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Redu
tion of 
oloured Petri nets based on resour
e

bisimulation

V.A. Bashkin, I. A. Lomazova

A pair 
onsisting of a pla
e and a token in a 
oloured Petri net is 
onsidered as an elementary resour
e for this net,

and a resour
e is a multiset of elementary resour
es. Two resour
es are bisimilar, if repla
ement of one by another in

any marking doesn't 
hange the net behaviour. Due to this fa
t, bisimilar resour
es 
an be merged. The paper presents

an algorithm for 
omputing resour
e bisimulation for 
oloured Petri nets and des
ribes some ways of net redu
tion based

on merging bisimilar resour
es.

1. Introdu
tion

Coloured Petri nets (CPN) [2℄ is a 
lass of high-level Petri nets, widely used for modelling and analysis

of 
on
urrent and distributed systems. In this paper CPN are studied with respe
t to bisimulation

equivalen
e.

A notion of bisimulation equivalen
e has been introdu
ed by R. Milner and D. Park. It 
aptures

an observable behaviour of a system. As a rule, bisimulation equivalen
e is a relation on sets of

states. Two states are bisimilar, if they are undistinguishable modulo system behaviour. For ordinary

Petri nets, the state (marking) bisimulation is unde
idable [3℄. To over
ome this, a weaker pla
e

bisimulation has been introdu
ed for ordinary Petri nets in [1℄. A pla
e bisimulation is a relation on

sets of pla
es. Two pla
es are bisimilar, if repla
ement of a token in one pla
e by a token in another

pla
e in all markings doesn't 
hange the system behaviour. Hen
e, bisimilar pla
es 
an be merged

without 
hanging the behaviour of a net.

In this paper a similar approa
h is developed for high-level CPN. Sin
e in CPN a 
olour of a token

must be taken into a

ount, we 
onsider not pla
es but elementary resour
es | pairs of pla
es and


oloured tokens. A resour
e is a multiset of elementary resour
es. For CPN a resour
e bisimulation is

de�ned. When elementary resour
es are 
onsidered, it 
orresponds to pla
e bisimulation for ordinary

Petri nets. Otherwise it gives a generalization of pla
e bisimulation for ordinary Petri nets to multisets

of pla
es, whi
h allows us to obtain additional net redu
tions.

We des
ribe a simple algorithm of 
omputing an approximation of the largest bisimulation.

The paper is organized as follows. In Se
tion 2 we re
all basi
 de�nitions and notations on CPN

and bisimulations and give de�nitions of an elementary resour
e and a resour
e for CPN. In Se
tion

3 resour
e bisimulations are studied and an algorithm for 
omputing the maximal bisimulation of

�nite resour
es is presented. Se
tion 4 
ontains an algorithm for CPN redu
tions based on resour
e

bisimulations and some examples.

2. Basi
 de�nitions

A multiset M over a non-empty set X is a fun
tion M : X ! Nat where Nat is a set of non-negative

integers. The non-negative integers fM(x) j x 2 Xg are the 
oeÆ
ients of the multiset. As usually,

we de�ne

(M

1

+M

2

)(x) =M

1

(x) +M

2

(x),

(M

1

�M

2

)(x) =M

1

(x)�M

2

(x) if M

1

(x) > M

2

(x) and

(M

1

�M

2

)(x) = 0 if M

1

(x) �M

2

(x),

(M

1

[M

2

)(x) = max(M

1

(x);M

2

(x)),

(M

1

\M

2

)(x) = min(M

1

(x);M

2

(x)).
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The power of a multiset M over X is de�ned as jM j =

P

x2X

M(x). By X

MS

we denote the set of

all multisets over X.

Let us suppose L to be a language of typed expressions and U its �nite model. Expressions in L

are built from variables and 
onstants using the only operation of a multiset addition. Elements of U

are 
oloured tokens. A type is de�ned as a set of 
olours, and the type of the sum of two multisets |

as the union of their types. The type of an element e is denoted by Type(e), the type of an expression

� 2 L| by Type(�). V ar(b) denotes the set of all variables of the expression b. A binding of variables

in an expression is de�ned in the usual way.

