
Bull. Nov. Comp.Center, Comp. Science, 24 (2006), 45–55
c© 2006 NCC Publisher

A reliable linear constraint solver for the UniCalc
system

E. Botoeva, Yu. Kostov, E. Petrov

Abstract. In this paper we present a linear constraint solver for the UniCalc
system, an environment for reliable solution of mathematical modeling problems.

1. Introduction

The UniCalc system is an environment for reliable solution of mathematical
modeling problems. The UniCalc system is based on the constraint pro-
gramming technology. The constraint solvers which make up the UniCalc
system have been used by the Russian Research Institute of Artificial Intel-
ligence to efficiently solve design and modeling problems in various areas of
industry and science. The first version of the UniCalc system was released
in 1990. First of all, the UniCalc system is intended for scientific staff,
students, and engineers.

The core solver of the UniCalc system implements subdefinite calcula-
tions [4]. For an arbitrary system of constraints (equations, inequalities,
Boolean statements), subdefinite calculations find a set containing all so-
lutions (and, possibly, some non-solutions) to these constraints. Besides
this core solver, the UniCalc system currently contains a symbolic solver
handling the dependency problem which is well-known in the constraint
programming community, a symbolic solver for linear equations, and a set
of hard-coded strategies describing the typical ways of using these 3 solvers.
The user interacts with the UniCalc system through a friendly interface.

Among software for solution of mathematical modeling problems, the
UniCalc system is identified by 3 features: reliable calculations, a high-level
modeling language, a user-friendly graphical interface. The term “reliable”
means here “correct despite rounding errors and inaccuracy in the numer-
ical input data”. According to a recent survey [5], there are 4 more sys-
tems which, to some extent, have these 3 features: the Numerica system
[8] (support was discontinued in 2003), the Premium Solver [1] (a plug-in
for Microsoft Excel), the GlobSol solver [2] (no graphical interface, needs a
FORTRAN-90 compiler), the ICOS solver [3] (no graphical interface, needs
an external linear solver).

Like any constraint propagation algorithm that processes real numbers,
subdefinite calculations converge slowly and/or produce excessively wide

46 E. Botoeva, Yu. Kostov, E. Petrov

enclosures on some problems. That undesirable behavior is observed when
such an algorithm is applied to a special class of linear constraints [7]. On
one hand, this fact impeded usage of the UniCalc system for economical
modeling because linear constraints are very common in this domain. But
on the other hand, this fact motivated us for working on a linear constraint
solver for the UniCalc system.

Our work resulted in a reliable (in the same sense as above) solver for
linear constraints, called UniCalc.LIN. This solver is integrated into the
latest version of the UniCalc system.

In this paper we present the UniCalc.LIN solver (Section 2), compare it
with the symbolic solver for linear equalities and describe a strategy of using
the UniCalc linear solver (Section 3), present the results of experiments with
the linear solvers (Section 4) and discuss our plans concerning solution of
linear constraints in the UniCalc system (Section 5).

2. The UniCalc.LIN solver

In this section we present the UniCalc.LIN solver for the UniCalc system.
All solvers making up the UniCalc system are required to allow arbi-

trary mathematical models as the input data and return some mathemati-
cal model as the output data. To meet this requirement, the UniCalc.LIN
solver performs the following conceptual steps: linear relaxation of the input
model, non-reliable calculation of an enclosure for the solutions to a linear
model thus obtained, adjustment of this enclosure which make it reliable.
This reliable enclosure is returned to the UniCalc system in the form of lin-
ear inequalities each of which contains exactly one variable from the input
model.

UniCalc.LIN calculates non-reliable enclosures using a 2-phase lexico-
graphical simplex algorithm which is out of focus of this paper. We focus
on linear relaxation and adjustment of non-reliable enclosures. These two
topics are discussed in the following subsections. Note that, for a better
performance, these two conceptual steps are merged in the actual imple-
mentation.

2.1. Linear relaxation

In this section we explain how the UniCalc.LIN solver constructs a linear
program which logically follows from the input model. This step is called
linear relaxation.

The UniCalc.LIN solver receives the input model in the form of a di-
rected acyclic graph, called a syntactic DAG, whose nodes are expressions
from the input model. In this DAG, the arcs connect expressions to their
immediate subexpressions. Each node stores an enclosure for the range of

A reliable linear constraint solver for the UniCalc system 47

the corresponding expression. These enclosure are not requiered to be re-
liable to let syntactic DAGs represent any intermediate results. There are
two types of enclosures: intervals for numerical expressions and subsets of
{TRUE, FALSE} for Boolean expresions (like sin(x+y) = [−1/2, 1/2], etc.)

