Bull. Nov. Comp. Center, Comp.Science, 14 (2001), 1-6
(© 2001 NCC Publisher

Construction of models of computing

structures with fine-grain parallelism
in WinALT system”

D.T. Beletkov, I.V. Zhileev

Two-tier procedure of constructing compound model of computing structure
with fine-grain parallelism are discussed in this paper. The description of tools of
construction is presented. It was shown that the visual programming technology
was utilized for their creation, and the care was taken to give to the user intuitively
understandable and easy commands and to provide the reliability of textual and
graphical parts design.

Introduction

The algorithm of a problem solution with fine-grain parallelism in a gen-
eral case is a network of asynchronously communicating operators: more
simple algorithms, each of which performs parallel in time and universal
transformation of data arrays, placed in discrete (cellular) space.

Actually, formal representation of such algorithm is a description of com-
puting structure that implements it with fine-grain parallelism. That is why
the composition of models for such structures from the constantly extending
set of modules for the verification and obtaining the complexity estimations
seems to be vital in the WinALT [1].

The two-tier scheme of models composition is proposed in the paper: the
level of design of a single module and the level of asynchronous composition
of modules.

The composition of complex programs from the modules written in high
level languages is well developed. And besides, the WinALT language also
supports the modular construction of models with the help of functions
and procedures. These language capabilities are fully utilized for the model
construction. These auxiliary means of decomposition differ from the tra-
ditional ones. They describe interoperating fine-grain parallelism processes
instead of communicating sequential ones which are widely accepted for the
parallel programs. This feature of the composition requires the creation of
composition tools which are involved at the both stages of model design and
model simulation and debugging. At the stage of the design, the main at-

*Supported by the Russian Foundation for Basic Research under Grant 99-07-90422.

2 D.T. Beletkov, 1.V. Zhileev

tention was drawn to implement the intuitively clear user’s commands and
the reliability of graphical and textual parts design.

1. The formal foundation of composition

The asynchronous composition of Parallel Substitution Algorithm (PSA) [2]
serves the formal basement for the main composition. The PSA is a model
for distributed computations. A parallel substitution, represented by a set
of named cells is the main means for information transformation. W denotes
the set of cells, M is a set of names being words from a finite alphabet A.
A parallel substitution is formed by an expression S1 * 53 — 53, where .5;
stands for configurations, S; is the association that links each cell m® € M
with a set of cells S;(m?).

By using m as an argument, the substitution generates a microcom-
mand. The application of this microcommand to W has two steps: 1) search
of the association of sets S1(m®) and Sy(m?) in the set W; 2) if such asso-
ciation is found, in replacement of the set S1(mP°) on the set S3(m?).

The Parallel Substitutions Algorihm ® (PSA @) will be formed by a finite
set of parallel substitutions. The PSA ® carries out an iterative procedure of
transformation of set of cells. At each step simultaneously and everywhere
all microcommands, generated by substitutions from the PSA @, are applied.

In many real world applications (cellular automata, cellular-neural net-
works, associative structures etc.), a graphic image of cellular set is repre-
sented by a rectangle. This rectangle is made up from coloured cells. The
left and right parts of microcommands also have graphic images.

Asynchronous composition at construction complex PSA @ from certain
PSA &4, ..., PSA &, consists in construction of control PSA @, which pro-
vides switching on /off of algorithms PSA &y, ..., PSA &, by startup/finish
commands. The construction of control PSA &, at the first step is carried
with the help of a Petri-net. At the second step, this net by formal rules is
translated in to PSA ®.. The advantage of asynchronous composition is that
it provides joint parallelization of calculations and control and preservation
of parallelism of the initial problem.

2. The structure of a model

The computer representation of a model with fine-grain parallelism is deter-
mined by use of a composition, the presence of graphic images not only for
data, but also for commands. A model is represented by a project [3]. The
project consists of files of several types. One of them is the description of the
project (.wap). This file contains structural representation of model. The
project includes graphic objects containers (.3do) and source texts (.src) as

Construction of models of computing structures . .. 3

well. The .3do files contain visual images of data and commands. Source
text files contain the descriptions of mechanisms of command application
to a data. Data and command objects are located in .axt files. All files,
included in the project, are stored in a separate directory on a disk. When
opening a project all its files are opened, their contents becomes accessible
for viewing and editing in separate windows. It is possible to add files (.3do,
.axt, .src) created by the user, imported from other projects or libraries into
the project.

3. The description of construction technology
of model in WinALT system

The procedure of construction of compound model contains:

1) Model construction of modules in a project, import of modules from
libraries and other projects;

2) Petri net construction for the control module and its inclusion into the
the project, extension of module models by the operators that simulate
of start/stop commands.

The usage of tools that support the two-tier scheme of composition by
a user is depicted in Figure 1. The hatched arrows denote the actions per-
formed by a user, the solid ones denote the actions of the system. There are
four groups of tools.

-

P ~

~.

QUser

PN

P N

- ; “~
)

e Tools for file creation| — ~~_ Language tools *_‘:
S f// and editing s e .)
iGraphical construction; (:3do, .src, .wap) ! Text editing : E
- tools J 7) tools e
' 'V " N | Hh
H) Project (.waj) H
! 1] . P) ! : 1
H Object editor) [‘) Clasmf:al o
! S ‘ 24 [A text editor !

o]

E |) “\ 3do srC [i !
: O <11 !
H . P B i Program) !
} |Graphical primitive] | Graphical g] Program source !
-) object source text 1 text generation 1
1 | library constructor | } “* 1 H
: w N e N) tools \
! j/ A~~~ L i
E Graph-scheme / ~~~~~~ h Navi i
! . ; avigator 1
! editor !] !
) 1)

Project execution o
: odes:
and debugging tools « synchronous

| e asynchronous
e mixed

Figure 1. Model construction tools

4 D.T. Beletkov, 1.V. Zhileev

Tools of project files creation and deletion. These tools aid a user
to resolve a strategic task of project construction from a set of custom files,
standard libraries and files from other projects.