A labelled (unmarked) 
oloured Petri net (CPN) is a tuple N = (
; N; Type;W;A; l), where 
 is

a �nite nonempty set of types; N = (P; T; F ) is a net, where P are pla
es, T | transitions, F | a


ow relation; Type : P ! 
 is a type fun
tion; W : F ! L is an ar
 expression fun
tion, where for

all p 2 P; t; u 2 T s.t. (t; p); (p; u) 2 F we have Type(W (t; p)) = Type(W (p; u)) = Type(p); A is an

alphabet of labels; l : T ! A is a labelling fun
tion for transitions.

A marking of a net N is a fun
tion M : P ! U

MS

s.t. Type(M(p)) = Type(p). It puts a multiset

of tokens of the appropriate type in every pla
e. A marked CPN is a pair (N ;M

0

) of a net and its

initial marking.

For a transition t 2 T V ar(t) denotes a set of all variables in an ar
 expression adja
ent to t.

A binding of a transition t is a fun
tion b de�ned on V ar(t), s.t. 8v 2 V ar(t) b(v) 2 Type(v). A

binded transition t[b℄ is enabled in a marking M if 8p 2 P W (p; t)[b℄ �M(p).

If t[b℄ is enabled in M , it may �re 
hanging M to another marking M

0

, s.t. 8p 2 P; M

0

(p) =

M(p)�W (p; t)[b℄ +W (t; p)[b℄ (written a M

t[b℄

!M

0

).

Y (t) denotes a set of all possible bindings of t 2 T . T (N ) = ft[b℄ j t 2 T; b 2 Y (t)g is a set of all

binded transitions of N .

An elementary resour
e is a pair (p; d) 2 P � U , where d 2 Type(p), i.e. it's a pla
e with one


oloured token. A resour
e is a multiset of elementary resour
es.

Re
all that a marking maps ea
h pla
e to a multiset of 
oloured tokens and 
an be 
onsidered as a

set of pairs of the form (a pla
e, a multiset of 
oloured tokens). It is easy to see that a
tually resour
es

and markings are the same mathemati
al obje
ts represented in a slightly di�erent form or en
oding.

In this sense, every marking is a resour
e, and every resour
e is a marking. However, we distinguish

between these notions, be
ause we give them di�erent substantative interpretations. We mean that a

resour
e represents a part of markings whi
h provides this or that kind of the net behaviour.

We denote the set of all resour
es of CPN N by M(N ), the set of all its elementary resour
es by

M

1

(N ). We de�ne a pre
ondition of t[b℄ to be a resour
e

Æ

t[b℄ =

P

p2P

W (p; t)[b℄, and a post
ondition

of t[b℄ to be a resour
e t[b℄

Æ

=

P

p2P

W (t; p)[b℄.

We say that a symmetri
 relation R on the set of markings of CPN N satis�es the transfer

property i� for all (M

1

;M

2

) 2 R, for every step M

1

t[b℄

!M

0

1

there exists an imitating step M

2

u[
℄

!M

0

2

with

(M

0

1

;M

0

2

) 2 R and l(t) = l(u).

A symmetri
 relation R on the set of markings of CPN N whi
h satis�es the transfer property is


alled a (marking) bisimulation for N (written as R : N$N ).

3. Resour
e bisimulation

Given a relation B �M(N )�M(N ), we de�ne the relation B �M(N )�M(N ) by

(D

1

; G

1

); : : : ; (D

n

; G

n

) 2 B ) (D

1

+ : : :+D

n

; G

1

+ : : : +G

n

) 2 B.

So, two markings are related by B if their tokens 
an be partitioned into pairs satisfying B.

A relation B � M(N ) � M(N ) is 
alled a resour
e bisimulation over N i� B is a marking

bisimulation (written as B : N � N ).
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A resour
e bisimulation dete
ts the possibility of repla
ement of one multiset of tokens by another

in all CPN markings, so that this repla
ement doesn't in
uen
e the net behaviour. The resour
e

bisimulation equivalen
e is stronger than the marking bisimulation. Bisimilarity of two resour
es

implies bisimilarity of them as markings, but the 
onverse is not true.

