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Timed testing for models with internal

actions

E.N. Bozhenkova

In the paper, we construct a formula that characterizes a timed event structure with

discrete internal actions up to the timed must-preorder.

1. Introduction

A notion of equivalence is an important part of every process theory. As a
matter of fact, equivalences are used in specification and verification both
to compare two distinct systems and to reduce the structure of a system.
Over the past several years, a variety of equivalences have been proposed,
and the relationship between them has been quite well-understood (see, for
example, [13]).

The major equivalences include testing ones presented in [12]. Two pro-
cesses are considered to be testing equivalent, if there is no test that can
distinguish them. A test itself is usually a process applied to another process
by computing them together in parallel. A particular computation is consid-
ered to be successful, if the test reaches a designated successful state, and
the process passes the test if every computation is successful. This notion
is intuitively appealing; it has led to a well-developed mathematical theory
of processes that ties together the equivalences and preorders. However, no
characterization of these equivalences has led to a decision algorithm for
finite-state processes. Therefore, testing decision procedures are based on
reduction of testing to bisimulation [8]. These equivalences have been con-
sidered for synchronous and asynchronous formal system models without
time delays [1, 7, 8, 12, 14].

Testing equivalences have also been developed for models with time (see,
for example, [4, 10, 11, 15, 18, 21, 22]) and with probability ([9, 17, 20],). Pa-
pers [10, 18], and [22] have treated timed testing for discrete and dense time
transition models, respectively. The alternative characterization of timed
testing given in these papers uses a notion similar to that of an acceptance
set in the testing theory. The paper [22] tries to provide a testing decision
procedure that uses the untimed bisimulation between deterministic graphs
built from mutually refined timer region graphs that are a finite abstrac-
tion of the operational semantics of the model under consideration. Papers
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[15] and [11] have investigated timed testing for the discrete and dense time
process algebra. In a model of [11], time from the interval [0, 1] associated
with an action means the latest time of an action being performed. They
prove that, in the context of that model, dense-timed testing is reduced to
discrete-time one.

In paper [4], a framework for testing preorders and equivalences in the
setting of timed event structures has been developed. In that model, a time
interval associated with an event means the interval during which the event
can occur. Occurrence of the event does not take any time. The model is a
timed generalization of Winskel’s prime event structures [23]. We have cho-
sen it instead of [5] and [16] because we can give the notions of a state and a
leading relation. As for the characterization and decision procedure, it turns
out that the results mentioned above ([11, 22]) were not the case for some
timed event structures. So, we try to give the alternative characterization
of the timed testing relations. Moreover, we have found a subclass of struc-
tures in which we could reduce timed testing relations to the corresponding
variants of symbolic bisimulations.

In [6], the problem of decidability of timed must-equivalences is reduced
to the model-checking one. As a basic logic, we take the timed logic Lν . This
logic has been defined in [19] and used for construction of a characteristic
formula for a timed automaton up to the timed bisimilarity and, as a con-
sequence, for reduction of the timed bisimilarity decidability problem to the
model-checking one. It is known that the latter problem is decidable ([2, 3]).
We construct a characteristic formula up to the timed must-preorders. We
do it only for timed event structures without internal actions.

This paper is devoted to construction of the characteristic formula for
timed event structures with discrete internal actions. Existence of internal
actions gives increment of states reachable by the same word. We try to
collect them together in a class (the τ -closure of regions) and to unite classes
into a class graph. And only then we construct the formulas for each class
of the class graph.

The rest of the paper is organized as follows. In Section 2, we remind the
basic notions concerned with timed event structures and timed testing. The
timed modal logic Lν is described in Section 3. In Section 4, we obtain a
class graph from the state-space. In Section 5, we construct a formula which
characterizes a timed event structure up to the timed must-preorders.
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2. Timed event structures

In this section, we introduce a model of timed event structures, that is a
real-time extension of Winskel’s model of prime event structures [23] by
equipping events with time intervals.

We first recall a notion of an event structure. The main idea behind event
structures is to view the distributed computations as action occurrences,
called events, together with a notion of causal dependence between events
(which are reasonably characterized via a partial order). Moreover, to model
nondeterminism, there is a notion of conflicting (mutually incompatible)
events. A labelling function determines which action corresponds to an event.

Let Act be a finite set of visible actions and τ be an internal action. Then
Actτ = Act ∪ {τ}.

Definition 1. A (labelled) event structure over Actτ is a 4-tuple S=(E,≤,
#, l), where

• E is a countable set of events;

• ≤ ⊆ E × E is a partial order (the causality relation) satisfying the
principle of finite causes: ∀e ∈ E . {e′ ∈ E | e′ ≤ e} is finite;

• # ⊆ E×E is a symmetric and irreflexive relation (the conflict relation)
satisfying the principle of conflict heredity: ∀e, e′, e′′ ∈ E . e # e′

≤ e′′ ⇒ e #e′′;

• l : E → Actτ is a labelling function.

