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Discrete-continuous models for spatial
dynamics simulation®

0. Bandman

Fine-grained parallel models of spatial dynamics are analyzed from the point
of view of the relationship between their continuous and discrete constituents. The
models are ranged from the absolutely continuous partial differential equations to
the absolutely discrete cellular automata. In the interval between them, there
are cellular neural networks, cellular neural automata, and probabilistic cellular
automata. A generalized representation of the above models is proposed, which is
assumed to be a background for a unified technology for the fine-grained parallel
programming. The models are analyzed and compared on the basis of the results,
obtained at the Supercomputer Software Department.

1. Introduction

There exist a number of mathematical models of reaction-diffusion phenom-
ena. Formally, they represent spatial dynamics of an abstraction of a certain
physical value (density, pressure, velocity, temperature), further referred to
as concentration. It is customary to describe spatial dynamics in terms of
the PDE systems. This model is fully continuous, i.e., all its variables are
in the domain of real numbers. Unfortunately, the PDEs expressed in the
differential form, are of little practical use, because they are adequate only
for obtaining analytical solution. The latter is possible in a limited number
of very simple cases. Hence, in real life the computer is involved to ob-
tain the solution and to this end numerical methods are being developed. In
such methods the PDE is approximated by a finite difference representation,
where time and space are discrete, and the concentration is left continuous.
There are a lot of numerical methods for the PDE solution. Among them
the explicit ones may be considered as fine-grained parallel, because compu-
tation at all the points of a discrete space may be executed in parallel, and
hence, they admit any spatial partition to allocate the task on a multiproces-
sor computer. However, explicit methods have the following disadvantages:
in order to provide acceptable computational stability the time step (and/or
the spatial step) should be taken small enough, which results in considerable
computational complexity.
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In this connection, the search for the new mathematical models, to be
more adequate to modern parallel computers, seems to be fairly natural
[1]. Most of attempts are based on the Cellular Automata (CA) approach.
A classical CA is an absolutely discrete model of spatial dynamics. It is
represented by an array of identical cells operating in parallel and comput-
ing the same Boolean function of the states of the cell neighbors. It is well
known, that in spite of each cell simplicity, the CAs are capable of simulating
very complex phenomena. Thus, there exists a scope of the CA models (gas
dynamics, diffusion, acoustic waves, phase transitions, etc.), which are ex-
pected to have considerable promise. The CA model have some advantages
over the finite difference PDE: they are free from round-off errors and ab-
solutely stable. At the same time there are yet many problems to be solved
before the CAs become widely used, among them the most significant are
the following: providing the adequacy of the CA operation rules to given
physical parameters of a phenomenon to be simulated, and eliminating the
“automaton noise”.

In-between the above two extremes (the PDE and the CA) there are
a number of intermediate models, in which both discrete and continuous
functions are used, the arguments (time and space) being left discrete in all
the cases. Among them the following seem to have considerable prospects:
Lattice-Boltzmann [2], gas-lattice with weight connections [3], cellular-neu-
ral associative memory [4], cellular-neural networks [5], cellular-neural au-
tomaton [6, 7]. Each of the above models is destined to describe a certain
class of reaction-diffusion processes. Some of them have the PDE equiva-
lents, not yet being their approximation. These are the Lattice—Boltzmann
and Gas—Lattice models whose equivalent is the Navier—Stokes PDE. Some
others have no equivalent PDE, these are cellular-neural associative memory
and cellular-neural networks, whose parameters are obtained through train-
ing them by prototypes. Finally, a cellular-neural automaton is considered
to be a hybrid one [6], which is a combination of the CA-diffusion with a
reaction approximation by Boolean arrays.

Here an attempt is made to construct a generalization of these models
and to show that they form a class of fine-grained parallel representations of
reaction-diffusion phenomena. The goal of such a generalization is twofold:
to simplify the comparative analysis of the existing models and to make the
development of the new ones more justified. For this purpose a number of
models of the above series which are under investigation at the Supercom-
puter Software Department are analyzed, and their properties are compared.
In Section 2, formal definitions and a generalized form of the cellular system
representation are given. Section 3 is concerned with two basic fine-grained
models whose properties are inherited by those, proposed especially for the
reaction-diffusion simulation and studied at our department. The results of
this study are presented in Section 4.
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2. Cellular form of spatial dynamics
representation

A conventional representation of the reaction-diffusion process is a PDE
system, each equation being represented as follows:

du(®)
dt’

