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 2001 NCC PublisherThe study of solutions to a parallelFSM equation�S.A. Bu�alov, N.V. YevtushenkoIn this paper, we continue the study of a parallel FSM equation. We establishthat the solution set has a lattice structure and consider two restricted solutions tothe equation, namely, a supremal and a livelock-free solution.1. IntroductionWhen a complex system is designed an important step is to decompose itinto a collection of simpler systems which interact in a well-de�ned manner.The decomposition can be obtained by solving logical equation A}X � C,if some components are a priori known. Here A describes a behavior of aknown part of the system, C is the system speci�cation, } is a compositionoperator, � is a conformance relation, and X is a free variable representinga behavior of an unknown part. The problem is well-known, and a numberof publications in process algebra deals with equation solving for labeledtransition systems using di�erent conformance relations [1{6].We limit ourselves with equation solving for Finite State Machines(FSMs), i.e., for labeled transition systems with the set of actions that isdivided into two disjoint sets, input and output set. Moreover, every inputsymbol is followed with an output. As it is shown in [6], the results obtainedin process algebra are not directly applicable to the case, since we are in-terested only in a solution that is a FSM. The problem has been discussedfor synchronous [7{9] and parallel [6] composition operators and a reductionrelation as the conformance relation. A solvable equation has been shownto have the largest solution that contains any solution as its reduction. Pa-per [10] generalizes the obtained results for both kinds of the compositionoperator in the form of FSM languages and expands the results to languageequations. In practical situations, some restrictions can be imposed sincenot each solution is of a practical use. Some restricted solutions and thestructure of the corresponding solution set are considered in [10, 11].In this paper, we continue the study of a parallel FSM equation. Two re-stricted solutions, namely, supremal and livelock-free are considered. A supr-emal solution combined with the known part of the system should be de�ned�Partially supported by the Russian Foundation for Basic Research under Grant99-01-00337 and MOPO Grant.



8 S.A. Bu�alov, N.V. Yevtushenkounder each input sequence where a behavior of the speci�cation is de�ned.A livelock-free solution does not allow to have an in�nite internal dialogbetween component FSMs within the designed system.The structure of the paper is as follows. Section 2 comprises necessarynotions of a FSM, a FSM language and a FSM's composition. We show thatthe solution set has a lattice structure in Section 3. Section 4 deals withsupremal and livelock-free solutions.2. Preliminaries2.1. Languages and �nite automata. An alphabet V is a �nite set ofsymbols. We denote V � the set of all �nite sequences over V including theempty sequence ". A language over alphabet V is a subset of V �. Pre�x �of word � is denoted � � �. Given word � in the alphabet V and alphabetW , a W-restriction of �, written �#W , is obtained by deleting from � eachsymbol of the set V nW .In this paper, we limit ourselves with regular languages that are repre-sented by �nite automata [12].A �nite automaton, often called an automaton throughout this paper, isa quintuple P = (S; V; '; s0; F ), where S is a �nite nonempty set of stateswith initial state s0 and the subset F of �nal or accepting states, V is a �nitenonempty set of actions, and ' � S� (V [ ")�S is a next state relation. Ifthe triple (s; a; s0) belongs to ', then we say there is a transition from thestate s to the state s0 labeled with action a 2 (V [ ").A sequence a1a2 : : : ak 2 V � is said to be accepted by the automaton P ,if there exist sequences b1b2 : : : bt 2 (V [ ")� and s0s1 : : :st 2 S�, such thatst 2 F , (si�1; bi; si) 2 ', i = 1; : : : ; t, and a1a2 : : : ak is a V -restriction ofb1b2 : : : bt. The set L(P ) of all sequences accepted by P is called the languageaccepted by automaton P .The automaton P is called deterministic, if ' 2 S � V � S and for eachs 2 S and v 2 V there exists exactly one state s0, such that (s; v; s0) 2 '.Given automaton P , there always exists a deterministic automaton Pd withthe same language. We �rst add a non-accepting state `DON'T CARE',denoted DNC, to the automaton. If in state s 2 S there is no outgoingtransition labeled with v 2 V , then we add the transition (s; v;DNC) to thenext state relation, while we add a loop at the state DNC labeled with allv 2 V . The automaton Pd can be obtained from augmented automaton Pby applying subset construction technique [12]. States of Pd are subsets ofS. The initial state of Pd is the set comprising s0 and each state reachablefrom s0 via a sequence of transitions labeled with the empty sequence ".A subset is an accepting state of Pd, if and only if it comprises an acceptingstate of P . Given subsets Q; T � S and v 2 V , the triple (Q; v; T ) belongs



The study of solutions to a parallel FSM equation 9to the next state relation of Pd, if and only if 8t 2 T 9q 2 Q [(q; v; t) 2 ']and 8q 2 Q [(q; v; t) 2 ') t 2 T ]. In most cases, there is no need to applythe full-blown subset construction; it is enough to consider states of Pd thatare reachable from its initial state.We now remind some operations [12], [13] over languages. Regularlanguages are closed under these operations, and we show how a corre-sponding deterministic automaton can be derived for the result of eachoperation. Let L(P ) and L(R) be languages of deterministic automataP = (S; V; 'P ; s0; FP ) and R = (Q;W;'R; q0; FR), correspondingly. With-out loss of generality, we assume the state sets of P and R be disjoint.A union of languages L(P ) and L(R) is a language L(P )[L(R) = f� 2(V [W )� j � 2 L(P )_ � 2 L(R)g. It is accepted by deterministic automaton(S[Q[In; V [W;'; In; FP [FR), where In =2 S[Q. Next state relation 'is obtained by uniting relations 'P and 'R and adding the triple (In; v; s)for each transition (s0; v; s) in P and the triple (In; w; q) for each transition(q0; w; q) in R.An intersection of languages L(P ) and L(R) is a language L(P )\L(R) =f� 2 (V \ W )� j � 2 L(P ) ^ � 2 L(R)g. It is accepted by deterministicautomaton (S�Q; V \W;'; (s0; q0); FP \FR). Given (s; q); (s0; q0) 2 S �Qand a 2 V \W , the relation ' contains triple ((s; q); a; (s0; q0)), if and onlyif (s; a; s0) 2 'P and (q; a; q0) 2 'R.A complement of language L(P ) is a language L(P ) = V � nL(P ). A de-terministic automaton accepting L(P ) is obtained from P by interchangingbetween accepting and non-accepting states.A pre�x closure of L(P ) is a language hL(P )i = f� 2 V � j 9� 2 L(P )[� � �]g. To derive a corresponding deterministic automaton each state ofP , from which an accepting state is reachable, is claimed an accepting state.The language L(P ) is pre�x closed, if hL(P )i = L(P ).A W-restriction of language L(P ) is a language L(P )#W = f� 2 W � j9� 2 L(P ) [�#W = �]g. A deterministic automaton accepting languageL(P )#W is derived by replacing each triple (s; a; s0) 2 'P , where a 2 V nW ,by the triple (s; "; s0). Then, the obtained automaton is determined.A W-expansion of language L(P ) is a language L(P )"W = f� 2 (V [W )� j 9� 2 L(P ) [�#V = �]g. A deterministic automaton accepting thelanguage L(P )"W is derived from P by including each triple (s; a; s), wheres 2 S and a 2 W n V , into the next state relation 'P .2.2. Finite state machine (FSM), usually called a machine throughoutthis paper, is a quintuple A = hS; I; O; T; s0i, where S is a �nite nonemptyset of states with initial state s0, I , and O are disjoint input and outputalphabets, and T � S � I �O� S is a transition relation. If (s; i; o; s0) 2 T ,then there exists a transition from present state s to next state s0 labeled