During linear relaxation, the UniCalc.LIN solver constructs an interval
linear program which logically follows from the input model. For each ex-
pression e from this model, this program contains the following constraints:

• e, if e is a linear constraint;

• e ∈ I, if e is a linear expression with a reliable enclosure I;

• 0 = 0 (no constraint) otherwise.

The constraints of the form “e ∈ I” are rewritten as inequalities; one of the
bounds of I may be infinite.

Internally the UniCalc.LIN solver stores the bounds of interval enclosures
in the floating point format. Because floating point numbers are of the form
m · 2e where m, e are some integer numbers, constants like 1/10, 1/3, etc.
are represented by thin intervals to ensure that linear constraints do follow
from the input model.

Consider the following input model:

sin(x + y) = [−1/2, 1/2]; sin(x− y) = [−1/2, 1/2].

Its syntactic DAG consists of the nodes x, y, x+y, sin(x+y), x+y, sin(x−y),
[−1/2, 1/2], sin(x + y) = [−1/2, 1/2], sin(x− y) = [−1/2, 1/2].

Let I, J , K, L be reliable enclosures stored by x, y, x + y, x− y in the
syntactic DAG. Linear relaxation produces the following 4 linear constraints:
x ∈ I, y ∈ J , x + y ∈ K, x− y ∈ L. For any I, J , K, L, the set of solutions
to these linear constraints includes the set of solutions to the input model.
Moreover, if sine is monotonic on K and L, then the above solution sets are
equal.

2.2. Reliable enclosure

In this section we explain how the UniCalc.LIN solver finds reliable enclo-
sures for solutions to linear constraints.

Let C be the linear constraints produced by linear relaxation of the
input model. If all calculations were exact, it would suffice to solve 2 linear
programs for each variable x from C: minx s.t. C and maxx s.t. C. The
Cartesian product of the intervals of the form [min{x|C}, max{x|C}] would
be the wanted reliable enclosure.

Because the exact arithmetic operations on rational numbers may con-
sume considerable amounts of memory (and CPU time), the UniCalc.LIN
solver uses approximate arithmetic operations on floating point numbers

48 E. Botoeva, Yu. Kostov, E. Petrov

and the post-processing technique proposed in [6] and adjusted by us for
the case of interval linear constraints generated during linear relaxation.

Given a linear program, any reliable enclosure for its solutions and any
approximate linear programming solver, this post-processing technique pro-
duces another reliable enclosure (hopefully, a smaller one) for the solutions
to the same linear program. The diameter of this output enclosure is propor-
tional to the diameter of the input enclosure. The proportionality factor is
determined by the accuracy of the approximate linear programming solver:
the more accurate solver (smaller residual), the smaller factor. To weaken
this limitation, the UniCalc system uses the UniCalc.LIN solver in cooper-
ation with the symbolic solver for linear constraints. This topic is discussed
in the next section.

3. The UniCalc.LIN solver vs. the symbolic solver for linear
equations

In this section we give examples which illustrate weak and strong points of
the UniCalc.LIN solver and the symbolic solver for linear equations. We
also describe a strategy which increases the chances of using the right linear
solver.

The symbolic solver for linear equations is a reliable implementation of
Gaussian elimination using interval arithmetic. It solves linear equations
very efficiently but may produce excessively wide enclosures if the equations
have wide intervals on the right-hand side. Such equations emerge, for
example, when inequalities are transformed into equalities by the symbolic
solver for the dependency problem.

Consider the following example:

0 ≤ x + y ≤ 1
0 ≤ x− y ≤ 1

The UniCalc.LIN solver alone finds the smallest possible enclosure for the
solutions to these inequalities: x ∈ [0, 1], y ∈ [−1/2, 1/2].

Cooperation of the symbolic solvers results in a non-trivial enclosure, but
not the smallest one. First, the symbolic solver for the dependency problem
transforms these inequalities into the following equations:

x + y = [0, 1]
x− y = [0, 1]

After that, depending on the order of elimination of variables, the symbolic
solver for linear equations produces x ∈ [−1/2, 3/2], y ∈ [−1/2, 1/2] (x is
eliminated first), or x ∈ [0, 1], y ∈ [−1, 1] (otherwise).