Æ


��

Æ


��

fbgfa; bg

�

�

j

j

*

2a

b

b

b

1

p

1

p

2

Figure 1. An example of bisimilar resour
es ((p

1

; b) � 2�(p

1

; a))

Figure 1 represents two bisimilar resour
es. The �rst 
ontains one elementary resour
e (p

1

; b), and

the se
ond 
ontains two 
opies of the same elementary resour
e (p

1

; a).

Theorem 1. Given a CPN N , there exists the maximal resour
e bisimulation over N .

The proof is straightforward. The sum of two bisimulations is also a bisimulation. Therefore, the

sum of all bisimulations is the maximal bisimulation.

Now we de�ne an analog of the weak transfer property ([1℄) for CPN resour
e bisimulation. We

say that a relation B �M(N )�M(N ) satis�es the weak transfer property i�, for all (D;G) 2 B and

for all t[b℄ 2 T (N ), s.t. D \

Æ

t[b℄ 6= ;, there exists a binded transition u[
℄ 2 T (N ), s.t. l(t) = l(u)

and, writing M

1

for

Æ

t[b℄ [ D and M

2

for

Æ

t[b℄ � D + G, we have M

1

t[b℄

! M

1

0

and M

2

u[
℄

! M

2

0

with

(M

1

0

;M

2

0

) 2 B.

Theorem 2. A re
exive and symmetri
 relation B satis�es the weak transfer property i� B is a

re
exive and symmetri
 resour
e bisimulation.

Proof. ()) Assume the 
onverse. Let B be not a resour
e bisimulation. Then B is not a marking

bisimulation, so it doesn't satisfy the transfer property. Therefore 9(M

1

;M

2

) 2 B; t[b℄ 2 T (N ), s.t.

M

1

t[b℄

! M

1

0


annot be imitated starting from the marking M

1

�

Æ

t[b℄ + t[b℄

Æ

.

However, M

1

and M

2


an be de
omposed into pairs, belonging to B:

M

1

= D

1

+ : : :+D

n

, M

2

= G

1

+ : : :+G

n

, where (D

i

; G

i

) 2 B.

Here the pair (D

1

; G

1

) satis�es the weak transfer property. It means that there exists a transition

u

1

[


1

℄, s.t. l(u

1

) = l(t) and

Æ

u

1

[


1

℄ � F

1

= M

1

�D

1

+G

1

, where markings F

1

�

Æ

u

1

[


1

℄ + u

1

[


1

℄

Æ

and

M

1

�

Æ

t[b℄ + t[b℄

Æ

are bisimilar w.r.t. B. If D

1

\

Æ

t[b℄ = ;, we 
an 
hoose u

1

[


1

℄ = t[b℄.

Similarly, there exists a binded transition u

2

[


2

℄ imitating u

1

[


1

℄ (and, therefore, t[b℄) with a pre-


ondition 
ontained in F

2

= F

1

�D

2

+G

2

=M

1

�D

1

+G

1

�D

2

+G

2

and a post
ondition bisimilar

to F

1

�

Æ

u

1

[


1

℄ + u

1

[


1

℄

Æ

.

Repeating this reasoning for the n-th time, we obtain a binded transition u

n

[


n

℄ with the pre
on-

dition

Æ

u

n

[


n

℄ � F

n

= F

n�1

�D

n

+G

n

.

It is 
lear that F

n

= M

1

�D

1

+G

1

�: : :�D

n

+G

n

= (D

1

+: : :+D

n

)�D

1

+G

1

�: : :�D

n

+G

n

= M

2

.

Sin
e the relation B is transitive, markings F

n

�

Æ

u

n

[


n

℄+u

n

[


n

℄

Æ

andM

1

�

Æ

t[b℄+t[b℄

Æ

are bisimilar

w.r.t. B.

So, we've got a binded transition u

n

[


n

℄ with the same (as for t[b℄) label, transforming M

2

to some

bisimilar to M

0

1

marking. Hen
e u

n

[


n

℄ imitates t[b℄. This 
ontradi
ts our assumption.