Let C ⊆ E. Then C is left-closed iff ∀e, e′ ∈ E . e ∈ C ∧ e′ ≤ e ⇒
e′ ∈ C; C is conflict-free iff ∀e, e′ ∈ C . ¬(e # e′); C is a configuration

of S iff C is left-closed and conflict-free. Let Conf(S) denote the set of all
configurations of S. For C ∈ Conf(S), we define the set of events enabled
in C as En(C) = {e ∈ E | C ∪ {e} ∈ Conf(S)}.

In the following, we will consider only finite event structures, i.e., the
structures whose sets of events are finite.

Before introducing the concept of a timed event structure, we need to
propose some auxiliary notations. Let N0 be the set of natural numbers
with zero, R+ be the set of positive real numbers, and R+

0 be the set of
nonnegative real numbers. For any d ∈ R+

0 , {d} denotes its fractional part,
⌊d⌋ and ⌈d⌉ — its smallest and largest integer parts, respectively.
Define the set Interv(R+

0 ) = {(d1, d2), (d1, d2], [d1, d2), [d1, d2] ⊂ R+
0 | d1, d2

∈ N0}.

We are now ready to introduce the concept of timed event structures.

Definition 2. A (labelled) timed event structure over Actτ is a pair TS =
(S,D), where
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• S = (E,≤,#, l) is a (labelled) event structure over Actτ ;

• D : E → Interv(R+
0 ) is a timing function such that D(e) is a closed

interval from Interv(R+
0 ) for all e ∈ E with l(e) ∈ Act.

In a graphic representation of a timed event structure, the corresponding
action labels and time intervals are drawn close to events. If no confusion
arises, we will often use action labels instead of the event identifiers to denote
events. The <-relations are depicted by arcs (omitting those derivable by
transitivity), and conflicts are depicted by “#” (omitting those derivable by
the conflict heredity). Following these conventions, a trivial example of a
labelled timed event structure is shown in Figure 1.

TS1
a : e1[0, 1] b : e2 [0, 1]

τ : e3 [0, 1)

#

✲

Figure 1. A simple example

Let Eτ denote the set of all labelled timed event structures over Actτ .
For convenience, we fix timed event structures TS = (S = (E,≤,#, l),D),
TS′ = (S′ = (E′,≤′,#′, l′),D′) from the class Eτ and work with them
further.

A state of TS is a pairM = (C, δ), where C ∈ Conf(S) and δ : E → R+
0 .

The initial state of TS is MTS = (C0, δ0) = (∅, 0). A state M = (C, δ) is
said to be terminated, if En(C) = ∅. Let ST (TS) denote the set of all states
of TS.

A timed event structure progresses through a sequence of states in one
of two ways given below.

Let M1 = (C1, δ1),M2 = (C2, δ2) ∈ ST (TS) such that M1 is a non-
terminated state. An event e ∈ En(C1) may occur in M1 (denoted M1

e
→)

if δ1(e) ∈ D(e) and ∀e′ ∈ En(C1) ∃d ∈ R+
0 . δ1(e

′) + d ∈ D(e). We write

M1
a
→, if M1

e
→ and l(e) = a. The occurrence of e in M1 leads to M2

(denoted M1
e
→M2), if M1

e
→, C2 = C1 ∪ {e} and

δ2(e
′) =

{
0, if e′ ∈ En(C2) \En(C1);
δ1(e

′), otherwise.

We write M1
a
→M2, if M1

e
→M2 and l(e) = a.

A time d ∈ R+ may pass in M1 (denoted M1
d
→), if ∀e ∈ En(C1) ∃d′ ∈

R+
0 (d

′ ≥ d) . δ1(e) + d′ ∈ D(e). The passage d in M1 leads to M2 (denoted

M1
d
→M2), if C2 = C1 and δ2(e) = δ1(e) + d for all e ∈ E.
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The weak leading relation ⇒ on states of TS is the largest relation defined
by:

ǫ
⇒ ⇐⇒

τ
→

∗
and

x
⇒ ⇐⇒

ǫ
⇒

x
→

ǫ
⇒, where

τ
→

∗
is the reflexive and transitive

closure of
τ
→ and x ∈ Act ∪R+. We consider the relation

d
⇒ as possessing

the time continuity property: M
d1+d2=⇒ ⇐⇒ M

d1⇒
d2⇒ for some d1, d2 ∈ R+.

From now on, we will use the following notions and notations. Let
Act(R+

0 ) = {a(d) | a ∈ Act ∧ d ∈ R+
0 } be the set of timed actions

of Act over R+
0 . Then (Act(R+

0 ))
∗ is the set of finite timed words over

Act(R+
0 ). The function △ : (Act(R+

0 ))
∗ → R+

0 measuring the duration

of a timed word is defined by: △(ǫ) = 0, △(w.a(d)) = △(w) + d. The
domain for real-time languages is denoted by Dom(Act, R+

0 ) = {〈w, d〉 |
w ∈ (Act(R+

0 ))
∗, d ∈ R+

0 , d ≥ △(w)}. The weak leading relation ⇒ is
extended to timed words from (Act(R+

0 ))
∗ and Dom(Act, R+

0 ) as follows.
Let d ∈ R+

0 , d
′ ∈ R+, a ∈ Act and w ∈ (Act(R+

0 ))
∗. Then

if M
a
⇒M ′, then M

a(0)
⇒ M ′; if M

d′
⇒

a
⇒M ′, then M

a(d′)
⇒ M ′;

if M
w
⇒

a(d)
⇒ M ′, then M

w.a(d)
=⇒ M ′; if M

w
⇒M ′, then M

〈w, △(w)〉
=⇒ M ′;

if M
〈w,d〉
=⇒

d′
⇒M ′, then M

〈w, d+d′〉
=⇒ M ′.