A reliable linear constraint solver for the UniCalc system 49

Like the symbolic solver for linear equations, the UniCalc.LIN solver may
output wider enclosures than possible. This thing happens, if linear equa-
tions are ill-conditioned and the enclosure fed into the UniCalc.LIN solver
initially is too loose. Under these conditions the symbolic solver for linear
equations still finds relatively small enclosures, while the UniCalc.LIN solver
cannot make the diameter of the initial enclosure small enough because of
a considerable residual in the ill-conditioned equations.

Consider the following example:

x + y = 3 · 10−7

x + (1 + 10−7) · y = 10−7

x = y = [−107, 107]

The solution to these equations is x = 2 + 3 · 10−7, y = −2. Because of the
large condition number of this linear problem (about 107 in the sup norm),
the UniCalc.LIN solver finds a relatively large enclosure for this solution:
x ∈ [1.94, 2.04], y ∈ [−2.04,−1.96] (the bounds rounded outward; 2 decimal
digits kept). The symbolic solver for linear equations finds an almost optimal
enclosure: x ∈ [2.00000029, 2.00000031], y ∈ [−2.00000001,−1.99999999].

The above considerations lead us to the following strategy of using the
solvers for linear constraints in the UniCalc system:

• divide the linear constraints C obtained by linear relaxation of the
input model into linear equations E with thin intervals on the right-
hand side and other linear constraints C\E;

• solve E by the symbolic solver for linear equations; denote the output
linear constraints by Gauss(E);

• solve C ∪Gauss(E) by the UniCalc.LIN solver.

4. Experimental results

In this section we compare the pure Simplex method, the pure Gaussian
elimination method, and the strategy from the previous section.

We use the linear test-cases for the CoConUT framework. Those test-
cases are minimization problems. For each test-case, we give the reliable
lower bound on the objective found by the solvers and the best such bound
known to the authors.

The test-cases ran on an Intel Celeron 1.5GHz CPU with 512Mb of RAM.
The running time is less than 0.01 second for all the solvers and all the
test-cases but reading2. On that latter test-case, the Gaussian elimination
method runs in less than 0.01 second; the Simplex method and the strategy
run in less than 0.22 second. The experimental results are provided in Figure
1. For the test-cases themselves, see Appendix A. Note that all variables
were artificially bounded by the interval [−1019, 1019].

50 E. Botoeva, Yu. Kostov, E. Petrov

Test-case G.E. obj. Sim. obj. Strat. obj. Best

degenpla −1019 −1019 −1019 −1019

degenplb −1019 −1019 −1019 −1019

extrasim 1 1 1 1
oet1 −1.3533 · 1018 −9641.0 −9641.0 0.53667
oet3 −1019 −0.9 · 10−323 −0.9 · 10−323 0.00437
pt −1.1111 · 1018 −9894.2 −9894.2 0.17834
reading2 −0.047947 −0.01302 −0.01302 −0.01302
simplpla 1 0 1 1
simplplb 1 1.0999 1.0999 1.0999
sipow1 −1.37639 −1.0515 −1.0515 −1.0515
sipow1m −1.0001 −1.0001 −1.0001 −1.0001
sipow2 −1.9021 −1.1756 −1.1756 −1.1756
sipow2m −1.3764 −1.1756 −1.1756 −1.1756
sipow3 0 0 0 0.41025
sipow4 −1019 −22031 −22031 0.12952
supersim 0.66666 0.66666 0.66666 0.66666
tfi2 −8.3334 · 1017 −5273.0 −5273.0 0.64791
hilbert8 −2.9248 · 10−11 −1.5462 · 1012 −2.9248 · 10−12 0

Figure 1. Interval bounds found for each test-case by the linear solvers and the
best lower bound known to the authors. G.E., Sim., and Strat. stand respectively
for Gaussian elimination, Simplex method, and Strategy

5. Conclusion

In this paper we presented the UniCalc.LIN solver for reliable solution of
linear constraints in the UniCalc system. In the constraint programming
literature, most attention is paid to exhaustive search and solution of non-
linear constraints rather than to reliable solution of linear constraints. How-
ever, during exhaustive search, any reliable solver for non-linear constraints
”looks” at constraints very locally. Because of this fact, even complicated
non-linear constraints ”seem” almost linear to the solver; in fact, it is lin-
ear constraints that the solver has to handle most of the time when it solves
hard non-linear constraints. This observation is the fundamental motivation
for our work.

