
Bull. Nov. Comp.Center, Num. Anal., 17 (2015), 7–15
c© 2015 NCC Publisher

Parallel template implementation of
a Particle-in-Cell code for the simulation of

ultrarelativistic beam dynamics∗

M.A. Boronina, A.V. Snytnikov

Abstract. In order to simplify the development of high-performance plasma
physics codes for hybrid supercomputers, a template implementation of the Particle-
in-Cell (PIC) method was created. The template parameters are the problem-
specific implementations of “particle” and “cell” (as C++ classes).

Thus, it is possible to develop a PIC code for the supercollider physics problem
without studying GPU programming by the beam physicist. Instead, the new
physical features are just included into the existing code as new implementations
of the “simulation domain” class.

Since the template implementation of the PIC method was created on the basis
of the relativistic plasma physics code, the transition to the beam physics is quite
simple. Just the two things were changed: initial particle distribution and boundary
condition computation. Both changes were performed by means of virtual functions
of the “simulation domain” class.

The result is that one single Tesla M2090, GPU computes with approximately
the same speed as 24 Intel Xeon cores.

1. Introduction

We present a new parallel particle-in-cell (PIC) algorithm for the numerical
modeling of ultrarelativistic beam dynamics in supercolliders. One of the
main efficiency parameters of the colliders is luminosity, which describes
the total number of events in the interaction cross-section during a certain
time. The challenge of modern experiments and collider design projects is
to attain high luminosities for the high energy beams. The interaction of
the high-energy beams (characterized by the relativistic factor γ ∼ 103–105)
is the limiting factor for the luminosity; however the negative effects can be
reduced by the beam configuration optimization.

Numerical modeling is widely used to study the beam-beam effects.
A standard approach to the computation of the beam interaction entails
the slice rearrangement, where the colliding beams are divided into macro-
particles slices with each slice of one beam impacting on the counter-moving
beam particles by two-dimensional forces. This approach is commonly used

∗Supported by the Russian Science Foundation under Grant 14-11-00485. The pro-
grams were written under the RFBR Grants 14-07-00241, 14-01-00392, 15-31-20150, and
14-01-31088.

8 M.A. Boronina, A.V. Snytnikov

for cyclic accelerators, where the beam deformations are not strong, the
computations of a single interaction are fast and only 5–50 slices and 105

macro-particles per beam provide a sufficient accuracy. In the case of a
single collision of ultrarelativistic beams of high densities, a strong compres-
sion and even disruption (“pinch effect”) of a beam may occur, requiring
an adequate longitudinal resolution for a number of pinches. The nature of
the longitudinal effects is three-dimensional and cannot be simulated by a
quasi-3D model. However, in the case of critical beam densities (as in the
International Linear Collider projects) the effects may be of considerable
importance, the redistribution of energy may lead not only to a low lumi-
nosity, but even to a burnt plant. The fine resolution requires an appropriate
number of macro-particles in the beam (108–1010).

We have developed a new parallel fully 3D algorithm using the Vlasov-
Liouville equation for the distribution function of the beam particles and the
3D set of Maxwell’s equations. We use the PIC method with the leap-frog
scheme, where all the components are calculated on the half-step staggered
grids. The scheme allows the calculation of the motion of beams regardless
of the collective motion direction when the initial and boundary conditions
in the near wave zone are correct. However, the main problem in the compu-
tation of the 3D electromagnetic beam fields is a high value of the relativistic
factors γ. Comparing the case in question with the case of non-relativistic
motion, one can see that the electric field of a relativistic particle gamma
times increases in the transversal direction and γ2 times decreases in the
longitudinal direction. As usual, the beam field computation for γ ∼ 103

requires 109 times more operations and makes the computation prohibitive
by standard methods even when using supercomputers. To overcome the
above difficulties, we have developed a new and efficient method for the
calculation of the boundary and initial conditions.

As the beam density distribution is highly nonlinear (Gaussian in each
direction) and the beam significantly changes its shape due to the focusing
conditions (“hourglass effect”), the majority of the particles is concentrated
in a small region. In order to reduce the resulting simulation time, we
propose the employment of the GPU-based supercomputers. And since the
GPU programming is extremely complex, there is a need for a fast and
reliable tool for the transition from the CPU code to the GPU code. Such
a tool was proposed in [1].