= d® AP + FE (D) D) (1)

where u¥), k = 1,...,l, is concentration of the k-th substance involved in
the reaction-diffusion process under simulation, F(¥)(.) is a reaction function,
d¥) is a diffusion coefficient in the k-th equation, and Aw is a Laplacian,
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where (z1,z2) are coordinates of a 2D continuous space.
After the time and the space discretization of (1) with z; = ih, z2 = jh
and t' = tr, 4, 7, t being integers, h, T are space and time steps, (1) takes
the following form:

rd*)
wf (¢ +1) = wf)(0) + S w0 + w0 + ;0 +
uM (1)~ 4ul) £ rF® O, uO)). (2)

In order to construct a fine-grained generalized representation, suitable
for the reaction-diffusion processes simulation, a concept of algorithm ar-
chitecture is further used. This concept is appropriate to the fine-grained
parallelism, it determines spatial relations of the algorithm operators. Time
is given by natural numbers ¢ = 0,1,..., space — by an infinite set of the
cell names M = {1,2,...}. Such a natural cell state number indexing of the
cell names is used due to its universality, since for any regular spatial cell
structure there exists a one-to-one mapping & : {(¢,7)} — M.

The data to be processed are represented by a cellular array € given as
a set of cells,

Q={(u,m):ueY,me M},

where u is a cell state variable with values from Y considered as cell state
alphabet. The structure of cell interactions in a cellular array is defined by
a template T (m), which is represented by a set of naming functions

T(m) ={¢o(m), ¢1(m),...,¢n(m)}, (3)

where ¢4(m), g =0,1,...,n,¢o(m) = m, is a naming function ¢ : M — M,
whose value is the name of the g-th neighbor in the neighborhood of the
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cell named m. In the case of the 2D Cartesian cellular space, the naming
functions are usually of the form of shifts: ¢g4({(¢,5)) = €(i +a,j+b), a, b
being integers.

An extended concept of a template referred to as weight template W is
used. In it, a weight function fq(u) is associated with each naming function
¢4(m), so that each element of W (u,m) is a pair of two functions,

W(u,m) = {(fo(u),¢g(m)) : g =0,1,...,n}. (4)

In terms of the cellular algorithm architecture, T'(m) is considered to
determine each cell connections, and W (u, m) — the weights of the connec-
tions.

A subset of cells

Nw (m) = {(uo,m), ..., (un, pn(m))} (5)

in a cellular array Q, Ny (m) C Q forms the neighborhood of a cell (ug, m)
with W(u,m) and N(m) having one and the same underlying template
T'(m). This enables us to define the following operation:

W (u,m) © Nw(m) = {fo(uo), f1(u1), ..., fn(un)} (6)

which serves as argument to compute a diffusion part of the cellular algo-
rithm

up(m) = (W © Nw(m)) = @(fo(u), fr(wa), -, falua)), (7)

where ®(-) is a diffusion operator reflecting the diffusion process peculiari-
ties.

Introducing the projections of W (u,m) and N(m) into the sets {fy(u)},
and {ug}, g = 0,...,n, the vectors W(u,m) = (fi(u),..., fn(uw)) and
U(m) = (ug,...,u,) may be used. It is especially helpful when weight
functions are of the form fy(u) = wyu, and ®(-) is a summation. Then the
diffusion operator reduces to the scalar product

up(m) = (W (u,m),U(m)). (8)

When a diffusion part is in the form of spatially distributed Boolean val-
ues, then transformations from the Boolean spatial form to a continuous one
and vice versa are needed. To perform the first transformation an averaging
template Av(m) and the corresponding averaging neighborhood N4, (m) are
introduced:

Av(m) = {(ao,m), (a1,%1(m)), ..., (ag,¥q(m))}, (9)
Nay(m) = {(wo,m), (u1,91(m)), ..., (uq,1bq(m))}, (10)

aj € {0,1}. The averaging procedure transforms a Boolean spatial function
into a continuous one as follows:
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u'(m) = ¥(Av(m) © Ngy(m)) (11)

With ¥(-) being the mean value (11), yields
1 q
u'(m) = - Z aju;. (12)

When diffusion is represented in a continuous form, Av(m) degenerates into
Av(m) = m, v’ = uy.

With the above definitions the following state equation in the cellular
form is as follows

u(m,t +1) = ®(W(u,m) © Nw(m)) & F(¥(Av(m) © Nay(m))),  (13)

where @ is a diffusion-reaction operator which denotes some kind of a com-
bination of diffusion and reaction values, most frequently used in the arith-
metic summation.

