
Bull. Nov. Comp. Center, Comp. Science, 17 (2002), 17{29c 2002 NCC PublisherDiscrete-continuous models for spatialdynamics simulation�O. BandmanFine-grained parallel models of spatial dynamics are analyzed from the pointof view of the relationship between their continuous and discrete constituents. Themodels are ranged from the absolutely continuous partial di�erential equations tothe absolutely discrete cellular automata. In the interval between them, thereare cellular neural networks, cellular neural automata, and probabilistic cellularautomata. A generalized representation of the above models is proposed, which isassumed to be a background for a uni�ed technology for the �ne-grained parallelprogramming. The models are analyzed and compared on the basis of the results,obtained at the Supercomputer Software Department.1. IntroductionThere exist a number of mathematical models of reaction-di�usion phenom-ena. Formally, they represent spatial dynamics of an abstraction of a certainphysical value (density, pressure, velocity, temperature), further referred toas concentration. It is customary to describe spatial dynamics in terms ofthe PDE systems. This model is fully continuous, i.e., all its variables arein the domain of real numbers. Unfortunately, the PDEs expressed in thedi�erential form, are of little practical use, because they are adequate onlyfor obtaining analytical solution. The latter is possible in a limited numberof very simple cases. Hence, in real life the computer is involved to ob-tain the solution and to this end numerical methods are being developed. Insuch methods the PDE is approximated by a �nite di�erence representation,where time and space are discrete, and the concentration is left continuous.There are a lot of numerical methods for the PDE solution. Among themthe explicit ones may be considered as �ne-grained parallel, because compu-tation at all the points of a discrete space may be executed in parallel, andhence, they admit any spatial partition to allocate the task on a multiproces-sor computer. However, explicit methods have the following disadvantages:in order to provide acceptable computational stability the time step (and/orthe spatial step) should be taken small enough, which results in considerablecomputational complexity.�Supported by the Russian Foundation for Basic Research under Grant 01.00.00026.



18 O. BandmanIn this connection, the search for the new mathematical models, to bemore adequate to modern parallel computers, seems to be fairly natural[1]. Most of attempts are based on the Cellular Automata (CA) approach.A classical CA is an absolutely discrete model of spatial dynamics. It isrepresented by an array of identical cells operating in parallel and comput-ing the same Boolean function of the states of the cell neighbors. It is wellknown, that in spite of each cell simplicity, the CAs are capable of simulatingvery complex phenomena. Thus, there exists a scope of the CA models (gasdynamics, di�usion, acoustic waves, phase transitions, etc.), which are ex-pected to have considerable promise. The CA model have some advantagesover the �nite di�erence PDE: they are free from round-o� errors and ab-solutely stable. At the same time there are yet many problems to be solvedbefore the CAs become widely used, among them the most signi�cant arethe following: providing the adequacy of the CA operation rules to givenphysical parameters of a phenomenon to be simulated, and eliminating the\automaton noise".In-between the above two extremes (the PDE and the CA) there area number of intermediate models, in which both discrete and continuousfunctions are used, the arguments (time and space) being left discrete in allthe cases. Among them the following seem to have considerable prospects:Lattice{Boltzmann [2], gas-lattice with weight connections [3], cellular-neu-ral associative memory [4], cellular-neural networks [5], cellular-neural au-tomaton [6, 7]. Each of the above models is destined to describe a certainclass of reaction-di�usion processes. Some of them have the PDE equiva-lents, not yet being their approximation. These are the Lattice{Boltzmannand Gas{Lattice models whose equivalent is the Navier{Stokes PDE. Someothers have no equivalent PDE, these are cellular-neural associative memoryand cellular-neural networks, whose parameters are obtained through train-ing them by prototypes. Finally, a cellular-neural automaton is consideredto be a hybrid one [6], which is a combination of the CA-di�usion with areaction approximation by Boolean arrays.Here an attempt is made to construct a generalization of these modelsand to show that they form a class of �ne-grained parallel representations ofreaction-di�usion phenomena. The goal of such a generalization is twofold:to simplify the comparative analysis of the existing models and to make thedevelopment of the new ones more justi�ed. For this purpose a number ofmodels of the above series which are under investigation at the Supercom-puter Software Department are analyzed, and their properties are compared.In Section 2, formal de�nitions and a generalized form of the cellular systemrepresentation are given. Section 3 is concerned with two basic �ne-grainedmodels whose properties are inherited by those, proposed especially for thereaction-di�usion simulation and studied at our department. The results ofthis study are presented in Section 4.



