Bull. Nov. Comp. Center, Comp.Science, 14 (2001), 7-17
(© 2001 NCC Publisher

The study of solutions to a parallel
FSM equation®

S.A. Buffalov, N.V. Yevtushenko

In this paper, we continue the study of a parallel FSM equation. We establish
that the solution set has a lattice structure and consider two restricted solutions to
the equation, namely, a supremal and a livelock-free solution.

1. Introduction

When a complex system is designed an important step is to decompose it
into a collection of simpler systems which interact in a well-defined manner.
The decomposition can be obtained by solving logical equation AQX < (|
if some components are a priori known. Here A describes a behavior of a
known part of the system, ' is the system specification, ¢ is a composition
operator, < is a conformance relation, and X is a free variable representing
a behavior of an unknown part. The problem is well-known, and a number
of publications in process algebra deals with equation solving for labeled
transition systems using different conformance relations [1-6].

We limit ourselves with equation solving for Finite State Machines
(FSMs), i.e., for labeled transition systems with the set of actions that is
divided into two disjoint sets, input and output set. Moreover, every input
symbol is followed with an output. As it is shown in [6], the results obtained
in process algebra are not directly applicable to the case, since we are in-
terested only in a solution that is a FSM. The problem has been discussed
for synchronous [7-9] and parallel [6] composition operators and a reduction
relation as the conformance relation. A solvable equation has been shown
to have the largest solution that contains any solution as its reduction. Pa-
per [10] generalizes the obtained results for both kinds of the composition
operator in the form of FSM languages and expands the results to language
equations. In practical situations, some restrictions can be imposed since
not each solution is of a practical use. Some restricted solutions and the
structure of the corresponding solution set are considered in [10, 11].

In this paper, we continue the study of a parallel FSM equation. Two re-
stricted solutions, namely, supremal and livelock-free are considered. A supr-
emal solution combined with the known part of the system should be defined

*Partially supported by the Russian Foundation for Basic Research under Grant
99-01-00337 and MOPO Grant.

8 S.A. Buffalov, N.V. Yevtushenko

under each input sequence where a behavior of the specification is defined.
A livelock-free solution does not allow to have an infinite internal dialog
between component FSMs within the designed system.

The structure of the paper is as follows. Section 2 comprises necessary
notions of a FSM, a FSM language and a FSM’s composition. We show that
the solution set has a lattice structure in Section 3. Section 4 deals with
supremal and livelock-free solutions.

2. Preliminaries

2.1. Languages and finite automata. An alphabet V is a finite set of
symbols. We denote V* the set of all finite sequences over V including the
empty sequence £. A language over alphabet V is a subset of V*. Prefiz o
of word /3 is denoted o < 3. Given word « in the alphabet V' and alphabet
W, a W-restriction of «, written oy, is obtained by deleting from o each
symbol of the set V' \ W.

In this paper, we limit ourselves with regular languages that are repre-
sented by finite automata [12].

A finite automaton, often called an automaton throughout this paper, is
a quintuple P = (S, V, ¢, sq, I'), where S is a finite nonempty set of states
with initial state sg and the subset I’ of final or accepting states, V' is a finite
nonempty set of actions, and ¢ C S x (V Ue) X S is a next state relation. If
the triple (s, a,s’) belongs to ¢, then we say there is a transition from the
state s to the state s’ labeled with action ¢ € (V U¢).

A sequence aqas...ap € V™ is said to be accepted by the automaton P,
if there exist sequences biby...b € (V Ue)* and sgsy...s; € S*, such that
sg € F, (si—1,bi,8:) € o, 1 =1,...,t, and aray...ax is a V-restriction of
b1bz...bs. Theset L(P) of all sequences accepted by P is called the language
accepted by automaton P.

The automaton P is called deterministic, if ¢ € S x V xS and for each
s € S and v € V there exists exactly one state s/, such that (s,v,s’) € ¢.
Given automaton P, there always exists a deterministic automaton Py with
the same language. We first add a non-accepting state ‘DON’T CARIE’,
denoted DNC, to the automaton. If in state s € S there is no outgoing
transition labeled with v € V', then we add the transition (s, v, DNC) to the
next state relation, while we add a loop at the state DNC labeled with all
v € V. The automaton F; can be obtained from augmented automaton P
by applying subset construction technique [12]. States of P; are subsets of
S. The initial state of Py is the set comprising sg and each state reachable
from sp via a sequence of transitions labeled with the empty sequence e.
A subset is an accepting state of Py, if and only if it comprises an accepting
state of P. Given subsets Q,T C S and v € V, the triple (@, v,T) belongs

The study of solutions to a parallel FSM equation 9

to the next state relation of Py, if and only if V&t € T 3¢ € Q [(¢,v,t) € ¢]
and Vg € Q [(¢,v,t) € ¢ = ¢ € T]. In most cases, there is no need to apply
the full-blown subset construction; it is enough to consider states of P, that
are reachable from its initial state.