The set L(TS) = {〈w, d〉 ∈ Dom(Act,R+
0 ) | MTS

〈w,d〉
=⇒} is the language of

TS. For instance, for the timed event structure TS1 in Figure 1 we have
L(TS1) = {〈ǫ, d1〉, 〈ǫ, 1〉, 〈a(d1), d1 + d2〉, 〈a(1), 1〉, 〈a(d1)b(d2), d1 + d2〉 |
d1 + d2 < 1}.

The timed testing relations may be defined in terms of the responses
of timed event structures to a collection of tests. We will, however, use
an alternative characterization that relies on the following definitions. Let
M ∈ ST (TS) and 〈w, d〉 ∈ Dom(Act, R+

0 ). Then S(M) = {x ∈ Actτ ∪R
+ |

M
x
→} and Acc(TS, 〈w, d〉) = {S(M ′) | MTS

〈w, d〉
=⇒ M ′, M ′ 6

τ
→} (timed

acceptance set). Let N,N ′ ⊂ 2Act∪R+

. Then N ⊂⊂ N ′ ⇐⇒ ∀S ∈
N ∃S′ ∈ N ′ . [(S′ |Act⊆ S |Act) ∧ (S |R+= ∅ ⇒ S′ |R+= ∅)]; N ≡ N ′ ⇐⇒
N ⊂⊂ N ′ ∧ N ′ ⊂⊂ N .

Definition 3.

• TS ≤must TS
′ ⇐⇒ ∀〈w, d〉 ∈ Dom(Act,R+

0 ) . Acc(TS
′, 〈w, d〉) ⊂⊂

Acc(TS, 〈w, d〉);

• TS ≃must TS
′ ⇐⇒ TS ≤must TS

′ and TS′ ≤must TS.

An example of timed must-equivalent structures is shown in Figure 2(a).
The timed event structures TS3 and TS

′
3 shown in Figure 2(b) are not timed

must-equivalent. Let us consider the timed word 〈w, d〉 = 〈a(0.5), 1.5〉 ∈
L(TS3) ∩ L(TS

′
3). We have
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Acc(TS3, 〈w, d〉) = {{b, c} ∪ (0, 1]},
Acc(TS′

3, 〈w, d〉) = {{b, c} ∪ (0, 1], {c}}, i.e.
¬
(
Acc(TS′

3, 〈w, d〉) ⊂⊂ Acc(TS3, 〈w, d〉)
)
.

a a

τ

[1, 1] [1, 1]

[0, 1]

TS2

a

τ

[1, 1]

[0, 1]

TS′

2

a

τ

[1, 1]

[0, 1]

#

[0, 1]a

b

c

#

[1, 3]

[0, 2]

✶

q

TS3

[0, 1]a

b

c

#

[1, 3]

[0, 2]

✶

q

TS′

3

[0, 1]a c [0, 1]✲

#

(a)

(b)

# #
✲τ

[0, 1]

#

Figure 2. An example of timed must-equivalent (a) and non-timed must-
equivalent (b) timed event structures

3. Timed modal logic

Here we will recall a dense-timed logic Lν [19] and modify a satisfiability
relation for timed event structures.

Definition 4. Let K be a finite set of clocks, Id be a set of identifiers and
k be an integer. The set of formulas of Lν over K, Id and k is generated by
the abstract syntax with φ and ψ ranging over Lν :

φ := tt | ff | φ ∧ ψ | φ ∨ ψ | ∃∃φ | ∀∀φ | 〈a〉φ | [a]φ | x in φ | x+ n ⊲⊳ y +m |
x ⊲⊳ m | Z,

where a ∈ Act, x, y ∈ K, n,m ∈ {0, 1, . . . , k}, ⊲⊳∈ {=, <,≤, >,≥} and
Z ∈ Id.

The meaning of identifiers from Id is specified by a declaration D that
assigns a formula of Lν to each identifier. When D is clear, we write Z := φ

for D(Z) = φ. The clocks from K are called formula clocks and a formula
φ is said to be closed if every formula clock x occurs in φ in the scope of



Timed testing for model with internal actions 33

an “x in . . . ” operator. Given a timed event structure TS, we interpret the
formulas from Lν over an extended state (C, δu), where (C, δ) is a state of
TS and u is a time assignment for K. Transitions between extended states

are defined by: (C, δu)
ǫ(d)
→ (C, (δ + d)(u + d)) and (C, δu)

a
→ (C ′, δ′u′) iff

(C, δ)
a
→ (C ′, δ′) and u = u′. Formally, the satisfaction relation between

extended states and formulas is defined just as in [19] and differs from [6]
for ∀∀- and ∃∃- operators.