2. The model description

We consider the motion of the counter charged electron/positron beams in a
small rectangular domain [0, Lx]× [0, Ly]× [0, Lz]. The beams are moving in
vacuum in self-consistent electromagnetic fields. The beams are focused by
the external focusing field. We assume that the boundaries are located in the

Parallel template implementation of a Particle-in-Cell code. . . 9

near wave zone, no radiation effects are considered. We need to analyze the
particle motion dependence on a given beam configuration[2]. We consider
the monoenergetic beam motion strictly along the axis z at γ = 6.85 · 103:
The particle density is Gaussian:

ρ(x, y, z) =
1

(2π)
3
2 (σ∗xσ

∗
yσ
∗
z)

1
2

exp

[
−1

2

(
(x− xc)

2

σ∗2x
+

(y − yc)
2

σ∗2y
+

(z − zc)
2

σ∗2z

)]
,

the transversal momenta are distributed in the crossover plain according to
the following law:

ρ(X ′, Y ′) =
1

2πσ∗pxσ
∗
py

exp

[
−1

2

(
X ′2

σ∗2px
+
Y ′2

σ∗2py

)]
,

where σ∗x =
√
β∗xε
∗
x, σ∗y =

√
β∗yε
∗
y are the horizontal and vertical beam sizes,

σ∗px =
√
ε∗x/β

∗
x, σ∗py =

√
ε∗y/β

∗
y are the corresponding beam divergencies,

εx = ε∗x = 5·10−5 and εy = ε∗y = 5·10−7 are the transversal beam emittances,
β∗x = 0.1 and β∗y = 0.1 are the corresponding beta-function values, σz =
σ∗z = 0.1 is the beam size along z-axis, the sign * denotes the values in the
interaction point. So, the beam size ratio is ∼ 10 : 1 : 100. These parameters
describe pre-critical interaction regime.

The interaction point coincides with the center (xc, yc, zc) of the domain
[0, 0.1]× [0, 0.01]× [0, 1.5]. The focusing condition is described by the trans-
formation between the laboratory system coordinates and the accelerator
coordinate system:

x = X + (z − zc)X
′, y = Y + (z − zc)Y

′, z = Z + zc,

px = pzX
′, py = pzY

′.

In the numerical experiments, a usual grid is 100×100×100, the number
of macro-particles for such a grid should not be less than J = 108, the time
step τ = 5 · 10−5 is defined from the stability condition, and 14,000 time
steps should be made.

The basic plasma physics equations. The mathematical model em-
ployed for the solution of the problem of beam relaxation in plasma consists
of the Vlasov equations for ion and electron components of plasma and, also,
of Maxwell’s equation system. These equations in the usual notation have
the following form:

∂fi,e
∂t

+ ~v
∂fi,e
∂~r

+ ~Fi,e
∂fi,e
∂~p

= 0, ~Fi,e = qi,e

(
~E +

1

c
[~v, ~B]

)
,

rot ~B =
4π

c
~j +

1

c

∂ ~E

∂t
, div ~B = 0,

10 M.A. Boronina, A.V. Snytnikov

rot ~E = −1

c

∂ ~B

∂t
, div ~E = 4πρ.

In the present paper, this equation system is solved by the method described
in [3]. All the equations will further be given in the dimensionless form. The
following basic quantities are used for the transition to the dimensionless
form:

• characteristic velocity is the velocity of light ṽ = c = 3 · 1010 cm/s;

• characteristic plasma density ñ = 1014 cm−3;

• characteristic time t̃ is the plasma period (a value inverse to the elec-

tron plasma frequency) t̃ = ω−1p =
(
4πn0e

2

me

)−0.5
= 5.3 · 10−12 s.

The Vlasov equations are solved by the PIC method. This method im-
plies the solution of the equation of motion for model particles:

∂~pe
∂t

= −(~E + [~ve, ~B]),
∂~pi
∂t

= κ(~E + [~vi, ~B]),
∂~ri,e
∂t

= ~vi,e,

κ =
me

mi
, ~pi,e = γ~vi,e, γ−1 =

√
1 − v2.

The quantities with subscripts i and e are related to ions and electrons,
respectively.

The leapfrog scheme is employed to solve these equations:

~p
m+1/2
i,e − ~p

m−1/2
i,e

τ
= qi

(
~Em +

[
~v
m+1/2
i,e − ~v

m−1/2
i,e

2
, ~Bm

])
,

~rm+1
i,e − ~rmi,e

τ
= ~v

m+1/2
i,e ,

where τ is the timestep.
The scheme proposed by Langdon and Lasinski is used to obtain the val-

ues of electric and magnetic fields. The scheme employs the finite-difference
form of the Faradey and the Ampere laws. A detailed description of the
scheme can be found in [3]. The scheme is of the second order of approxi-
mation with respect to space and time.