(() It follows from the fa
t that the weak transfer property is a spe
ial kind of the transfer property

restri
ted to pairs (M

1

;M

2

) and steps M

1

t[b℄

! M

1

0

, where M

1

and M

2

di�er only in one resour
e. 2

Corollary. The maximal resour
e bisimulation 
oin
ides with the maximal re
exive and symmetri


relation B satisfying the weak transfer property.
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Note that for a net with at least one pla
e its maximal resour
e bisimulation is in�nite. The

point is that, if a net 
ontains at least one elementary resour
e r, then an in�nite relation B =

Id(M

1

(N )) [ f(2 � r; 2 � r); (3 � r; 3 � r); : : :g is a resour
e bisimulation. Sin
e the maximal bisimulation


ontains all others, it is also in�nite.

By Res

p

we denote the set of all resour
es R, s.t. j R j� p, i.e. 
ontaining no more than p

elementary resour
es (taking 
opies into a

ount).

Theorem 3. Given a CPN N and a positive integer p, there exists the maximal resour
e bisimulation

on Res

p

(written as B(N ; p)).

The proof is straightforward.

Sin
e Res

p

is �nite, we 
an use the weak transfer property to 
ompute B(N ; p).

An algorithm for 
omputing B(N ; p).

input: a labelled unmarked CPN N , a positive integer p

output: the relation B(N ; p)

step 1: Set B = Res

p

�Res

p

step 2: Che
k whether B satis�es the weak transfer property:

� If it's true then B is B(N ; p).

� Otherwise, there is a t[b℄ 2 T (N ); D;G 2 Res

p

with D \

Æ

t[b℄ 6= ; and (D;G) 2 B, s.t. t[b℄


annot be imitated by

Æ

t[b℄�D +G. Then remove pairs (D;G) and (G;D) from B and go ba
k

to step 2.

Sin
e Res

p

is �nite, the algorithm makes a limited number of steps. The output is the maximal

relation, be
ause no element of B(N ; p) 
an be removed from B (sin
e B � B(N ; p), these elements

always satisfy the weak transfer property in B). The time 
omplexity of the algorithm is O(S

2

�

jT (N )j

2

� jM

1

(N )j

2�p

), where S = max

t2T

fj

�

tj; jt

�

jg.

Repla
ing Res

p

by M

1

(N ), we obtain the algorithm for 
omputing the maximal elementary re-

sour
e bisimulation. Elementary resour
e bisimulations in CPN 
orrespond to pla
e bisimulations for

ordinary Petri nets [1℄ (where all tokens are of the same 
olour).

By applying the resour
e bisimulation to ordinary Petri nets, we obtain a bisimulation of multisets

of pla
es. For example, this allows us to determine that two tokens in one pla
e are equivalent to

three tokens in another pla
e (for all markings). This equivalen
e is weaker than pla
e bisimulation

and in some 
ases allows us to derive additional redu
tions.

It is easy to show that the linear 
ombination of resour
e bisimulations (with respe
t to the op-

eration of multiset addition) is also a resour
e bisimulation. So, a �nite set of resour
e bisimulations

generates in�nite resour
e bisimulations. The question whether for a given CPN there exists a �-

nite basis of �nite resour
e bisimulations generating all resour
e bisimulations is a subje
t of further

investigations.

4. Redu
tion

The resour
e bisimulation 
an be used for CPN redu
tion, sin
e bisimilar resour
es 
an be merged.

However, this "merging" must be more subtle than pla
e merging for ordinary Petri nets. Bisimilar

resour
es may have di�erent size and stru
ture. Moreover, they may interse
t. Therefore we 
an't

just "merge" two resour
es, but are to repla
e one of them by another. Sin
e we want to redu
e the

net, we'd like this repla
ement to de
rease the number of elementary resour
es. For example, if we

have two bisimilar resour
es D and G, where G � D, it makes sense to repla
e D by G, but not vi
e

versa.

It is not always possible to repla
e one resour
e by another. We give a suÆ
ient 
ondition for that.

Let D and G be two bisimilar resour
es, and M

0

be an initial marking. A resour
e D 
an be

repla
ed by a resour
e G, if
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1. 8t[b℄ (D �

Æ

t[b℄ _ D \

Æ

t[b℄ = ;) ^ (D � t[b℄

Æ

_ D \ t[b℄

Æ

= ;),

2. M

0

= k �D +X, where k 2 Nat and X \D = ;.

The �rst 
ondition is a rather strong restri
tion. It means that the resour
e D must be indivisible.