Currently, our work on reliable solution of linear models in the UniCalc
system continues in the following areas:

• improvement of the linear relaxation step (doing linearization of non-
linear constraints, taking into account the min and max operations,
products and ratios of known signs);

• experiments with linear relaxations of a limited dimension to reduce

A reliable linear constraint solver for the UniCalc system 51

the CPU time consumed by the UniCalc.LIN solver on large linear
models.

We thank the Russian Research Institute of Artificial Intelligence and
A.P. Ershov Institute of Informatics Systems of the Russian Academy of
Science for a financial support of this research.

References

[1] Frontline Systems and Spreadsheet Optimization. The premium solver web-site.
— http://www.solver.com.

[2] Kearfott R. B. Rigorous Global Search: Continuous Problems. — Kluwer
Academic Publishers, 1996.

[3] Lebbah Y., Michel C., Rueher M. Global filtering algorithms based on linear
relaxations // Notes of the 2nd Intrnat. Workshop on Global Constrained
Optimization and Constraint Satisfaction (Cocos’03), Lausanne, Switzerland,
Nov. 2003. — citeseer.ist.psu.edu/article/lebbah03global.html

[4] Narinyani A. S. Subdefiniteness and basic means of knowledge representation
// Computers and Artificial Intelligence. — 1983. — Vol. 2(5). — P. 443–452.

[5] Neumaier A. Complete search in continuous global optimization and constraint
satisfaction // Acta Numerica. — Cambridge University Press, 2004. — P.
271–369.

[6] Neumaier A., Shcherbina O. Safe bounds in linear and mixed-integer program-
ming // J. of Mathematical Programming. — 2004. — Vol. 99. — P. 283–296.

[7] Ushakov D. On local consistency of linear constraints (in Russian) // J. of
Computation Technology. — 1999. — Vol. 4(4). — P. 76–79.

[8] Van Hentenryck P., Michel L., Deville Y. Numerica: a Modelling Language for
Global Optimization. — The MIT Press, Cambridge, MA, 1997.

A. The linear test-cases

degenpla

//minimize f:

f=0.01*x[2]+33.333*x[3]+100.0*x[4]+0.01*x[5]

+33.343*x[6]+100.01*x[7]+33.333*x[8]+133.33*x[9]+100.0*x[10];

-0.70785+x[1]+2*x[2]+2*x[3]+2*x[4]+x[5]+2*x[6]+2*x[7]+x[8]+2*x[9]

+x[10] = 0;

0.326*x[1]-101*x[2]+200*x[5]+0.06*x[6]+0.02*x[7] = 0;

0.0066667*x[1]-1.03*x[3]+200*x[6]+0.06*x[8]+0.02*x[9] = 0;

0.00066667*x[1]-1.01*x[4]+200*x[7]+0.06*x[9]+0.02*x[10] = 0;

0.978*x[2]-201*x[5]+100*x[11]+0.03*x[12]+0.01*x[13] = 0;

0.01*x[2]+0.489*x[3]-101.03*x[6]+100*x[12]+0.03*x[14]+0.01*x[15] = 0;

0.001*x[2]+0.489*x[4]-101.03*x[7]+100*x[13]+0.03*x[15]+0.01*x[16] = 0;

52 E. Botoeva, Yu. Kostov, E. Petrov

0.001*x[3]+0.01*x[4]-1.04*x[9]+100*x[15]+0.03*x[18]+0.01*x[19] = 0;

0.02*x[3]-1.06*x[8]+100*x[14]+0.03*x[17]+0.01*x[19] = 0;

0.002*x[4]-1.02*x[10]+100*x[16]+0.03*x[19]+0.01*x[20] = 0;

-2.5742-6*x[11]+0.00252*x[13]-0.61975*x[16]+1.03*x[20] = 0;

-0.00257*x[11]+0.25221*x[12]-6.2*x[14]+1.09*x[17] = 0;

0.00629*x[11]-0.20555*x[12]-4.1106*x[13]+101.04*x[15]+505.1*x[16]

-256.72*x[19] = 0;

0.00841*x[12]-0.08406*x[13]-0.20667*x[14]+20.658*x[16]+1.07*x[18]

-10.5*x[19] = 0;

degenplb

//minimize f:

f=-1*(0.01*x[2]+33.333*x[3]+100.0*x[4]+0.01*x[5]