When a multicomponent process is under simulation, the cellular array
is considered to be a layered structure, each layer corresponding to one of
the components. Let £ = 1,...,l be a layer index. Then

M=JMm®, a=Jo®, oW ={(um®}, uwer, m®em®),
k k

|M®) | = |MU)| for all k,j =1,...,I. Numeration of names in all the layers
is identical, so that mgk) = mz(j) for all m; € M, k,j € {1,...,1}.

Each layer computes its own diffusion part C’gc) which depends on the
corresponding concentration variables, W *) (u, m), Av(*¥)(m) being different
for different k£ € {1,...,l}. The reaction part Cr(m) is a function of contin-
uous or averaged values in the corresponding cells of all layers. To represent
it in a cellular form a reaction template is introduced

Ry ={(ajup,j) : a;=0,1, j=1,...,1} (14)
which is identical for all the layers. The corresponding reaction neighbor-
hood is Ng(m) = {(u},m™M), ..., (u],mV)} u being the averaged results of

the diffusion operator execution.
Accordingly, the reaction part is

y(m) = F® (R, © Ng(m)). (15)

Using the above notations a generalized form of multicomponent reac-
tion-diffusion may be written down as a set of the following equations



22 O. Bandman

u®(m,t + 1) = 3WH (m) © NE(m)) @ F® (R, ® Ng(m)),  (16)
for k = {1,...,1}.

The above equations together with the parameters T and M form a
cellular system. Being set in the initial state £(0), a cellular system starts
functioning according to (16). A cellular system together with the parallel by
cells, synchronous and iterative mode of computation constitutes a cellular
algorithm.

A sequence of the cellular arrays {2(0), ..., €Q(¢;)}, obtained in the course
of cellular algorithm execution, is referred to as cellular array evolution.

The evolution terminates when a stable state €2, such that

Q(t+1) = Q,(2), (17)

is reached.

If any initial cellular array generates a single terminating evolution, then
the algorithm is considered to be deterministic.

It is clear that the finite difference representation (2) is a particular case
of (13). With [ =1 its cellular form is as follows

Cp(&(i, 7)) = 7d/h* (wi—1,j + wij—1 + wijr1 + uir1j + (—4 + h?/7d)u; j,
Cr(&(i,5) = F(uij), wu(é(i,5),t+1) = Cp(&(4,5) + Cr(&(3,5)-

3. Basic fine-grained models

Two models of fine-grained parallel computations are considered to be fun-
damental. They are cellular automaton and artificial neural network. All

others are either their modifications, or hybrids, possessing the features of
both.

3.1. The Cellular automata (CA), introduced by von Neumann half a
century ago, nowadays are intensively studied as models belonging to the
so called compler systems [8], which are huge sets of simple interacting pro-
cessing elements, whose parallel execution is capable of computing complex
functions. A CA is represented by a discrete cellular space, each cell be-
ing associated with a finite automaton with inputs from its neighborhood
according to a given template.

In terms of the generalized notations, a CA may be regarded as a cellular
system with the following parameters:

e CA is a one-layer cellular system, [ = 1.

e A cellular space has a spatial metrics, i.e., the naming set is a regular
structure. Usually, it is a 1D or a 2D infinite lattice, either Cartesian
or hexagonal.
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e The neighborhood is formed of the “spatial neighbors”, there existing
a finite radius r in a given metrics such that N(m) is enclosed in the
sphere of radius r sphere with the center in m.

e The alphabet of states is Boolean, T = {0,1}.

e The weight functions f,(u) = aqu with ay € {0,1}, g = 1,...,n.
Hence W(u,m) ® N(m) = {aguy: g=1,...,n}.

e The diffusion operator ®(-) is a Boolean function, representing the
transition rules of a finite elementary automaton.

The above “classical” model of a CA has many modifications. Two of
them are worth to be considered.

1. The cell states T = {u; = (u1,...,un) : uy = 0,1} are Boolean
vectors, and, therefore ®(-) is a system of Boolean functions. Such CAs
are used in Gas-Lattice models, the most known ones being called the FHP
[9]. Each component u, in the state-vector represents either the existence
of (ug = 1) or the absence of (u, = 0) of a particle moving at unit speed
towards the g-th neighbor. A modification of the FHP-model extending its
domain of applicability, and a 3D variant are under investigation [10, 11].