10 S.A. Bu�alov, N.V. Yevtushenkowith input-output pair i=o. If the transition relation is empty, then the FSMis called trivial.The FSM A is complete, if for each pair (s; i) 2 S � I there exists a pair(o; s0) 2 O � S, such that (s; i; o; s0) 2 T . Otherwise, the FSM A is partial.The FSM A is observable, if for each triple (s; i; o) 2 S � I � O thereexists at most one state s0 2 S, such that (s; i; o; s0) 2 T .The FSM A is deterministic, if for each pair (s; i) 2 S� I there exists atmost one pair (o; s0) 2 O � S, such that (s; i; o; s0) 2 T .The language of the FSM A at state s is the set Ls(A) of traces overthe alphabet I [ O. The trace i0o0i1o1 : : : ikok belongs to Ls(A), if thereexists the sequence s0s1 : : : sk+1 of states, such that (si; ii; oi; si+1) 2 T ,i = 0; 1; : : : ; k. By de�nition, the language Ls(A) contains empty sequence". We denote L(A) the language of the FSM A at the initial state, for short.As usual, we say that an input sequence is de�ned, if there is some outputsequence produced by the FSM A in response to it, i.e., the input sequenceis in the I-restriction of the language L(A). If the FSM A is trivial, thenL(A) = f"g. The set of all de�ned input sequences of the trivial FSM isequal to f"g.Given de�ned input sequence �i of partial FSM A, the input sequenceis harmonized, if for any two traces � and 
 from L(A), which I-restrictionsare equal to �, 9o 2 O [�io 2 L(A)] implies 9o0 2 O [
io0 2 L(A)]. Inother words, we require that independently of what output sequence hasbeen produced in response to � given FSM does have an output responseto input sequence �i. By de�nition, we assume that the empty sequence isharmonized.The set of all harmonized input sequences of the FSM A can be de�nedas follows. Given a state s and an input i, we determine a set s(i) of allstates that are reachable from the state s under the input i. Let Is be the setof all inputs common for each state in s(i). Then given a state, pertainingthe set s(i), we delete all its transitions induced by an input i =2 Is. Theprocedure is repeated until no more transition can be deleted.A FSM language is known to be regular. It is accepted by a deter-ministic automaton [6] that can be obtained by unfolding each transition(s; i; o; s0) 2 T into two consecutive transitions labeled with i and o, re-spectively. However, the converse is not always true, i.e., not each regularlanguage over alphabet I[O is a language of an appropriate FSM over inputalphabet I and output alphabet O.Given disjoint alphabets I and O, the language L � (IO)� is IO-pre�x-closed, if �io 2 L implies � 2 L. Regular language L over the alphabet I[Ois the language of an appropriate FSM over input alphabet I and outputalphabet O, if and only if L is an IO-pre�x-closed subset of (IO)� [10].Consider an automaton accepting a language of a FSM with input al-phabet I and output alphabet O. The set of states of corresponding FSM



The study of solutions to a parallel FSM equation 11is the set of all accepting states of the automaton. The transition relationof the FSM includes quadruple (s; i; o; s0), if and only if there is a sequenceof two consecutive transitions from the state s to the state s0 labeled with iand o, respectively.We further denote LFSM the largest IO-pre�x-closed subset of L\(IO)�.If L does not include the empty sequence, then LFSM is empty. Oth-erwise, a deterministic automaton accepting LFSM can be derived in twosteps. We �rst derive an automaton accepting intersection L\(IO)�. At thesecond step, we delete each non-accepting state with an incoming transitionlabeled with o 2 O. To minimize an automaton we can iteratively deleteeach state from which no acceptable state is reachable.The state s of FSMA = hS; I; O; TA; s0i is a reduction of the state q of theFSM B = hQ; I; O; TB; q0i, written s � q, if Ls(A) � Lq(B). States s and qare equivalent, written s �= q, if Ls(A) = Lq(B). The FSM A is a reductionof the FSM B, written A � B, if the initial state of A is a reduction of theinitial state of B. If the initial