Definition 5. Let TS be a timed event structure and D be a declaration.
The satisfaction relation |=D is the largest one that satisfies the following
implications:

(C, δu) |=D tt ⇒ true;
(C, δu) |=D ff ⇒ false;

(C, δu) |=D φ ∧ ψ ⇒ (C, δu) |=D φ and (C, δu) |=D ψ;

(C, δu) |=D ∃∃φ ⇒ ∃d ∈ R+
0 . (C, δ)

ǫ(d)
⇒ (C ′, δ′)

and (C ′, δ′u+ d) |=D φ;

(C, δu) |=D ∀∀φ ⇒ ∀d ∈ R+
0 (C, δ)

ǫ(d)
⇒ (C ′, δ′)

implies (C ′, δ′u+ d) |=D φ;

(C, δu) |=D [a]φ ⇒ ∀(C ′, δ′) ∈ ST (TS) . (C, δ)
a
→ (C ′, δ′)

implies (C ′, δ′u) |=D φ;

(C, δu) |=D 〈a〉φ ⇒ ∃(C ′, δ′) ∈ ST (TS) . (C, δ)
a
→ (C ′, δ′)

and (C ′, δ′u) |=D φ;
(C, δu) |=D x+m ⊲⊳ y + n ⇒ u(x) +m ⊲⊳ u(y) + n;

(C, δu) |=D x in φ ⇒ (C, δu′) |=D φ, where u′ = [{x} → 0]u;
(C, δu) |=D Z ⇒ (C, δu) |=D D(Z).

Any relation that satisfies the above implications is called a satisfiability
relation. We say that TS satisfies a closed formula φ from Lν and write
TS |= φ when (C0, δ0u) |=D φ for any u. Note that if φ is closed, then

(C, δu) |=D φ iff (C, δu′) |=D φ for any u, u′ ∈ R+
0
K
.

4. From state-space to class graph

Before constructing a characterictic formula, we need to transform the infi-
nite state-space to a finite representation in such a way that states reachable
by the same timed word be collected together in one class. We will do it
through this section.
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4.1. Region graph

As usually, in order to get a discrete representation of the state-space of
a timed event structure, we use the concept of regions (equivalence classes
of states) [2]. And the characteristic formula will be constructed for classes
(τ -closure of regions). But we do not construct regions over the states of
ST (TS) by the reasons discussed in the previous works ([4, 6]).

Namely, one of the problems is existence of several regions which contain
states reachable by the same timed word. So, we construct a region over
common states that collect the states of ST (TS) which we get by passing
some timed word. But even after doing that, if there are internal actions
with a dense time interval, we can get different classes which contain states
reachable by the same timed word (we will consider such an example later).
So, we allow internal actions to be only discrete.

The problem of synchronization of executions in two timed event struc-
tures is decided here by including counters into regions of one timed event
structure in order to restrict the states of the second one for which a region
formula has to be checked.

TS is τ -discrete if ∀e ∈ ETS . l(e) = τ ⇒ D(e) = [n, n] (n ∈ N).
Let Ed−τ denote the class of timed event structures having τ -discreteness
property. Further we suppose that TS and TS′ ∈ Ed−τ .

Definition 6. A subset µ ⊆ ST (TS) is called a common state of TS. The
initial common state of TS is µ0 = {MTS}. We will sometimes denote µ as
(C1, . . . , Cn, δ1, . . . , δn), where (Ci, δi) ∈ µ (1 ≤ i ≤ n).

Let us introduce another useful notation:

En(µ) =
⋃

{En(C) | ∃δ . (C, δ) ∈ µ}.

The relation
z
→ is modified on common states as follows:

• µ
τ
→ µ′ iff µ′ = {(C ′, δ′) | ∃(C, δ) ∈ µ . (C, δ)

τ
→ (C ′, δ′)} ∪ µ and

µ 6= µ′;

• µ
z
→ µ′ iff µ 6

τ
→ and µ′ = {(C ′, δ′) | ∃(C, δ) ∈ µ . (C, δ)

z
→ (C ′, δ′)}

(z ∈ Act ∪R+).

Let STC(TS) denote the set of all common states reachable from µ0. The
leading relation on common states of STC(TS) is extended to timed words
from Dom(Act,R+

0 ) just as on the states of ST (TS).
Then the notion of a region is defined analogously to Alur’s one. Let µ =

(C1, . . . , Cn, δ1, . . . , δn) 6= µ′ = (C ′
1, . . . , C

′
n, δ

′
1, . . . , δ

′
n). Then µ ≃ µ′ iff there

exists renaming π(n) : {1, . . . , n} → {1, . . . , n}, such that (C1, . . . , Cn) =
(C ′

π(n)(1), . . . , C
′
π(n)(n)) and
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(i) ∀1 ≤ i ≤ m . ⌊δ1| . . . |δn(i)⌋ = ⌊δ′
π(n)(1)| . . . |δ

′
π(n)(n)(i)⌋;

(ii) ∀1 ≤ i, j ≤ m .