+33.343*x[6]+100.01*x[7]+33.333*x[8]+133.33*x[9]+100.0*x[10]);

-0.70785+x[1]+2*x[2]+2*x[3]+2*x[4]+x[5]+2*x[6]+2*x[7]+x[8]+2*x[9]

+x[10] = 0;

0.326*x[1]-101*x[2]+200*x[5]+0.06*x[6]+0.02*x[7] = 0;

0.0066667*x[1]-1.03*x[3]+200*x[6]+0.06*x[8]+0.02*x[9] = 0;

0.00066667*x[1]-1.01*x[4]+200*x[7]+0.06*x[9]+0.02*x[10] = 0;

0.978*x[2]-201*x[5]+100*x[11]+0.03*x[12]+0.01*x[13] = 0;

0.01*x[2]+0.489*x[3]-101.03*x[6]+100*x[12]+0.03*x[14]+0.01*x[15] = 0;

0.001*x[2]+0.489*x[4]-101.03*x[7]+100*x[13]+0.03*x[15]+0.01*x[16] = 0;

0.001*x[3]+0.01*x[4]-1.04*x[9]+100*x[15]+0.03*x[18]+0.01*x[19] = 0;

0.02*x[3]-1.06*x[8]+100*x[14]+0.03*x[17]+0.01*x[19] = 0;

0.002*x[4]-1.02*x[10]+100*x[16]+0.03*x[19]+0.01*x[20] = 0;

-2.5742-6*x[11]+0.00252*x[13]-0.61975*x[16]+1.03*x[20] = 0;

-0.00257*x[11]+0.25221*x[12]-6.2*x[14]+1.09*x[17] = 0;

0.00629*x[11]-0.20555*x[12]-4.1106*x[13]+101.04*x[15]+505.1*x[16]

-256.72*x[19] = 0;

0.00841*x[12]-0.08406*x[13]-0.20667*x[14]+20.658*x[16]+1.07*x[18]

-10.5*x[19] = 0;

-x[1]+300*x[2]+0.09*x[3]+0.03*x[4] = 0;

extrasim

x>=0;

//minimize f:

f = x+1;

x+2*y-2.0 = 0;

oet1

const int M=5;

const real lower = 0.0;

const real upper = 2.0;

const real diff = upper-lower;

const real h =diff/M;

//minimize f:

f=u;

all(i=0,1,M;

u-(i*h+lower)*x[1]-exp(i*h+lower)*x[2]-(i*h+lower)^2 >= 0;

u+(i*h+lower)*x[1]+exp(i*h+lower)*x[2]+(i*h+lower)^2 >= 0);

A reliable linear constraint solver for the UniCalc system 53

oet3

const int M=10;

const real lower = 0.0;

const real upper = 1.0;

const real diff = upper-lower;

const real h=diff/M;

all(i=0,1,M; c[i+1]=sin(i*h+lower));

//minimize f:

f=u;

all(i=0,1,M;

u-c[i+1]-x[1]-(i*h+lower)*x[2]-(i*h+lower)^2*x[3] >= 0;

u+c[i+1]+x[1]+(i*h+lower)*x[2]+(i*h+lower)^2*x[3] >= 0);

pt

const int M=5;

const real lower = 0.0;

const real upper = 1.0;

const real diff = upper-lower;

const real h = diff/M;

//minimize f:

f=u;

all(i=0,1,M;

-(i*h+lower)+(i*h+lower)^2+u+((i*h+lower)-3*(i*h+lower)^2+1)*x >= 0);

reading2

const int N=5;

const real A=0.07716;

const real H=1/N;

all(i=1,1,N+1;x2[i]=[-0.125,0.125]);

all(i=1,1,N+1;u[i]=[-1,1]);

const real c1 = H/(8*PI^2);

all(i=1,1,N+1;c2[i]=-0.5*H*cos(2*PI*(i-1)*H));

f=sum (i=1,1,N; c2[i+1]*x1[i+1]-c2[i]*x1[i+1]+c1*(u[i+1]+u[i]));

all(i=1,1,N;

(x1[i+1]-x1[i])/H-0.5*(x2[i+1]+x2[i]) = 0;

(x2[i+1]-x2[i])/H-0.5*(u[i+1]+u[i]) = 0);

x1[1] = 0.0;

x2[1] = 0.0;

simplpla

x[1]>=0;

x[2]>=0;

//minimize f:

f=2*x[1]+x[2];

x[1]+x[2]-1.0 = [0,1e19];

x[1]+2*x[2]-1.5 = [0,1e19];