3. Peculiarities of the ultrarelativistic dynamics simulation

The equations are highly nonlinear and require a good resolution. The
beam-shape is also nonlinear in every direction: the particle distribution is
Gaussian in the accelerator coordinate system. In addition, a beam signif-
icantly changes its shape in the coarse of time due to the focusing fields.

Parallel template implementation of a Particle-in-Cell code. . . 11

Thus, the majority of particles is concentrated in a small region at a certain
moment.

Another problem in the computation of the 3D electromagnetic beam
fields is a high value of the relativistic factors γ. Comparing with the case
of non-relativistic motion the electric field of a relativistic particle γ times
increases in the transversal direction and decreases γ2 times in the longi-
tudinal direction. The usual beam field computation for γ = 103 requires
109 operations and makes the computation prohibitive by standard methods
even when using supercomputers. To overcome the above difficulties we con-
sider the macro-particles as thin needles with the length hz directed along
the axis z [4]. The field contribution from the density, computed based on
these pins, can be calculated as follows:

Ex(x, y, z) =
2q(x− x0)

hz((x− x0)2 + (y − y0)2)
, (1)

Ey(x, y, z) =
2q(y − y0)

hz((x− x0)2 + (y − y0)2)
, (2)

Ez = 0, ~H = [~v, ~E]. (3)

4. Transition from the plasma physics code to the beam
physics code

Let us start with the GPUPlasma class that implements the PIC method for
GPU as applied to the relativistic plasma physics. The class has a special
method for the field evaluation and particle pushing and initial distribution
setting. In order to use all these factors with beam simulation, a derived class
GPUBeam is created, as shown in Figure 1. As can be seen from the picture,
the constructor of the GPUBeam class does nothing on its own, it just

Figure 1. The screenshot of the GPUBeam class definition

12 M.A. Boronina, A.V. Snytnikov

Figure 2. The use of the GPUBeam class object

calls the constructor of the basic class. The parameters of the constructor
represent the number of grid nodes, the domain size, the number of particles
per cell, the average density, the charge-to-mass ratio and the time step.

The use of the defined class GPUBeam is quite simple (Figure 2). The
Initialize function is called, which actually does all memory allocations
and initializations, and then Step performs the time step. All the differ-
ences between the plasma simulation and beam interaction simulation are
automatically taken into consideration through the mechanism of virtual
functions.

Initial distribution. Since the initial distribution for the beam-beam in-
teraction problem is entirely different, it is Gaussian instead of uniform, and,
which is even more important, the particles occupy just a part of simulation
domain, a new function should be constructed to implement the new dis-
tribution. In fact, the InitParticles function is made virtual in the basic
class and is called from the Initialize method there. In the derived class,
the InitParticles is properly redefined.

Boundary conditions are evaluated according to formulas (1), (2). In the
plasma physics problem which was the test suite for the GPUPlasma class,
the boundary conditions are periodic, thus a very simple CUDA kernel is
called for just a few microseconds. Nevertheless, there are special wrapper
functions that invoke this kernel. In the GPUBeam class, it is replaced by
a more complex still very fast kernel, invoked by the BoundaryConditions

function. The BoundaryConditions function is made virtual in the basic
class and is called from the field evaluation method there. In the derived
class, the BoundaryConditions function is properly redefined.

5. Performance

In the table, single time-step performance of the template implementation of
the PIC algorithm for the beam-beam interaction (GPU-Beam) on a single
Nvidia Tesla GPU is compared with CPU implementation (non-GPU) on
Intel Xeon cores. The run here involves 1 million model particles and a grid
of 1003 nodes.

Parallel template implementation of a Particle-in-Cell code. . . 13

Computation time of a single time-step, ms

Operation GPU-Beam Non-GPU

Particle pushing 429.193 552.253
Field evaluation 536.250 180.426
Boundary condition computing 5.43 2893.723

As one can see from the table, boundary conditions computing time
for the CPU version of the program is much greater. This is because of a
complex set of send/receive operations for the CPU version of the program.
And for the GPU version, the whole grid is situated in the memory of one
single Tesla GPU and it does not need sending operations.

6. The GPU implementation

The implementation of the above PIC algorithm for the GPUs is quite stan-
dard. The field evaluation method is ported to GPU almost without any
change. The computation speed is high enough even without optimization.
The field arrays are stored in the GPU global memory.

The bottleneck of the PIC codes is a particle push. With the CPUs it
takes up to 90 % of the runtime. So, first particles are distributed among
cells. This step only two times reduces the push time with CPUs. With
GPUs, it is even more important since it enables the use of the texture
memory (the texture memory is limited and the whole particle array will
never fit). The second step is keeping the field values related to the cell
(and also to the adjacent cells) in a cell as it is. This is important since
each particle needs 6 field values and writes 12 current values to the grid
nodes, and now all this is done within a small amount of memory (a cell)
without addressing the global field or current arrays that contain the whole
domain. Then the evaluated currents from all the cells are added to the
global current array.