— {δ1| . . . |δn(i)} ≤ {δ1| . . . |δn(j)} ⇐⇒ {δ′
π(n)(1)| . . . |δ

′
π(n)(n)(i)}≤

{δ′
π(1)| . . . |δ

′
π(n)(j)},

— {δ1| . . . |δn(i)} = 0 ⇐⇒ {δ′
π(n)(1)| . . . |δ

′
π(n)(n)(i)} = 0,

where δ1| . . . |δn is the concatenation of vectors δi (1 ≤ i ≤ n) and m =∑
1≤i≤n | Ci |.

A set R = [µ] = {µ′ | µ ≃ µ′} is called a region of TS. We define
R0 = [µ0].

Let R and R′ be regions of TS. Then the leading relation on regions is
defined as follows:

• R
a
→ R′ iff ∃µ ∈ R, µ′ ∈ R′ . µ

a
→ µ′ (a ∈ Actτ );

• R
χ
→ R′ iff ∃µ ∈ R, µ′ ∈ R′ ∃d ∈ R+ . µ

d
→ µ′ ∧ ∀ 0 < d′ < d µ

d′
→

µ̃ ∈ R ∪R′.

The leading relation on regions is extended to timed words from Dom(Act,
R+

0 ) just as on the states of ST (TS).

We will call a partition of STC(TS) into regions stable if the following
holds:

• if R
a
→ R′, then ∀µ ∈ R . µ

a
→ µ′ for some µ′ ∈ R′ (a ∈ Actτ );

• if R
χ
→ R′, then ∀µ ∈ R ∃d ∈ R+ . µ

d
→ µ′ for some µ′ ∈ R′ and

µ
d′
→ µ̃ ∈ R ∪R′ for all 0 < d′ ≤ d.

So, we can define the notion of a region graph of TS.

Definition 7. The region graph of TS is a tupleRG(TS) = (VRG, ERG, lRG),
where the set of vertices VRG is the stable partition of STC(TS), the set of
edges ERG is the leading relation on regions of VRG and the labelling function
lRG : ERG −→ Actτ ∪ {χ} is defined as l((R,R′)) = z ⇐⇒ R

z
→ R′.

We define Der(R, z) = {R′ | R
z
→ R′}.

Lemma 1. Let R ∈ VRG. Then ∀µ, µ′ ∈ R ∀(C, δ) ∈ µ ∃ (C ′, δ′) ∈
µ′ . C = C ′ ∧ S((C, δ)) |Act= S((C ′, δ′)) |Act ∧ S((C, δ)) |R+= ∅ ⇐⇒
S((C ′, δ′)) |R+= ∅.
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4.2. Adding of counters

Let RG(TS) be the region graph and X be a countable set of counters. Let
all regions of RG(TS) get a unique number, then with each region Ri we
will associate its own counter xRi

. For simplicity, sometimes we will denote
xRi

by xi.

Moreover, with each region R we will associate a triple (RC(R), µR, σR),
where RC(R) is the set of counters, µR = (C1, . . . , CnR

, δ1, . . . , δnR
) ∈ R is

the region representative and the function σR : RC(R) −→ 2nR associates
the set of numbers of configurations from µR with each counter of RC(R).

At first, we suppose RC(R0) = {x0} and take µ0 as a representative of
R0, σR0

(x0) = {0}. For others R ∈ RG(TS) we supposeRC(R) = ∅ and take
an arbitrary µ ∈ R as its representative, σR ≡ ∅. Then the leading relation
on regions is modified so that we add xR into RC(R), if after execution
of some action we get µ ∈ R and some event becomes enabled in C ∈ µ.
Then the configuration C is associated with xR. Additionally, we delete the
counters, for which there are no configurations associated with them, from
RC(R). More formally:

• (R,RC(R))
a
→ (R′, RC(R′)) (a ∈ Act) iff R

a
→ R′ (suppose µR

a
→ µ̃

for some µ̃ ∈ R′ ) and the set RC(R′) is modified in two steps:

1. RC(R′) = RC(R′) ∪ (R \OLD(R, a)), where
OLD(R, a) = {xi | ∀j ∈ σR(xi) . (Cj , δj) 6

a
→};

2. RC(R′) = RC(R′) ∪ {xR′} if ∃e ∈ En(µ̃) \ En(µR) ∧ ∀(C, δ) ∈
µR ∀e ∈ C ∪ En(C)
δ(e) 6= 0;

and σR′ is modified as follows:

1. for all x ∈ RC(R′) ∩RC(R)
σR′(x) = σR′(x) ∪ {j |

[
∃i ∈ σR(x) ∃(C̃k, δ̃k) ∈ µ̃ . (Ci, δi)

a
→

(C̃k, δ̃k)
]
∧

[
∃π(nR′) .