We now remind some operations [12], [13] over languages. Regular
languages are closed under these operations, and we show how a corre-
sponding deterministic automaton can be derived for the result of each
operation. Let L(P) and L(R) be languages of deterministic automata
P =(S,V,¢p,s0, Fp) and R = (Q,W, ¥R, qo, Fr), correspondingly. With-
out loss of generality, we assume the state sets of P and R be disjoint.

A union of languages L(P) and L(R) is a language L(P)UL(R) ={«a €
(VUW)* | o€ L(P)Va € L(R)}. Itis accepted by deterministic automaton
(SUQUIn,VUW,p, In, FpUFR), where In ¢ SUQ. Next state relation ¢
is obtained by uniting relations ¢p and ¢p and adding the triple (In,v,s)
for each transition (sg, v, s) in P and the triple (In,w, ¢) for each transition
(go,w, q) in R.

An intersection of languages L(P) and L(R) is a language L(P)NL(R) =
{ae (VW) |a e L(P)Na € L(R)}. It is accepted by deterministic
automaton (S x Q,VNW, ¢, (so,q), Fp N Fr). Given (s,q),(s',¢') € S xQ
and a € V. NW, the relation ¢ contains triple ((s, ¢),a, (s',¢')), if and only
if (s,a,s') € pop and (q,a,q) € ©R.

A complement of language L(P) is a language L(P) = V*\ L(P). A de-
terministic automaton accepting L(P) is obtained from P by interchanging
between accepting and non-accepting states.

A prefiz closure of L(P) is a language (L(P)) = {a € V* | 338 € L(P)
[< 3]}. To derive a corresponding deterministic automaton each state of
P, from which an accepting state is reachable, is claimed an accepting state.
The language L(P) is prefix closed, if (L(P)) = L(P).

A W-restriction of language L(P) is a language L(P);w = {a € W* |
18 € L(P) [Byw = «]}. A deterministic automaton accepting language
L(P)yw is derived by replacing each triple (s, a,s’) € ¢p, where a € V\ W,
by the triple (s,e,s’). Then, the obtained automaton is determined.

A W-expansion of language L(P) is a language L(P)yw = {a € (V U
W)* | 36 € L(P) [ayv = f]}. A deterministic automaton accepting the
language L(P)4w is derived from P by including each triple (s, a, s), where
s € S and a € W\ V, into the next state relation ¢p.

2.2. Finite state machine (FSM), usually called a machine throughout
this paper, is a quintuple A = (S,1,0,T,sp), where S is a finite nonempty
set of states with initial state sg, I, and O are disjoint input and output
alphabets, and 7' C S x I x O x S is a transition relation. If (s,¢,0,5") € T,
then there exists a transition from present state s to next state s’ labeled

10 S.A. Buffalov, N.V. Yevtushenko

with input-output pair i/o. If the transition relation is empty, then the FSM
is called trivial.

The FSM A is complete, if for each pair (s,¢) € S x I there exists a pair
(0,5") € O x S, such that (s,7,0,s") € T. Otherwise, the FSM A is partial.

The FSM A is observable, if for each triple (s,¢,0) € S x [X O there
exists at most one state s’ € S, such that (s,¢,0,5) € T.

The FSM A is deterministic, if for each pair (s,i) € S x I there exists at
most one pair (0,s') € O x S, such that (s,¢,0,5") € T.

The language of the FSM A at state s is the set L (A) of traces over
the alphabet I U O. The trace igogii0; ...150, belongs to Ls(A), if there
exists the sequence sgsy...sgy1 of states, such that (s;,4;,0;,841) € T,
i=0,1,..., k. By definition, the language L (A) contains empty sequence
e. We denote L(A) the language of the FSM A at the initial state, for short.
As usual, we say that an input sequence is defined, if there is some output
sequence produced by the FSM A in response to it, i.e., the input sequence
is in the [-restriction of the language L(A). If the FSM A is trivial, then
L(A) = {e}. The set of all defined input sequences of the trivial FSM is
equal to {¢}.