states of machines A and B are equivalent,then FSMs A and B are equivalent, written A �= B. Reduction relation issometimes called a trace inclusion relation.The FSM with states that are not pairwise equivalent is called reduced.Hereinafter, we consider reduced and observable FSMs, unless otherwisestated.2.3. FSM composition. Consider a system of two interacting observableFSMsA and B in Figure 1. The FSMA has an input alphabet I1[Z and out-put alphabet O1 [U . The FSM B has an inputalphabet I2[U and output alphabet O2[Z. Forthe sake of simplicity, we assume sets I1, I2, O1,O2, Z, and U be pairwise disjoint. Some of thesesets can be empty, provided sets I = I1[ I2 andO = O1 [ O2 to be nonempty. The set I is theset of external inputs, while the set O is the setof external outputs. We refer to the set Z [ Uas to the set of internal actions. Figure 1. Compositionof FSMs A and BSimilar to [6], we further assume that the system has a single messagein transit. Moreover, the next external input can be applied only after thesystem has produced an external output to previous external input. Thismodel of FSM's interaction is often used in protocol engineering and testingand is referred to as parallel composition of FSMs.For an external observer a single system's execution is described by input-output pair i=o, where i 2 I and o 2 O. The system executes the pair i=o if,for example, there exist internal sequences z1z2 : : : zk 2 Z� and u1u2 : : : uk 2U�, such that iu1z1 : : :ukzko is a trace of A, while u1z1 : : :ukzk is that



12 S.A. Bu�alov, N.V. Yevtushenko(a) (b) (c)Figure 2. An example of composition (c) of FSMs A (a) and B (b)of B. In other words, the system has external trace io, if and only if io 2(L(A)"I2[O2\L(B)"I1\O1)#I\O. Thus, we come up to the following de�nitionof the parallel composition [10].Parallel composition of FSMsA and B is a reduced observable FSMA}Bwith input alphabet I , output alphabet O, and the language (L(A)"I2[O2 \L(B)"I1\O1)#I\O \ (IO)�.Figure 2 shows an example of parallel composition of the FSM A withinput alphabet fx1; z1; z2g and output alphabet fy1; ug and the FSM Bwith input alphabet fx2; ug and output alphabet fy2; z1; z2g. Both havestate 1 as initial. Suppose external input x2 is applied to the compositionat the initial state 11. The FSM B can produce either external output y2 orinternal output z1. In the former case, the system remains at state 11 andcan accept the next external input. In the latter case, z1 is applied to theFSM A and it, for example, produces external output y1. The system entersstate 21 and expects the next external input. Despite of completeness ofeach component machine, the composed FSM shown in Figure 2c is partial,since there is no transition from state 2 under input x1. The problem isthe component machines fall into in�nite internal dialog (i.e., there is a so-called livelock in the composition) x1(uz2)� at state 21 after the system atthe initial state has produced y1 to x2. Moreover, not each de�ned inputsequence of the composed FSM is harmonized. For example, input sequencex2x1 is not harmonized, since there is a trace x2y2x1y1, while there is notrace x2y1x1y for any y 2 fy1; y2g. The latter means that a user must becareful applying x1 after x2. If the system has produced y1 to x2, then thesystem cannot produce an external output to the next input x1. We avoidthe situation, if only harmonized input sequences are applied to the system.The procedure from Section 2.2 returns the set f1; 2g of all states reachablefrom 1 under x2. Since at state 2 there is no transitions de�ned for x1, wedelete at state 1 all transitions induced by x1. No more transition can bedeleted, i.e., the set (x2)� is the largest set of harmonized input sequencesof the composition.The language LT (A;B) = hL(A)i"I2[O2 \ hL(B)i"I1[O1 \ h(IO)�i"Z[U iscalled total language of the composition A}B. By de�nition, the total lan-guage is the set of all traces that may occur within the system of interactingFSMs.