(C ′
j , δ

′
j) = (C̃π(nR′ )(k), σ̃π(nR′ )(k)) ∈ µR′

]
};

2. if xR′ ∈ RC(R′) then σR′(xR′) = {i | (Ci, δi) ∈ µR′ . ∃e ∈
En(Ci) δi(e) = 0};

• (R,RC(R))
τ
→ (R′, RC(R′)) is defined analogously to the previous

item, except the first step of modifying RC(R′). Namely, RC(R′) =
RC(R).

• ((R,RC(R))
χ
→ (R′, RC(R′)) iff R

χ
→ R′ (suppose µR

d
→ µ̃ for some

d∈R+ and µ̃∈R′ ) and
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1. RC(R′) = RC(R′) ∪ (R \OLD(R,χ)), where

OLD(R,χ) = {xi | ∀j ∈ σR(xi)
(
¬∃(C̃, δ̃) ∈ µ̃ . (Cj , δj)

d
→

(C̃, δ̃)
)
};

2. for all x ∈ RC(R′) ∩RC(R)

σR′(x) = σR′(x) ∪ {j |
[
∃i ∈ σR(x) ∃(C̃k, δ̃k) ∈ µ̃ . (Ci, δi)

d
→

(C̃k, δ̃k)
]
∧

[
∃π(nR′) . (C ′

j , δ
′
j) = (C̃π(nR′ )(k), σ̃π(nR′ )(k)) ∈ µR′

]
}.

We also need a time assignment of our counters, so, into all common states
µ ∈ R, we include RIµ = RC(R) and the time assignment ∆µ : RIµ → R+

0 .
At first, suppose ∆µ ≡ 0. We will omit the subscript µ if it will be clear.
The leading relation on common states is modified as follows:

• (µ,RI,∆)
d
→ (µ′, RI ′,∆′) (d ∈ R+) iff µ

d
→ µ′ and ∆′ |RI= ∆ |RI +d;

• (µ,RI,∆)
a
→ (µ′, RI ′,∆′) (a ∈ Act) iff µ

a
→ µ′.

It is clear that additional pieces of information have no influence on the
leading relations on common states and regions. In the following, we will
use a simple notation R and µ instead of (R,RC(R)) and (µ, RI, ∆).

4.3. Class graph

We next define in a usual way the notions of a class (the τ -closure of regions)
and the class graph of a timed event structure [4].

Let RG(TS) = (VRG, ERG, lRG) and Q ⊆ VRG. A set Qτ = {R′ ∈
VRG | ∃R ∈ Q . R

ǫ
⇒ R′} is called a class of TS. Define Q0 = {R0}

τ ,
and Der(Q, z) =

⋃
R∈QDer(R, z).

For classes Q,Q1 and z ∈ Act ∪ {χ}, the leading relation on classes is
given by: Q

z
→ Q1, if Q1 = (Der(Q, z))τ .

We need the following notations.

S(Q) = {z ∈ Act ∪ {χ} | Q
z
→}, QC(Q) =

⋃
R∈QRC(R).

Definition 8. The class graph of TS is the labelled directed graph CG(TS) =
(VCG, ECG, lCG). The set of vertices VCG is the set of reachable classes of
TS and ECG is the leading relation on classes of the set VCG, the labelling
function lCG : ECG −→ (Act ∪ {χ}).

To prove the main result, we need a notion that connects the notions of a
common state and a class.

Definition 9. Let 〈w, d〉 ∈ L(TS) and CG(TS) = (VCG, ECG, lCG). Let
p = Q0 . . . Q be a path in CG(TS). Then µ ∈ STC(TS) is class-reachable
by 〈w, d〉 consistent with p iff [µ] ∈ Q and either
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• p = Q0 and 〈w, d〉 = 〈ǫ, 0〉, or

• p = p′
z
→ Q and there exists µ′ ∈ STC(TS) class-reachable by 〈w′, d′〉

consistent with p′, and either

– z = a ∈ Act, µ′
a
⇒

d′′
→ µ, and 〈w, d〉 = 〈w′a(d′ −∆(w′)), d′ + d′′〉,

for some d′′ ∈ R+
0 , or

– z = χ, µ′
d′′
→ µ, and 〈w, d〉 = 〈w′, d′ + d′′〉, for some d′′ ∈ R+.

Now, let us consider an example mentioned above. Let us return to
the model with internal actions that have a dense timed interval. Then in
CG(TS′

2) (see Figure 2) there exist vertices Q and Q1 with regions [µ′] ∈ Q

([µ′1] ∈ Q1) such that µ′(µ′1, respectively) is reachable by 〈ǫ(1), 1〉 consistent
with a path from Q0 to Q (to Q1, respectively).

We get such a situation because in TS′
2 we can execute an action τ and

get a new state both at time 0 and at time 0 < d < 1. If τ is executed at
time 0, then the set of values of the function δ in a new state consists of 0. If
τ is executed at time 0 < d < 1, then the set of values of function δ in a new
state consists of 0 and d. So, there exist several paths in the region graph
RG(TS′

2) from RTS′

2
to regions that include the states reachable by 〈ǫ(1), 1〉.