For any transition, it either transfers all tokens in D (probably, several instan
es of D), or none of

them.

The se
ond 
ondition guarantees that the resour
e D is entirely 
ontained in the initial marking.

This is ne
essary, be
ause ea
h of its instan
es must be repla
ed by an instan
e of G.

It is obvious that elementary resour
es satisfy both 
onditions.

Suppose D and M

0

satisfy 
onditions 1 and 2. Then the following transformation of the net will

not 
hange its behaviour (modulo bisimulation):

Resour
e repla
ement algorithm:

input: a labelled marked CPN (N ;M

0

)

output: the labelled marked CPN (N

0

;M

0

0

) with bisimilar behaviour

step 1: Adding imitating transitions.

For all t[b℄ 2 T (N ) s.t. D �

Æ

t[b℄ _D � t[b℄

Æ

add a new binded transition t

0

[b

0

℄ s.t.

1. if

Æ

t[b℄ = m �D + Pre with D \ Pre = ;, then

Æ

t

0

[b

0

℄ = m �G+ Pre,

2. if t[b℄

Æ

= n �D + Post with D \ Post = ;, then t

0

[b

0

℄

Æ

= n �G+ Post,

3. l(t

0

) = l(t).

step 2: Removing D.

Delete from the net all elementary resour
es 
ontained in D and repla
e types of pla
es by new

types Type

0

(p) = Type(p) n Type(D).

Remove all ar
s, 
orresponding to binded transitions t[b℄ 2 T (N ), s.t. D �

Æ

t[b℄ _D � t[b℄

Æ

(note

that transitions imitating them were added at step 1).

step 3: Changing the initial marking.

If M

0

= k �D +X, where k 2 Nat and X \D = ;, then M

0

0

= k �G+X.

Note that this algorithm is nondeterministi
. Sin
e we deal with high-level net, there are many

possible ways to add a binded transition (as well as there are many possible ways to build a high-level

Petri net equivalent to the given ordinary Petri net). Choosing the best approa
h is a nontrivial

problem.

For example, adding a separate transition with 
onstants on adja
ent ar
s and, hen
e, with the

only possible binding seems to be the simplest solution. But for some nets this redu
tion would not

be the best.

Now we give a small example of a CPN redu
tion.

Æ


��

bb

Æ


��

�

�

Æ


��

a

�

fa; 
g

f
; dg

fb; dg







a

d

2b

d

x

p

1

p

2

p

3

q

1

y

-

+

s

:

N

B = Id(M

1

(N )) [ f ((p

3

; 
); (p

3

; d)); ((p

1

; a) + 2�(p

2

; b); (p

1

; 
)) g

Figure 2a. An example of a CPN redu
tion | a net and some resour
e bisimulation
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Æ


��



�

f
g

q

1

-




Æ


��

�

f
g

q

2

-




-




Æ


��

fdg

q

3

-

d

N

0

(q

1

; 
) = f(p

1

; 
); (p

1

; a) + 2�(p

2

; b)g

(q

2

; 
) = f(p

3

; 
); (p

3

; d)g

(q

3

; d) = f(p

1

; d)g

Figure 2b. An example of a CPN redu
tion | the result

Thus, in the net redu
tions elementary resour
es in CPN are similar to pla
es in ordinary Petri

nets. Hen
e the 
omplexity of redu
tion algorithms depends on the size of M

1

(N ). Our algorithm

redu
es the set of elementary resour
es, but in some 
ases it 
an add new transitions.

5. Con
lusion

Resour
e bisimulation is a generalization of the ordinary Petri net pla
e bisimulation for the 
ase

of high-level CPN. It allows us to 
ompute equivalen
es weaker than marking bisimulation. These

equivalen
es 
an be used for simplifying redu
tions of CPN.

This approa
h 
an be easily applied to other 
lasses of high-level Petri nets, su
h as predi-


ate/transition nets, or algebrai
 nets.

Dire
tions for further resear
h 
ould be 
onsidered, su
h as whether it is possible to represent the

maximal resour
e bisimulation by a �nite basis (and to 
ompute this basis). Also it is interesting to

apply our approa
h to restri
ted sets of "relevant" markings introdu
ed in [4℄.
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