The study of solutions to a parallel FSM equation 133. Structure of the set of solutions to FSMequationLet C and A be FSMs with input alphabets I1 [ I2 and I1 [ Z and outputalphabets O1 [ O2 and O1 [ U , respectively. The FSM A}B is called adecomposition of C if A}B � C. The problem of decomposing FSM Ccan be reduced to solving the FSM equation A}X � C, where X is a freevariable. The FSM B is called a solution to the equation, if A}B � C.As usual, the equation can have no solution or have a set of solutions. Inthis section, we study the structure of the set of solutions to the equationA}X � C.Solution is called the smallest solution, if it is a reduction of any othersolution. According to de�nitions, if B is a solution to the equation, theneach reduction of B is also a solution to the equation. The trivial FSM is areduction of each FSM; thus, a solvable equation has the smallest solution,which is trivial in fact.Theorem 1. If equation A}X � C is solvable, then trivial FSM overalphabets I2 [ U and O2 [ Z is the smallest solution to the equation.The result immediately implies the followingCorollary 1. The equation A}X � C is solvable, if and only if the com-position of the FSM A and trivial FSM is a reduction of the FSM C.Solution is called the largest solution, if each solution is its reduction. Asolvable equation is known [6] to have the largest solution, which is a FSMM over alphabets I2 [ U and O2 [ Z with the language LFSMM [10], whereLM = h(L(C)\ (IO)�)"Z[U \ L(A)"I2[O2i#I2[O2[Z[U :An arbitrary FSM is a solution to the equation, if and only if it is areduction of M , i.e., the largest solution completely describes the set of allsolutions to the equation.We now introduce two binary operations over FSMs. Given FSMs A andB, intersectionA\B is a FSM with the language L(A)\L(B), i.e., the inter-section is the supremum of two FSMs. The direct sum A[B is a FSM withthe language L(A)[L(B), i.e., the direct sum is the in�mum of two FSMs.We obtain FSMs A \ B and A [ B by converting deterministic automatarepresenting languages L(A) \ L(B) and L(A) [ L(B) into correspondingFSMs. The following statement shows that it is always possible.



14 S.A. Bu�alov, N.V. YevtushenkoProposition 1. Given FSMs A = hS; I; O; TA; s0i and B = hQ; I; O; TB; q0i;the languages L(A)\L(B) and L(A)[L(B) are FSM languages over alpha-bets I and O.In fact, the intersection (union) of two languages that are subsets of(IO)� also is a subset of (IO)�. Moreover, intersection (union) of two IO-pre�x-closed languages also is IO-pre�x-closed. Thus, L(A) \ L(B) andL(A) [ L(B) are languages of appropriate FSMs.By de�nition, A \B � B, i.e., given solutions B and D to the equationA}X � C, FSM B\D also is a solution. On the other hand, for each trace� of the FSM B or D it holds that [L(A)"I2[O2 \ fag"I1[O1]#I[O \ (IO)� isa subset of L(C). Thus, the FSM B [D also is a solution to the equation.Proposition 2. Given solutions B and D to the equation A}X � C, in-tersection B \D and direct sum B [D also are solutions to the equation.Thus, the set of solutions has a lattice structure.Theorem 2. The set of solutions to solvable equation A}X � C has alattice structure.4. Supremal and livelock-free solutionsIn practical situations some restrictions can be imposed, since not each so-lution is of a practical use. We �rst notice that usually applying next inputa user does not care which output has been produced to the former inputsequence, i.e., we further assume each de�ned input sequence of speci�cationC is harmonized. Secondly, each real implementation is a completely spec-i�ed FSM, since it produces some output response to any input sequence.If we do not care of an implementation for an unde�ned transition, thenpartial FSMs A and C become complete after adding a designating state`DON'T CARE' (DNC) with loops for each input-output pair. For everyinput i, such that at state s no transitions is de�ned under i, we add atransition (s; i; o;DNC) for every output o. After such 'don't care' interpre-tation of unde�ned transitions a new equation Aa}X � Ca can be solvedfor augmented FSMs Aa and Ca. Any complete solution B to the equationAa}X � Ca can be used together with any complete implementation ImpAof FSM A; it is guaranteed that the set of output responses of compositionImpA}B to any de�ned input sequence of the FSM C is contained in thatof the FSM C.Figure 3 illustrates the procedure for equation solving. The set of allde�ned input sequences of the speci�cation C (Figure 3a) is (x1; x2)�. Thecontext A (Figure 3b) is partial. In order to have a solution for any complete