Given defined input sequence az of partial FSM A, the input sequence
is harmonized, if for any two traces § and v from L(A), which [-restrictions
are equal to a, Jo € O [fio € L(A)] implies 30’ € O [yio' € L(A)]. In
other words, we require that independently of what output sequence has
been produced in response to « given FSM does have an output response
to input sequence «i. By definition, we assume that the empty sequence is
harmonized.

The set of all harmonized input sequences of the FSM A can be defined
as follows. Given a state s and an input 7, we determine a set s(z) of all
states that are reachable from the state s under the input ¢. Let I be the set
of all inputs common for each state in s(z). Then given a state, pertaining
the set s(i), we delete all its transitions induced by an input ¢ ¢ I,. The
procedure is repeated until no more transition can be deleted.

A FSM language is known to be regular. It is accepted by a deter-
ministic automaton [6] that can be obtained by unfolding each transition
(s,i,0,8") € T into two consecutive transitions labeled with ¢ and o, re-
spectively. However, the converse is not always true, i.e., not each regular
language over alphabet 7UQ is a language of an appropriate FSM over input
alphabet I and output alphabet O.

Given disjoint alphabets I and O, the language L C (10)* is IO-prefix-
closed, if awio € L implies « € L. Regular language L over the alphabet TUO
is the language of an appropriate FSM over input alphabet I and output
alphabet O, if and only if L is an [O-prefix-closed subset of (10)* [10].

Consider an automaton accepting a language of a FSM with input al-
phabet I and output alphabet O. The set of states of corresponding FSM

The study of solutions to a parallel FSM equation 11

is the set of all accepting states of the automaton. The transition relation
of the FSM includes quadruple (s,1,0,s’), if and only if there is a sequence
of two consecutive transitions from the state s to the state s’ labeled with ¢
and o, respectively.

We further denote LM the largest 1O-prefix-closed subset of LN(10)*.

If L does not include the empty sequence, then L¥*M is empty. Oth-

erwise, a deterministic automaton accepting LM can be derived in two
steps. We first derive an automaton accepting intersection LN (/O)*. At the
second step, we delete each non-accepting state with an incoming transition
labeled with o € O. To minimize an automaton we can iteratively delete
each state from which no acceptable state is reachable.

The state s of FSM A = (S, 1,0,T4, so) is a reduction of the state g of the
FSM B =(Q,1,0,Tg, qo), written s < ¢, if Ly(A) C L,(B). States s and ¢
are equivalent, written s 2 ¢, if Ly(A) = L,(B). The FSM A is a reduction
of the FSM B, written A < B, if the initial state of A4 is a reduction of the
initial state of B. If the initial states of machines A and B are equivalent,
then FSMs A and B are equivalent, written A = B. Reduction relation is
sometimes called a trace inclusion relation.

The FSM with states that are not pairwise equivalent is called reduced.
Hereinafter, we consider reduced and observable FSMs, unless otherwise
stated.

2.3. FSM composition. Consider a system of two interacting observable
FSMs A and B in Figure 1. The FSM A has an input alphabet I;UZ and out-
put alphabet Oy UU. The FSM B has an input
alphabet I,UU and output alphabet O,UZ. For
the sake of simplicity, we assume sets Iy, I3, Oy,
Oy, Z, and U be pairwise disjoint. Some of these
sets can be empty, provided sets I = I1 U I, and
O = 01 U0, to be nonempty. The set I is the
set of external inputs, while the set O is the set Figure 1. Composition
of external outputs. We refer to the set Z U U of FSMs A and B

as to the set of internal actions.

Similar to [6], we further assume that the system has a single message
in transit. Moreover, the next external input can be applied only after the
system has produced an external output to previous external input. This
model of FSM’s interaction is often used in protocol engineering and testing
and is referred to as parallel composition of FSMs.

For an external observer a single system’s execution is described by input-
output pair ¢/o, where ¢ € I and o € O. The system executes the pair i/o if,
for example, there exist internal sequences z125...2; € Z* and uqus ... up €
U*, such that tuiz1...upzp0 is a trace of A, while wyzy...ugzp is that

12 S.A. Buffalov, N.V. Yevtushenko

x1fyr, z1fu x1, 21, Zafu Taly2, 21, Wz2 T1/Y1, T2/y2 T2/y2

S B 5)
(a) (b) (c)
Figure 2. An example of composition (c) of FSMs A (a) and B (b)

of B. In other words, the system has external trace 70, if and only if 20 €
(L(A)4+1,00,NL(B)+1,n0,)11n0- Thus, we come up to the following definition
of the parallel composition [10].