2. The right-hand side of (15) represents the next states in a block
of cells B(m), which at the same time is a neighborhood N(m) = B(m).
The next state is computed as a mapping of {B(m)} — {B(m)}. Such a
modification is a subject of study in Parallel Substitution Algorithm theory
[12]. A well-known particular case of the CA of such a type is called “CA
with Margolus neighborhood” [13]. Apart from other numerous applications
the diffusion simulation is one of the most important. In a 2D case, the
Margolus neighborhood is a block of four adjacent cells

B('L,J) = {(uﬂag(zaj)), (ulag(z + 1:j)): (u2,§(z + l,j + 1))a (U3,§(i,j + 1)}
With fo(u) =u,g=1,...,l, and U = (ug, u1, u2,us) a diffusion operator

U1, U, U3, U ifp<1/2,
S(W (u,m) © N(m)) — | W02 v0) / (18)
(u37u07u17u2) lfp Z 1/2

executes the rotation of states in the block clockwise or counterclockwise
with probability p = 1/2.

Each iteration of the algorithm contains two steps: at the first step, for-
mula (17) is applied to the cells whose coordinates sum (z+j) is even, at the
second step the same is done for the cells with odd (i+j). The experimental
study of the above algorithm has shown its good correspondence to the PDE
solutions [14].

3.2. The Artificial Neural Network (ANN) is a concept of a class of
models, usually referred to as paradigms. All of them manifest a fine-grained
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parallelism, but do not possess the interaction locality property. Moreover,
two ANN properties — weight connections and learning capability — have
been inherited by a powerful reaction-diffusion model called Cellular Neu-
ral Network (CNN). The CNN is derived from the ANN paradigm called
Hopfield Neural Associated Memory, which can be represented in terms of
a cellular system as follows:

e Each node of the network is a processing element called a neuron.

e Array structure is given by a strongly connected graph. Hence, the
cell neighborhood is formed of all neurons in the network. Weight tem-
plates are different for different cells, hence, weight functions depend
not only on u» but also on m, i.e.,

W(uam) = {(wU(m)uﬂam)a tey (wn(m)una ¢n(m))}

e The cell state alphabet is a “semi-continuous” one. This means that its
domain is an interval (0,1) or (—1, 1), which is the value of a “sigmoid”
of a diffusion operator. Continuous, piecewise linear and fully discrete
forms of a sigmoid function may be met in numerous studies of the
Hopfield paradigm, the most widespread is a threshold one, which
turns the alphabet of a state to the Boolean one.

e Weight templates entries are f,(u,m) = wg(m)uy, g = 0,...,n. A
diffusion part is thus computed as follows

up = (W © Nm) = O X wy(m)u, ) (19)
g=0

where O(+) is a sigmoid function.

e A reaction function F'(u) = 0, although sometimes constants are added
to provide the correctness of learning results [15].

A difficulty to realize the full-connection Hopfield associated memory
has brought up the question, whether its storage capability degrades if the
neighborhood in it is reduced to a local one [16]. The new system was
called the Cellular Neural Associative Memory (CNAM). The CNAM is
classified in [17] as “nonhomogeneous” cellular neuron network, because like
in a Hopfield associative memory, the weight functions are different from
cell to cell. Moreover, the CNAM is not intended to simulate reaction-
diffusion processes. Nevertheless, its investigation has been very useful for
this purpose, because it has clarified the stability conditions, and determined
the learning principles for all types of Cellular Neural Networks (CNN) [17].
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4. Hybrid fine-grained models

Hybrid models use both discrete and continuous computations [6], and pos-
sess properties of both basic models. Two hybrid models are studied at
our department and presented below: Cellular Neural Automaton (CNA)
and Cellular Neural Networks (CNN). The CNA is an integration of the
CA diffusion with continuous reaction, the latter being approximated by a
Boolean array with the use of a probabilistic neuron. So, a large share of
computation in the CNA is in Boolean domain. The CNNs possess all the
properties of the ANN, except the array structure inherited from the CA.
Thus, its alphabet is semidiscrete, and most of the computation is in the
domain of real numbers.

4.1. The Cellular Neural Automaton is an original model. It has been
proposed in [7]. The CNA combines in a single iterative procedure the
Boolean operations of the CA diffusion with Boolean approximation of the
reaction part. Motivation to such an approach relies upon the existence of
simple stable and effective CA models of diffusion. The CNA is intended to
be used as an alternative to a reaction-diffusion PDE solution. It may be
represented as cellular system of the form (15) with the following parameters:

e Array structure is a multilayer regular Cartesian lattice provided with
a metrics, the number of layers being equal to the CNA order.

e Intercell communications are determined by weight templates, averag-
ing templates, and a reaction template of the form (4), (9), and (14),
respectively.

e Cell state alphabet is Boolean, though intermediate computations of
a reaction operator are done in real numbers.

e Any diffusion CA algorithm may be chosen, particularly, the one given
in Subsection 2.1. So, the diffusion operator is computed according to
(17), resulting in Boolean cell states up(m).

e Reaction operator is performed according to (12) for averaging the

diffusion results and (15) — for the computing reaction part.