Namely, one of them consists of sequence of τ -, and two χ-transitions, the
other consists of sequence of τ - and three χ-transitions. Thus, according to
construction of the class graph, these regions belong to different classes.

Since we wish to avoid these cases, we impose a restriction that internal
actions have only discrete time.

Lemma 2. Let 〈w, d〉 ∈ L(TS) and µ0
〈w,d〉
=⇒ µ. Then there exists the only

path p in CG(TS) such that µ is reachable by 〈w, d〉 consistent with p.

5. Formula construction

Now we can construct a formula for each class Q. In the formula, we use the
notations Q

a
→ Qa and Q

χ
→ Qχ and write its optional parts between 〈〈 and

〉〉. In addition, we suppose R̂ ∈ Q such that R̂ 6
τ
→.

FQ = ∀∀β(Q) ⇒ ψQ;
ψQ = 〈〈∀∀β>(Q) ⇒ Fnil〉〉 ∧ 〈〈FQχ〉〉 ∧

∧
a6∈S(Q)|Act

[a]ff ∧∧
a∈S(Q)|Act

[a](〈〈XQa in〉〉 F̂Qa) ∧ (ACC(Q) ∨ 〈τ〉tt);

F̂Q =

{
FQ, if Q = {R} ∧ ∃µ ∈ R ∃d ∈ R+ . µR

d
→ µ,

ψQ, otherwise.

Here the conditions β(Q) that hold for the time assignment of states only
from R̂ are constructed in the following way:
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1. β(Q) = tt;

2. for all xi, xj(xi 6= xj) ∈ RC(R̂) let ⌊∆µ
R̂
(xi)⌋ = a, ⌊∆µ

R̂
(xj)⌋ = b,

then

β(Q) = β(Q) ∧

{
xi = a, if ∆µ

R̂
(xi) = ⌊∆µ

R̂
(xi)⌋,

a < xi < a+ 1, otherwise;

3.

β(Q) = β(Q)∧





xi + b = xj + a, if {∆µ
R̂
(xi)} = {∆µ

R̂
(xj)},

xi + b < xj + a, if {∆µ
R̂
(xi)} < {∆µ

R̂
(xj)},

xi + b > xj + b, if {∆µ
R̂
(xj)} < {∆µ

R̂
(xi)}.

The conditions β>(Q), which mean that the values of counters are larger
than the appropriate time assignments in the states from R̂, are constructed
as follows:

β>(Q) =





β(Q) ∨
∨

xi∈RC(R̂) xi ≥ ⌈∆µ
R̂
(xi)⌉ if all(C, δ) ∈ µ

R̂

are terminated,∨
{xi∈RC(R̂)|{∆µ

R̂
(xi)}=0} xi > ⌈∆µ

R̂
(xi)⌉

∨
∨

{xi∈RC(R̂)|{∆µ
R̂
(xi)}6=0} xi ≥ ⌈∆µ

R̂
(xi)⌉, otherwise.

Below we give the subformulas of ψQ and conditions on including them into
ψQ.

• XQa = {x | x ∈ QC(Qa) \QC(Q)} is added if it is not empty;

• ∀∀β>(Q) ⇒ Fnil is added into ψQ if the class Qχ does not exist;

• FQχ is added into ψQ if the class Qχ exists;

• ACC(Q) =
∨

(C,δ)∈µ
R̂
,(C,δ)

τ
9

(
(
∧

a∈S((C,δ))〈a〉tt) ∧ 〈〈χ(C,δ)〉〉 ∧ 〈〈Fnil〉〉
)
;

• Fnil =
∧

a∈Act[a]ff is added into ACC(Q) for all (C, δ) ∈ µ
R̂

such
that S((C, δ)) |Act= ∅;

• χ(C,δ) =

{
∃∃β(Qχ) ⇒ (

∧
a∈S((C,δ))〈a〉tt), if S(C, δ) |Act 6= ∅,

∃∃β>(Q) ⇒ (
∨

a∈Actτ
〈a〉tt), otherwise;

• χ(C,δ) is added into ACC(Q) for all (C, δ) ∈ µ
R̂
such that

S((C, δ)) |R+ 6= ∅.

Note that we use the symbol of implication (⇒) for simplicity. But it is
easy to transform our formula into a correct formula from Lν , because nega-
tion of β(Q) and β>(Q) can be expressed in Lν . Also, XQa in F means
(x1 in (x2 in (. . . (xn in F ))) for XQa = {x1, x2, . . . , xn}. The formula ψQ
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contains three obligatory groups. The first group of conjunctions contains an
[a]-formula for any action that cannot be executed in Q. The second group
of conjunctions contains an [a]-formula for any action that can be executed
in Q. The third group is a group of disjunctions over all states in µ

R̂
and

each disjunction part contains conjunctions of 〈a〉-formulas for each action
that can be executed in some state, and an optional part which characterizes
the possibility of some amount of time to pass in this state. The optional
group of ψQ is included into the formula, if there is no region Qχ.