Parallel composition of FSMs A and B is a reduced observable FSM A$B
with input alphabet I, output alphabet O, and the language (L(A)4r,u0, N
L(B)trno,) 1100 N (10)".

Figure 2 shows an example of parallel composition of the FSM A with
input alphabet {zy, 21,22} and output alphabet {y;,u} and the FSM B
with input alphabet {z,,u} and output alphabet {ys,21,22}. Both have
state 1 as initial. Suppose external input z; is applied to the composition
at the initial state 11. The FSM B can produce either external output yo or
internal output z;. In the former case, the system remains at state 11 and
can accept the next external input. In the latter case, z; is applied to the
FSM A and it, for example, produces external output y;. The system enters
state 21 and expects the next external input. Despite of completeness of
each component machine, the composed FSM shown in Figure 2c is partial,
since there is no transition from state 2 under input zy. The problem is
the component machines fall into infinite internal dialog (i.e., there is a so-
called livelock in the composition) z1(uz3)* at state 21 after the system at
the initial state has produced y; to z9. Moreover, not each defined input
sequence of the composed FSM is harmonized. For example, input sequence
xoxq is not harmonized, since there is a trace xoysziy1, while there is no
trace zoyix 1y for any y € {y1,y2}. The latter means that a user must be
careful applying z; after z,. If the system has produced y; to x5, then the
system cannot produce an external output to the next input z;. We avoid
the situation, if only harmonized input sequences are applied to the system.
The procedure from Section 2.2 returns the set {1,2} of all states reachable
from 1 under zs. Since at state 2 there is no transitions defined for z{, we
delete at state 1 all transitions induced by z;. No more transition can be
deleted, i.e., the set (22)* is the largest set of harmonized input sequences
of the composition.

The language L1 (A, B) = (L(A))t,u0, N {L(B))tnu0, N ((10)) 1700 is
called total language of the composition AOB. By definition, the total lan-
guage is the set of all traces that may occur within the system of interacting

FSMs.

The study of solutions to a parallel FSM equation 13

3. Structure of the set of solutions to FSM
equation

Let ' and A be FSMs with input alphabets I; U I; and [y U Z and output
alphabets Oy U Oy and Oy U U, respectively. The FSM A$B is called a
decomposition of C' if AGB < (. The problem of decomposing FSM '
can be reduced to solving the FSM equation AQX < (', where X is a free
variable. The FSM B is called a solution to the equation, if AOB < C.
As usual, the equation can have no solution or have a set of solutions. In
this section, we study the structure of the set of solutions to the equation
AOX < C.

Solution is called the smallest solution, if it is a reduction of any other
solution. According to definitions, if B is a solution to the equation, then
each reduction of B is also a solution to the equation. The trivial FSM is a
reduction of each FSM; thus, a solvable equation has the smallest solution,
which is trivial in fact.

Theorem 1. If equation AGX < C is solvable, then trivial FSM over
alphabets I, UU and Oy U Z is the smallest solution to the equation.

The result immediately implies the following

Corollary 1. The equation AOX < C' is solvable, if and only if the com-
position of the FSM A and trivial FSM is a reduction of the FSM C'.

Solution is called the largest solution, if each solution is its reduction. A
solvable equation is known [6] to have the largest solution, which is a FSM
M over alphabets I, UU and Oy U Z with the language LM [10], where

Ly = {(L(C) N (10)*)+zuv N L(A)TIZ’UO?LIQLJOQUZUU'

An arbitrary FSM is a solution to the equation, if and only if it is a
reduction of M, i.e., the largest solution completely describes the set of all
solutions to the equation.

We now introduce two binary operations over FSMs. Given FSMs A and
B, intersection AN B is a FSM with the language L(A)NL(B),1i.e., the inter-
section is the supremum of two FSMs. The direct sum AU B is a FSM with
the language L(A) U L(B), i.e., the direct sum is the infimum of two FSMs.
We obtain FSMs AN B and A U B by converting deterministic automata
representing languages L(A) N L(B) and L(A) U L(B) into corresponding
FSMs. The following statement shows that it is always possible.