The next-state is computed as a probabilistic neuron value, which up-
dates the diffusion resulting array by appending to it the reaction part as
follows:

1 ifu(m,t) =0, y(m,t) >0, TT(y(m,t)) > rand(1),
u(m,t+1) =40 ifu(m,t) =1, ylm,t)) <0, T (y(m,t)) > rand(1),

u(m,t) otherwise,

(20)
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where rand(1) is a random number from the interval (0,1), T (y) and T (y)
are probabilistic neuron functions, equal to probabilities of the event accord-
ing to which the cell should change its state u(m) = 0 for u(m) = 1, and
u(m) = 1 for u(m) = 0, respectively,

y - Yl
T*(y) = 1_ o’ T (y) = o (21)
Computer simulation of a number of typical reaction-diffusion processes
has shown the possibility of using the proposed model for studying phenom-
ena in active media [18].

4.2. The Cellular Neural Network. The CNNs theory and possible ap-
plications have been proposed by L. Chua and his team [5]. The subject
of their study is the so-called standard CNN. In a discrete form a standard
CNN is represented by a cell functioning as follows:

v(t+1) = —ov(t)+ (W,U(t)) + 2, (22)
w(t+1) = \v(t+1)+1\—;—|v(t+1)—1\, (23)

where v € R is an internal state of a neuron, W is a vector of connection
weights equal for all neurons, U is a state neighborhood.

The neuron state u € (—1,1) is a piecewise sigmoid function like (23) in
its internal state. Its range has three parts: u = —1, u = 1 are saturated
parts, and u = v is a linear part. If the process under simulation is given by
a single pair of the variables (v, u), then a CNN is considered to be of first
order, otherwise it is of second order (the third order of CNNs also exists,
but has not been studied yet at our department).

Investigation results of a standard CNN show that the model is capable
of simulating a wide range of reaction-diffusion phenomena, whose PDEs
are sometimes unknown. Instead, several global states of the system, are
available, serving as prototypes for the learning procedure [19].

The CNN is a multicomponent cellular system with the following param-
eters:

e Array structure is a multilayer regular Cartesian lattice provided with
a metrics, the number of layers being equal to the CNN order.

e Intercell communications are represented by weight templates and a
reaction template of the form (4) and (14), respectively. Weight func-
tions are polynomials, most frequently of first order.

e Cell state alphabet is a “semi-continuous” one. This means that its
domain is within the interval (—1,1).
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e Diffusion operator
5(U) = 0( X fo(w).
g=0

where O(+) is a piecewise sigmoid of the form (23).

e Reaction functions F(*)(.) are linear (though polynomials of higher
degrees are also possible).

The first order CNNs are used to simulate reaction-diffusion processes,
whose evolution results in a stable state, representing a spatial pattern. If
the template is symmetrical, i.e.,

¢g*¢h:0_)wg:wh;

then the system is stable. Whatever the initial global state is given, a CNN
evolves to one of the stable states. Determining template parameters of a
CNN by a number of given stable states is done by learning. A learning
method has been developed [18], which provides a tool for studying the
pattern formation processes, and enables us to investigate a relationship be-
tween CNN parameters and properties of patterns, which can be generated.
The results of this study may be used to clarify the phenomenon of pattern
formation in crystallization, biological evolution, ecological processes, etc.

The second order CNNs are represented by two-layer arrays with
W) (u,m) in the form of (3) [19],

Rr = {(1,mW),(1,m?)}, Rp o Ng = {uM(m),u? (m)},

24
F(l) = {(alu(l) + blau(2))}: R(2) = {(a2au(1)) + (b27u(2))} ( )
with b2 == —bl.

Their evolution simulates emergency and propagation of different types
of autowaves (propagating front, propagating pulse, oscillations). Function-
ing of a neuron pair (m!), m(®) is studied using a method of qualitative
theory of nonlinear systems, resulting in the relations between the CNN
parameters (weight and reaction templates), which provide generation of
a particular type of autowaves [21, 22]. Computer program package has
been developed, which is used for experimental study of autowaves behavior
under different external conditions.

5. Conclusion

It is shown that a number of fine-grained reaction-diffusion models, which
combine discrete and continuous modes of computation, form a class of cel-
lular systems. A generalized representation of such systems is proposed,
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which is useful for the creation of a unified technology for parallel program-
ming. Apart from the inherent parallelism, the proposed models have some
advantages derived from discreteness of the diffusion part, which provides
the absence of the round-off errors and the improvement of the computation
stability.
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