For a timed event structure TS, a characteristic must-formula is defined
as F

must

TS = x0 in FQ0
.

a a

τ τ

[1, 1] [1, 1]

[1, 1] [1, 1]

#
✲

#

TS4
CG(TS4)

Q1

χ
Q0

✲ Q2

χ
✲ Q3

a
✲ Q4

a
✲

Figure 3. A timed event structure and its class graph

Let us construct a characteristic must-formula for a timed event struc-
ture shown in Figure 3. In this figure, the class graph of TS4 is also shown.
For simplicity, we suppose here Act = {a}. So, we get

F
must

TS4
= x0 in

(
∀∀ x0 = 0 ⇒

[
FQ1

∧ [a]ff ∧ (ACC(Q0) ∨ 〈τ〉tt)
])
,

FQ1
= ∀∀ 0 < x0 < 1 ⇒

[
FQ2

∧ [a]ff ∧ (ACC(Q1) ∨ 〈τ〉tt)
]
,

FQ2
= ∀∀ x0 = 1 ⇒

[
(∀∀ x0 > 1 ⇒ Fnil) ∧ [a]FQ3

∧ (ACC(Q2) ∨ 〈τ〉tt)
]
,

FQ3
= ∀∀ x0 = 1 ⇒

[
(∀∀ x0 > 1 ⇒ Fnil) ∧ [a]FQ4

∧ (ACC(Q3) ∨ 〈τ〉tt)
]
,

FQ4
= ∀∀ x0 = 1 ⇒

[
(∀∀ x0 > 1 ⇒ Fnil) ∧ [a]ff ∧ (ACC(Q4) ∨ 〈τ〉tt)

]
,

ACC(Q0) = Fnil ∧ ∃∃ x0 > 0 ⇒ (〈a〉tt ∨ 〈τ〉),
ACC(Q1) = Fnil ∧ ∃∃ x0 ≥ 0 ⇒ (〈a〉tt ∨ 〈τ〉),
ACC(Q2) = Fnil,

ACC(Q3) = Fnil ∨ (〈a〉tt ∧ Fnil),
ACC(Q4) = Fnil,

Fnil = [a]ff.

Lemma 3. Let (C ′
0, δ

′
0 u) |=D F

must

TS , where (C ′
0, δ

′
0) =MTS′ , u ≡ 0. For all

〈w, d〉 ∈ L(TS)∩L(TS′) and (C ′
0, δ

′
0)

〈w, d〉
=⇒ (C ′, δ′) it holds that (C ′, δ′ u′)|=D

ψQ, where Q and u′ are such that there exists µ which is reachable by 〈w, d〉
consistent with a path from Q0 to Q, and u′ |RIµ= ∆µ.

Lemma 4. Let (C ′
0, δ

′
0 u) |=D F

must

TS , where (C ′
0, δ

′
0) = MTS′, u ≡ 0. Then

L(TS′) ⊆ L(TS).
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Now, we are ready to prove the following theorem.

Theorem. TS ≤must TS
′ ⇐⇒ TS′ |=D F

must

TS , where D corresponds to
the previous definition of FQ for each Q from VCG(TS).

Proof.

(⇐) Take an arbitrary 〈w, d〉 ∈ L(TS′) and (C ′, δ′) such that (C ′
0, δ

′
0)

〈w, d〉
=⇒

(C ′, δ′). According to Definition 3, we will show that there exists (C, δ) ∈

ST (TS) such that (C0, δ0)
〈w, d〉
=⇒ (C, δ) and S((C, δ)) |Act⊆ S((C ′, δ′)) |Act,

S((C ′, δ′)) |R+= ∅ ⇒ S((C, δ)) |R+= ∅.

By Lemma 4, 〈w, d〉 ∈ L(TS). By Lemmas 2 and 3, we can find Q and
u′ such that p is a path from Q0 to Q, u′ |RIµ= ∆µ and (C ′, δ′ u′) |=D ψQ.
By construction of the formula ψQ and Lemma 1, there exists (C, δ) ∈ µ for
which S((C, δ)) |Act⊆ S((C ′, δ′)) |Act ∧ S((C ′, δ′)) |R+ ⇒ S((C, δ)) |R+ .
(⇒) Follows from construction of the formula F

must

TS . ✷

6. Conclusion

This article is concentrated on constructing a characteristic formula for
timed event structures with discrete internal actions. This formula allows
us to decide the problem of recognizing the timed must-equivalences by re-
ducing it to the model-checking one. In general, we can use internal actions
with discrete-timed intervals. Then the obtained formula for each class can
be easily modified by including the parts for each region of the class that
cannot execute a τ -action.

Additionally, we hope that the results could be extended onto a model
with dense-timed internal actions. The way of construction of the char-
acteristic formula may be applied to other timed testing equivalences, for
example, to may-equivalences, that can lead to decision of the problem of
inclusion of timed languages of the model under consideration.
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