14 S.A. Buffalov, N.V. Yevtushenko

Proposition 1. Given FSMs A = (S5,1,0,T4, so) and B ={(Q, 1,0, 15, qo),
the languages L(A)NL(B) and L(A)UL(B) are FSM languages over alpha-
bets I and O.

In fact, the intersection (union) of two languages that are subsets of
({10)* also is a subset of (/0O)*. Moreover, intersection (union) of two 1O-
prefix-closed languages also is [O-prefix-closed. Thus, L(A) N L(B) and
L(A)U L(B) are languages of appropriate FSMs.

By definition, A N B < B, i.e., given solutions B and D to the equation
AGX < C, FSM BN D also is a solution. On the other hand, for each trace
a of the FSM B or D it holds that [L(A)1r,u0, N{a}t+r,00,]1100 N (1O)* is
a subset of L(C'). Thus, the FSM B U D also is a solution to the equation.

Proposition 2. Given solutions B and D to the equation AGX < C, in-
tersection BN D and direct sum B U D also are solutions to the equation.

Thus, the set of solutions has a lattice structure.

Theorem 2. The set of solutions to solvable equation AGX < C has a
lattice structure.

4. Supremal and livelock-free solutions

In practical situations some restrictions can be imposed, since not each so-
lution is of a practical use. We first notice that usually applying next input
a user does not care which output has been produced to the former input
sequence, i.e., we further assume each defined input sequence of specification
C' is harmonized. Secondly, each real implementation is a completely spec-
ified FSM, since it produces some output response to any input sequence.
If we do not care of an implementation for an undefined transition, then
partial FSMs A and C become complete after adding a designating state
‘DON’T CARE’ (DNC) with loops for each input-output pair. For every
input 7, such that at state s no transitions is defined under 7, we add a
transition (s, ¢, 0, DNC) for every output o. After such 'don’t care’ interpre-
tation of undefined transitions a new equation A*$X < C® can be solved
for augmented FSMs A% and C'*. Any complete solution B to the equation
A*OX < C% can be used together with any complete implementation Imp 4
of FSM A; it is guaranteed that the set of output responses of composition
Imp 4B to any defined input sequence of the FSM (' is contained in that
of the FSM C.

Figure 3 illustrates the procedure for equation solving. The set of all
defined input sequences of the specification C' (Figure 3a) is (21, 22)*. The
context A (Figure 3b) is partial. In order to have a solution for any complete

The study of solutions to a parallel FSM equation 15

@1, Tafyr, T2fyo 1, 21, Zafu
Npu ING
z1/y1
(a) (b)
@2y Tafyo T1, Tofyr, Tafys

-T2/y27.’1,‘27 U/Zl722

|
Zaftn z1/y1
(c) (d)

Figure 3. An example of equation solving

implementation of the FSM A we augment it with a designated DNC state.
Augmented FSM A*® is obtained by adding at state 1 two transitions to the
DNC state labeled with pairs z1/y; and zy/u and loops at the DNC state
labeled with all input-output pairs. The largest solution M (Figure 3c) to
the equation A*$X < (% is a complete FSM. By direct inspection, one can
assure that the FSM A*GM (Figure 3d) is a reduction of C'. Thus, any com-
plete reduction of the FSM M combined with any complete implementation
of the context is a decomposition of the FSM C.

However, the largest solution can be partial. In this case, we determine
the largest complete submachine M¢ of the largest solution M [6]. If subma-
chine Mg does not exist, then there is no complete solution to the equation.
Otherwise, a complete FSM is a solution to the equation, if and only if it is
a reduction of Mq. Given complete solution B to the equation AQGX < (|
the composition of two complete FSMs A and B can return a partial FSM,
as it was demonstrated by an example (see Figure 2). However, in practical
situations we are going to apply to the composition only input sequences,
where a behavior of the specification C is defined. In other words, we need
a solution B, such that the set of defined harmonized input sequences of
composition A B contains that of the FSM . We call the solution B with
the above property a supremal solution.

Given solvable equation AGX < (' and the set § of input sequences
of the FSM (', the solution B to the equation is S-available, if the set of
all harmonized input sequences of the FSM A B contains §. We call B a
supremal solution, if B is S¢-available, where ¢ is the set of all defined
input sequences of the FSM C'.

If the largest solution is supremal, then it is the largest supremal solution.
However, not each reduction of the largest solution inherits the property.
When the largest solution is not supremal, the equation still can have a
supremal solution. In this case, the largest solution could be trimmed until
we obtain a supremal solution or establish an absence of a supremal solution.
However, it is an open question whether the largest supremal solution exists.