The study of solutions to a parallel FSM equation 15(a) (b)(c) (d)Figure 3. An example of equation solvingimplementation of the FSM A we augment it with a designated DNC state.Augmented FSM Aa is obtained by adding at state 1 two transitions to theDNC state labeled with pairs x1=y1 and x1=u and loops at the DNC statelabeled with all input-output pairs. The largest solution M (Figure 3c) tothe equation Aa}X � Ca is a complete FSM. By direct inspection, one canassure that the FSM Aa}M (Figure 3d) is a reduction of C. Thus, any com-plete reduction of the FSM M combined with any complete implementationof the context is a decomposition of the FSM C.However, the largest solution can be partial. In this case, we determinethe largest complete submachine MC of the largest solutionM [6]. If subma-chine MC does not exist, then there is no complete solution to the equation.Otherwise, a complete FSM is a solution to the equation, if and only if it isa reduction of MC . Given complete solution B to the equation A}X � C,the composition of two complete FSMs A and B can return a partial FSM,as it was demonstrated by an example (see Figure 2). However, in practicalsituations we are going to apply to the composition only input sequences,where a behavior of the speci�cation C is de�ned. In other words, we needa solution B, such that the set of de�ned harmonized input sequences ofcomposition A}B contains that of the FSM C. We call the solution B withthe above property a supremal solution.Given solvable equation A}X � C and the set = of input sequencesof the FSM C, the solution B to the equation is =-available, if the set ofall harmonized input sequences of the FSM A}B contains =. We call B asupremal solution, if B is =C -available, where =C is the set of all de�nedinput sequences of the FSM C.If the largest solution is supremal, then it is the largest supremal solution.However, not each reduction of the largest solution inherits the property.When the largest solution is not supremal, the equation still can have asupremal solution. In this case, the largest solution could be trimmed untilwe obtain a supremal solution or establish an absence of a supremal solution.However, it is an open question whether the largest supremal solution exists.



16 S.A. Bu�alov, N.V. YevtushenkoAs we demonstrated above, component machines can fall into in�niteinternal dialog when an appropriate external input sequence is applied tothe system. Constructing a system, the designer usually is required to avoidlivelocks, at least when a de�ned input sequence of the speci�cation C isapplied. Thus, we come up to the notion of a so-called =-livelock-free solu-tion.Given solution B to the equation A}X � C and the set = of inputsequences of the FSM C, the solution B is =-livelock-free, if for each inputsequence � 2 =, the total language LT (A;B) of the composition of A andB does not contain an in�nite set of the sequences with (I1[ I2)-restriction�. A solution is livelock-free, if it is =C -livelock-free, where =C is the set ofall de�ned input sequences of the FSM C.If the largest solution is livelock-free, then it is the largest livelock-freesolution to the equation. Moreover, each its reduction also is a livelock-freesolution. However, similar to a supremal solution, a livelock-free solutioncan exist, when the largest solution is not livelock-free. Given the examplein Figure 3, the largest solution is neither supremal, nor livelock-free.5. ConclusionIn this paper, we continue to study properties of solutions to a parallel FSMequation. We have shown that the set of all solutions to the equation hasa lattice structure. In the case, when the speci�cation is partial, we haveconsidered two restricted solutions, a supremal and a livelock-free solution.It should be noticed that a composed system is a safe implementation of thespeci�cation, if and only if we use a supremal and livelock-free solution. Bythis reason, both solutions are of a practical interest and need additionalresearch. Just now the question whether there exist the largest supremaland/or livelock-free solution remains open.References[1] Larsen Kim G., Xinxin Liu. Compositionality through an operational seman-tics of contests // J. Logic Computation. { 1991. { Vol. 1, ü 6. { P. 761{795.[2] Wonham W.M., Ramadge P.J. On the supremal controllable sublanguage of agiven language // SIAM J. Control. Optim. { 1987. { Vol. 25, ü 3. { P. 637{659.[3] Qin H., Lewis P. Factorization of �nite state machines under strong and obser-vational equivalencies // Formal Aspects of Computing. { 1991. { P. 284{307.[4] Ramadge P.J., Wonham W.M. Supervisory control of discrete event pro-cesses // Feedback Control of Linear and Nonlinear Systems / Eds. D. Hinrich-
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