54 E. Botoeva, Yu. Kostov, E. Petrov

simplplb

x[1]>=0;

x[2]>=0;

//minimize f:

f=1.5*x[1]+x[2];

x[1]+x[2]-1.0 >= 0;

x[1]+2*x[2]-1.2 >= 0;

2*x[1]+x[2]-1.2 >= 0;

sipow1

const int m = 10;

//minimize f:

f = x[2];

all(j=1,1,m; x[1]*cos(2*PI*j/m)+x[2]*sin(2*PI*j/m)+1.0 >= 0);

sipow1m

const int m = 10;

//minimize f:

f=x[2];

all(j=1,1,m;

x[1]*cos(2*PI*(j+0.5)/m)+x[2]*sin(2*PI*(j+0.5)/m)+1.0 >= 0);

sipow2

const int M=10;

//minimize f:

f=x[2];

all(i=1,1,M/2;

1+x[1]*cos(4*PI*i/M)+x[2]*sin(4*PI*i/M) >= 0);

x[1]+1 >= 0;

sipow2m

const int M=10;

//minimize f:

f=x[2];

all(i=1,1,M/2;

1+x[1]*cos(4*PI*(i+0.5)/M)+x[2]*sin(4*PI*(i+0.5)/M) >= 0);

x[1]+1 >= 0;

sipow3

const int M = 24;

const real STEP = 8/M;

all(j=1,1,M/8; xi[j]=0);

all(j=M/8+1,1,M/4; xi[j]=(j-1)*STEP-1);

all(j=M/4+1,1,3*M/8; xi[j]=1);

all(j=3*M/8+1,1,M/2; xi[j]=(j-1)*STEP-3);

all(j=1,1,M/8; eta[j]=(j-1)*STEP);

all(j=M/8+1,1,M/4; eta[j]=1);

A reliable linear constraint solver for the UniCalc system 55

all(j=M/4+1,1,3*M/8; eta[j]=(j-1)*STEP-2);

all(j=3*M/8+1,1,M/2; eta[j]=0);

//minimize f:

f=x[4];

all(j=1,1,M/2;

x[1]+x[4]+xi[j]*x[2]+eta[j]*x[3]-xi[j]^2*eta[j] >= 0;

x[1]+xi[j]*x[2]+eta[j]*x[3]-xi[j]^2*eta[j] <= 0);

sipow4

const int M=10;

all(j=1,1,M/2;

xi[j] = 0.5-sqrt(0.5)*cos((PI/4)-j*(2*PI/M));

eta[j] = 0.5-sqrt(0.5)*sin((PI/4)-j*(2*PI/M)));

//minimize f:

f=x[4];

all(j=1,1,M/2;

x[1]+x[4]+xi[j]*x[2]+eta[j]*x[3]-xi[j]^2*eta[j] >= 0;

x[1]+xi[j]*x[2]+eta[j]*x[3]-xi[j]^2*eta[j] <= 0);

supersim

x >= 0;

//minimize f:

f=x;

x+2*y-2 = 0;

2*x+y-2 = 0;

tfi2

const int M = 10;

const real h = 1/M;

//minimize f:

f=x[1]+0.5*x[2]+x[3]/3;

all(i=0,1,M;-x[1]-i*h*x[2]-(i*h)^2*x[3]+tg(i*h) <= 0);

hilbert8

//minimize f:

f=x1+x2+x3+x4+x5+x6+x7+x8;

+x1/1+x2/2+x3/3+x4/4+x5/5+x6/6+x7/7+x8/8 = 0;

+x1/2+x2/3+x3/4+x4/5+x5/6+x6/7+x7/8+x8/9 = 0;

+x1/3+x2/4+x3/5+x4/6+x5/7+x6/8+x7/9+x8/10 = 0;

+x1/4+x2/5+x3/6+x4/7+x5/8+x6/9+x7/10+x8/11 = 0;

+x1/5+x2/6+x3/7+x4/8+x5/9+x6/10+x7/11+x8/12 = 0;

+x1/6+x2/7+x3/8+x4/9+x5/10+x6/11+x7/12+x8/13 = 0;

+x1/7+x2/8+x3/9+x4/10+x5/11+x6/12+x7/13+x8/14 = 0;

+x1/8+x2/9+x3/10+x4/11+x5/12+x6/13+x7/14+x8/15 = 0;

56