Program text editing and visualization tools. These tool can be
divided into two groups: a standard tools of text processing and the fine-
grain parallelism specific ones.

The text editor implements all the typical operations of text processing.
Their look and feel is the same as in a commonplace Windows application.
The syntactical text highlighting is among the specific features of the edi-
tor. The lexems of the same type appear in the same color. The syntactical
highlighting facilitates the program debugging and a comprehension of the
program structure. The generation of the skeleton source text is imple-
mented as well.

The specific fine-grain parallelism tools for model construction are repre-
sented by program block constructor, expression constructor, object explorer
(Figure 2).

The first one is intended for the generation of the substitution operators
and synchroblocks. Besides the constructor is utilized for generation of se-
quential loops and condition operators to support a user with an alternative
way for substitution description. When creating a block a user selects a

0] X]

=) test.src®

if [EXPRESSION] then

Build Block | %]

=M standard -
= COMDITIONAL

m

DECLARATION

if [EXPRESSION] then
{add your code here}

elze
{add your code here}

end

<

Description: if EXPRESSION [then] ... [elze] ... end

-] oK |
Cancel |

o

{add your code here}

else
{add your code here}

Build Expression

|a< b+

r Operatar

- Static

=3 D_perators & ACL Functic
-- Functions & Proced
- ARITHMETIC

----- Sheet(z) & Objects

end
-
| H 4
f‘?i_i test src™ !E[E

if a<h+c then
{add your code here}

else
{add your code here}

end

|

Figure 2. Block and expression constructors

Construction of models of computing structures . .. 5

particular operator from a list in a constructor dialog window. After a user
fills out all the parameters the source text is generated.

The expression constructor automates the creation of complex functional
transformations performed by cells of array and the description of substi-
tution scope. It is intended for the creation of arithmetical and logical
expressions. The appearance of expression constructor is similar to that of
the block constructor.

Program part of a model manages objects by the names. The object
navigator considerably improves the reliable transition of object names from
the graphical part of the model into the textual one and the translation of
a name into its respective object.

The tools of visualization and editing introduced above allow a user to
create well structured descriptions of complex models with concurrent and
sequential control by the means of WinALT procedures and functions.

The tools of graphical construction. The graphical editor is a part
of these tools [3]. We shall only note that it is involved into each step of
the construction of model’s graphical part. The constructor of graphical
primitive library is a new part of these tools. It facilitates the creation
of graphical images of data and the reliability of their design because of
its utilization for the construction of graphical primitive libraries. These
primitives allow to set values of regions in cellular arrays instead of single
cells. A library of boolean functions primitives serves a good sample of this
type of libraries. Each function has a number of input and output links.
The design of universal cellular structures graphical images is based on this
library.

All the tools described above are used for the model construction. These
models can serve as modules themselves at the second level of the construc-
tion. The principal tool at this level is the graph-scheme editor (Figure 3).
A user can paint the control Petri net that has marked transitions related to

B Untitled [_ (O] %) Program. src Hi=
- function tZ; -
begin
pcl ifipez = 11 then
ifipe3 = 0) then
t1 peoZ = 0;
ped = 1;
pc? end
end
t2 end
begin
pc3 ex
i in p0
a4 » at pl
do tlipcl, pcZ);
do tZ({pcZ, po3);
k end
rud
=

Figure 3. The graph-scheme editor

6 D.T. Beletkov, I.V. Zhileev

modules of which the model is formed of. The graph-scheme editor generates
WinaLT source program and cellular arrays by a Petri net. At this moment,
a user is capable of watching the transitions of the markers in the graphi-
cal image of the net. A program can be simulated in either asynchronous
or mixed mode which were implemented in the system as the addition to
the synchronous mode. In the asynchronous mode, only one applicable mi-
crocommand is executed at a single step of the simulation. In the mixed
mode, more than one command can be applied at a time. Let us note as
well that these modes of synchronization can be used for a wide set of other
applications.

After a user have corrected the modules of a model with the help of
graphical editor and model text visualizer so as to introduce cells and op-
erators that set launch and termination commands, the project of the com-
pound model is ready.

The tools of project simulation and debugging. These tools were
introduced in [4]. In the context of these article, we mention them only to
demonstrate the interaction of system with user in case of error appearance
in model or finding the better model variant.

Conclusion

Further development of construction technology consists of increase of au-
tomation level by introducing;:

1) tools supporting cellular object modification: their placement, sizes,
orientation, both manually by a user and automatically from a model
program in the process of simulation;

2) tools supporting automatic extension of models of modules by addition
of operators and issuing the start/stop commands.

References

[1] Beletkov D., Ostapkevich M., Piskunov S., Zhileev I. WinALT, a software tool
for fine-grain algorithms and structures synthesis and simulation // LNCS. -

Springer, 1999. — Ne 1662. — P. 491-496.

[2] Achasova S.M., Bandman O.L., Markova V.P., Piskunov S.V. Parallel Substi-
tution Algorithm. Theory and Application. — Singapore: World Scientific, 1994.

[3] Beletkov D.T. Graphical construction of computer models for 3D algorithms
and model construction // Proceedings of Young Scientists Conf. — Novosibirsk:

ICM&MG, 1998. - P. 3-13.

[4] Beletkov D.T. The tools of project debugging in WinALT simulation system //
NCC Bulletin, Special Ser. — Novosibirsk: NCC Publ., 1999. — Issue 1. — P. 1-8.