This gives the speedup of about 10 for Tesla 2070 as compared to a single
Xeon core. This is not so much, but no sophisticated optimization has been
applied yet.

7. The template implementation of PIC method

In order to fulfil the main objective (a tool for the fast development of
the new problem-oriented PIC codes for GPUs) it is necessary to do the
following:

• develop an optimized GPU implementation of the PIC method for a
particular problem,

14 M.A. Boronina, A.V. Snytnikov

• create a set of diagnostics tools to facilitate the analysis of results by
the physicist, and

• provide an option to replace the problem-specific parts of a computa-
tional algorithm.

In order to do the latter, C++ templates are being used. This means
that the “computation domain” class is implemented that contains “cell”
class objects. The “cell” class contains “particle” class objects. Here “com-
putation domain” is a template class with “cell” class as a parameter. The
“cell” is a template itself, with “particle” as a parameter.

For a wide variety of PIC method implementations most of the opera-
tions of a cell with its particles are absolutely the same (adding/removing a
particle, particle push, evaluation of a particle contribution to the current).
Only a gridless particles method of gyrokinetic codes might be an exception.
And even such codes fit the proposed scheme since they just do not need
any operations, and do not introduce anything new. This fact gives a hope
that these operations once implemented as a template will be efficient for a
number of problems to be solved with the PIC method.

Also, operations of the computation domain with cells are absolutely
the same. The things that differ are: the initial distribution and bound-
ary conditions. Thus, these operations should be implemented as virtual
functions.

Since particle attributes and operations with particles are similar in most
cases, it is possible to create a basic implementation of the “particle” class
containing the particle position, momentum, charge, and mass. Then, if for
some new physical problem the “particle” needs new attributes, a derived
class is implemented, and this new “derived particle” class is used as a
parameter to the “cell” template class.

At present, there are object-oriented implementations of the PIC method
(e.g. the OOPIC library), and also the template libraries for the PIC method
[5, 6], however this is valid for the CPU-based supercomputers, but not for
hybrid ones.

The porting of the implemented PIC method template to the GPU was
done in the following way––on the basis of the PIC method template (Plasma
class) a derived class was created (GPUPlasma class), which is also a tem-
plate. In the GPUPlasma, the following methods were added:

• copying the domain to GPU,

• comparison of CPU and GPU results, and

• invocation of GPU kernels for field evaluation.

The implementation of the “cell” for GPU (GPUCell class) was inherited
from the Cell class. It is important that particle storage within a cell must be

Parallel template implementation of a Particle-in-Cell code. . . 15

optimized in terms of the GPU memory, thus the structure or class arrays are
not suitable. The GPUCell class also includes copying to and from a device
and the comparison of GPU and CPU cells. The “particle” implementation
for GPU here is exactly the same as for CPU. It is necessary to mention
that for debugging the computation method should be implemented just
once both for the CPU and the GPU.

References

[1] Snytnikov A.V., Romanenko A.A. Parallel template implementation of Particle-
In-Cell method for hybrid supercomputers. // Bull. Novosibirsk Comp. Center.
Ser. Computer Science. –– Novosibirsk, 2014. –– Iss. 36. –– P. 79–89.

[2] Boronina M.A., Vshivkov V.A., Levichev E.B., at al. An algorithm for the
three-dimensional modeling of ultrarelativistic beams // Numerical Methods
and Programming.–– 2007.–– Vol. 8, No. 2. –– P. 203–210.

[3] Vshivkov V.A., Grigoryev Yu.N., Fedoruk M.P. Numerical “Particle-in-Cell”
Methods. Theory and Applications. –– Utrecht-Boston: VSP, 2002.

[4] Vshivkov V.A., Boronina M.A. Three-dimensional simulation of ultrarelativistic
charged beams dynamics: study of initial and boundary conditions // Math.
Mod.–– 2012.–– Vol. 24, No. 2. –– P. 67–83.

[5] Decyk V.K. Sceleton PIC codes for parallel computers // Comp. Phys. Comm.––
May, 1995. –– Vol. 87, Iss. 1–2. –– P. 87–94.

[6] Malyshkin V.E., Tsigulin A.A. ParaGen–– the generator of parallel programs for
numerical models // Avtometriya. –– 2003.–– No. 3. –– P. 124–135 (In Russian).

16