16 S.A. Buffalov, N.V. Yevtushenko

As we demonstrated above, component machines can fall into infinite
internal dialog when an appropriate external input sequence is applied to
the system. Constructing a system, the designer usually is required to avoid
livelocks, at least when a defined input sequence of the specification C' is
applied. Thus, we come up to the notion of a so-called $-livelock-free solu-
tion.

Given solution B to the equation AGX < (' and the set & of input
sequences of the FSM C', the solution B is S-livelock-free, if for each input
sequence o € 3, the total language L7(A, B) of the composition of A and
B does not contain an infinite set of the sequences with (/; U I3)-restriction
a. A solution is livelock-free, if it is So-livelock-free, where ¢ is the set of
all defined input sequences of the FSM C.

If the largest solution is livelock-free, then it is the largest livelock-free
solution to the equation. Moreover, each its reduction also is a livelock-free
solution. However, similar to a supremal solution, a livelock-free solution
can exist, when the largest solution is not livelock-free. Given the example
in Figure 3, the largest solution is neither supremal, nor livelock-free.

5. Conclusion

In this paper, we continue to study properties of solutions to a parallel FSM
equation. We have shown that the set of all solutions to the equation has
a lattice structure. In the case, when the specification is partial, we have
considered two restricted solutions, a supremal and a livelock-free solution.
It should be noticed that a composed system is a safe implementation of the
specification, if and only if we use a supremal and livelock-free solution. By
this reason, both solutions are of a practical interest and need additional
research. Just now the question whether there exist the largest supremal
and /or livelock-free solution remains open.

References

[1] Larsen Kim G., Xinxin Liu. Compositionality through an operational seman-

tics of contests // J. Logic Computation. — 1991. — Vol. 1, Ne 6. — P. 761-795.

[2] Wonham W.M., Ramadge P.J. On the supremal controllable sublanguage of a
given language // STAM J. Control. Optim. — 1987. — Vol. 25, Ne 3. — P. 637—
659.

[3] Qin H., Lewis P. Factorization of finite state machines under strong and obser-
vational equivalencies // Formal Aspects of Computing. — 1991. — P. 284-307.

[4] Ramadge P.J., Wonham W.M. Supervisory control of discrete event pro-
cesses // Feedback Control of Linear and Nonlinear Systems / Eds. D. Hinrich-

The study of solutions to a parallel FSM equation 17

sen, A. Isidory. Lecture Notes on Control and Information Sciences. — Berlin:

Springer-Verlag, 1982. — Ne 39. — P. 202-214.

Barrett G., Lafortune S. Bisimulation, the supervisory control problem and
strong model matching for finite state machines // Discrete Event Dynamic

Systems: Theory and Application. — 1998. — Vol. 8, N\e 4. — P. 377-429.

Petrenko A., Yevtushenko N. Solving asynchronous equations // IFIP TC6
WGE.1 Joint International Conference, Paris, France, 3—6 November, 1998. —
P. 231-247.

Kam T., Villa T., Brayton R., Sangiovanni-Vincentelli A. Synthesis of Finite
State Machines: Functional Optimization. — Boston: Kluwer Academic Pub-

lishers, 1997.

DiBenedetto M.D., Saldanha A.; Sangiovanni-Vincentelli A. Model matching
for finite state machines // Proc. 33rd Conf. Decision and Control (Lake Buena
Vista, FL, USA), December, 1994. — P. 3117-3124.

Khatri S.P., Narayan A., Krishnan S.C., McMillan K.L., Vincentelli A., Bray-
ton R.K. An Engineering Change Methodology Using Simulation Relations. —
Berkeley, 1999. — (Technical Report / University of California; March 19.
ERL-95-50).

Yevtushenko N.; Villa T., Brayton R.K., Petrenko A., Sangiovanni-Vincentelli
A. Logic synthesis by equation solving // Proc. of the XVT Intern. Workshop
on Logic Synthesis, USA, 2000. - P. 11-14.

Yevtushenko N., Buffalov S. Solving a parallel FSM equation // Discretnaya
Matematika, to appear (in Russian).

Hopcroft J.E., Ullman J.D. Introduction to Automata Theory, Languages, and
Computation. — Addison-Wesley, 1979.

Rozenberg G., Salomaa A. Handbook of Formal Languages. — Berlin; New
York: Springer-Verlag, 1997.

18

