = 0

Despite its complex definition, the intuitive meaning of the lemma End-
LoopReached is easy to explain. Indeed, it expresses that eventually, after at
least 9*(N – 1) + 3 and at most 11*(N – 1) +3 commands, the state will
be reached where the program is ready to leave the loop after computing
the correct result. More precisely, it is the state where the program counter
points to the first command of the loop, the value of the adder is 0, and the
value of the next register is MaxValue(InputArray).

The proof of the lemma EndLoopReached is very long and complex; we
do not show it here. We can now use that lemma to prove the main the-
orem. Indeed, suppose that after at least 9*(N – 1) + 3 and at most
11*(N – 1) +3 commands, the state has been reached where the pro-
gram counter points to the command com3, the value of the adder is 0,
the value of the register with index 1 is MaxValue(InputArray), and there
are no elements on the output tape. We now consider the effect of all sub-
sequent commands according to the lemma FinEffLem. Applying the effect
of the command com3, we obtain that in the next state, i.e. after at least
9*(N – 1) + 4 and at most 11*(N – 1) +4 commands, we are in the state
where the program counter points to the command com14, the value of the
register with index 1 is MaxValue(InputArray), and there are still no el-
ements on the output tape. Next considering the effect of the command

Deductive formal verification of search programs 89

com14, we conclude that in the next state, i.e. after at least 9*(N – 1) + 5
and at most 11*(N – 1) +5 commands, we are in the state where the pro-
gram counter points to the command com15, and there is a single element
in the beginning of the output tape equal to MaxValue(InputArray).

Finally, we apply the effect of the halt command com15, and obtain that
after at least 9*(N – 1) + 6 and at most 11*(N – 1) +6 commands, we
have reached the state where there are no more commands to perform, and
there is a single element on the output tape equal to MaxValue(InputArray).
Therefore, we have reached the final state of crun after computing the max-
imum of InputArray, and after the number of steps specified by the theorem
Main. This concludes the proof of the theorem Main.

8. Conclusion

In this paper, we use a method for the verification of RAM-AHU programs
which allows proving their functional correctness and complexity measures
within a single formal framework. Our method has been applied to a non-
trivial example – a program that has a loop to compute the maximum
of an integer array of arbitrary size. The verification was done using the
interactive proof checker of PVS. We believe that this example would have
presented considerable difficulties for the fully automated techniques such
as model-checking [7], which justifies the use of deductive verification.

Unlike most works on complexity theory, we do not use the O(n) nota-
tion, but express the best-case and worst-case complexity measures for our
program with exact constants.

For example, for the particular program studied here, we prove that all
its executions consist of at least 9*(N – 1) + 6 and at most 11*(N – 1) + 6
commands, where N is the size of the input array.

Finite-memory automata, also called register automata (for example, [11,
2, 9]) are an important class of automata-based models which has significant
similarities to ARMs. In register automata, in addition to their control state,
a finite number of registers can be used to store and compare letters from
the input word. The only test available for letters is equality. There are
operations for managing registers like store, move and delete (similar to
ARM), but no arbitrary arithmetical operations. Some important problems
are decidable for register automata; for example, the emptiness problem is
PSPACE-complete. Register automata are very well suited for the modeling
of communication protocols and the definition of formal languages, but not
for numerical computations in arbitrary domains or processing of complex
data structures.

In our future work, we would like to continue the study of more complex
algorithms for the register-based architectures such as RAM-AHU and their
formal verification. In particular, we are interested in sorting algorithms.

90 D.A. Chkliaev, V.A. Nepomniaschy

While attempting to program them on the existing RAM-AHU architecture,
we discovered the difficulty of that task. It became apparent that the basic
data structure of RAM-AHU, in particular its set of registers, is too limited
to conveniently store the preliminary results of computations. This problem
can be solved by adding extra register sets, together with commands that
copy or move data between the main set of registers and these extra sets.

References

[1] Aho A.V., Hopcroft J.E., Ullman J.D. The Design and Analysis of Computer
Algorithms. – Addison-Wesley Publishing Company, 1976.

[2] Benedikt Michael, Ley Clemens. Automata vs. logics on data words // Lect.
Notes Comput. Sci. – 2010. – 6247. – P. 110–124.

[3] Boolos G.S., Burgess J.P., Jeffrey R.C. Computability and Logic (Fourth Edi-
tion). – Cambridge University Press, Cambridge, England, 2002.

[4] Chkliaev D.A. Mechanical Verification of Concurrency Control and Recovery
Protocols: PhD thes. / Eindhoven University of Technology. – 2001.

[5] Chkliaev D.A., Nepomniaschy V.A. Deductive verification of the sliding win-
dow protocol // Modeling and Analysis of Information Systems. – 2012. – Vol.
19, No. 6. – P. 57–68 (In Russian).

[6] Chkliaev D.A., Nepomniaschy V.A. Formal verification of programs for ab-
stract register machines // Bulletin NCC. Series: Computer Science. – Novosi-
birsk, 2013. – IIS Special Iss. 35. – P. 39–56.

[7] Edmund A. Clarke, Jr., Orna Grumberg & Doron A. Peled. Model Checking.
– MIT Press, 1999.

[8] Cook S.A., Reckhow R.A. Time-bounded random access machines // J. of
Computer Systems Science. – 1973. – Vol. 7. – P. 354–375.

[9] Stephane Demri, Ranko Lazic. LTL with the freeze quantifier and register
automata // LICS’06. – 2006. – P. 17–26.

[10] Hartmanis J. Computational complexity of random access stored program ma-
chines // Mathematical Systems Theory. – 1971. – Vol. 5, No. 3. – P. 232–245.

[11] Kaminsky M., Francez N. Finite-memory automata // Theor. Comput. Sci. –
1994. – Vol. 134(2). – P. 329–363.

[12] Knuth D.E. The Art of Computer Programming.– Addison-Wesley V.1, 1968.

[13] Lambek J. How to program an infinite Abacus // Mathematical Bulletin. –
1961. – Vol. 4, No. 3. – P. 295–302.

[14] Minsky M.L. Computation: Finite and Infinite Machines. – Prentice-Hall, Inc.,
Englewood Cliffs, N.J., 1967.

Deductive formal verification of search programs 91

[15] Owre S., Rushby J.M., Shankar N. PVS: a Prototype Verification System //
Lect. Notes Comput. Sci. – 1992. - Vol. 607. - P. 748–752.

[16] Schonhage A. Storage modification machines. // SIAM J. on Computing. –
1980. – Vol. 9, No. 3. – P. 490–508.

92