Discrete-continuous models for spatial dynamics simulation 192. Cellular form of spatial dynamicsrepresentationA conventional representation of the reaction-di�usion process is a PDEsystem, each equation being represented as follows:du(k)dt0 = d(k)�u(k) + F (k)(u(1); : : : ; u(l)); (1)where u(k), k = 1; : : : ; l, is concentration of the k-th substance involved inthe reaction-di�usion process under simulation, F (k)(�) is a reaction function,d(k) is a di�usion coe�cient in the k-th equation, and �u is a Laplacian,�u = @2u@x21 + @2u@x22 ;where (x1; x2) are coordinates of a 2D continuous space.After the time and the space discretization of (1) with x1 = ih, x2 = jhand t0 = t� , i, j, t being integers, h, � are space and time steps, (1) takesthe following form:u(k)i;j (t+ 1) = u(k)i;j (t) + �d(k)h2 (u(k)i�1;j(t) + u(k)i;j�1(t) + u(k)i+1;j(t) +u(k)i;j+1(t)� 4u(k)i;j ) + �F (k)(u(1); : : : ; u(l))): (2)In order to construct a �ne-grained generalized representation, suitablefor the reaction-di�usion processes simulation, a concept of algorithm ar-chitecture is further used. This concept is appropriate to the �ne-grainedparallelism, it determines spatial relations of the algorithm operators. Timeis given by natural numbers t = 0; 1; : : : ; space { by an in�nite set of thecell namesM = f1; 2; : : :g. Such a natural cell state number indexing of thecell names is used due to its universality, since for any regular spatial cellstructure there exists a one-to-one mapping � : f(i; j)g !M .The data to be processed are represented by a cellular array 
 given asa set of cells, 
 = f(u;m) : u 2 �;m 2Mg;where u is a cell state variable with values from � considered as cell statealphabet. The structure of cell interactions in a cellular array is de�ned bya template T (m), which is represented by a set of naming functionsT (m) = f�0(m); �1(m); : : : ; �n(m)g; (3)where �g(m); g = 0; 1; : : : ; n; �0(m) = m; is a naming function � :M !M ,whose value is the name of the g-th neighbor in the neighborhood of the



20 O. Bandmancell named m. In the case of the 2D Cartesian cellular space, the namingfunctions are usually of the form of shifts: �g(�(i; j)) = �(i + a; j + b), a, bbeing integers.An extended concept of a template referred to as weight template W isused. In it, a weight function fg(u) is associated with each naming function�g(m), so that each element of W (u;m) is a pair of two functions,W (u;m) = f(fg(u); �g(m)) : g = 0; 1; : : : ; ng: (4)In terms of the cellular algorithm architecture, T (m) is considered todetermine each cell connections, and W (u;m) { the weights of the connec-tions.A subset of cellsNW (m) = f(u0;m); : : : ; (un; �n(m))g (5)in a cellular array 
, NW (m) � 
 forms the neighborhood of a cell (u0;m)with W (u;m) and N(m) having one and the same underlying templateT (m). This enables us to de�ne the following operation:W (u;m)�NW (m) = ff0(u0); f1(u1); : : : ; fn(un)g (6)which serves as argument to compute a di�usion part of the cellular algo-rithm uD(m) = �(W �NW (m)) = �(f0(u0); f1(u1); : : : ; fn(un)); (7)where �(�) is a di�usion operator reecting the di�usion process peculiari-ties.Introducing the projections of W (u;m) and N(m) into the sets ffg(u)g,and fugg, g = 0; : : : ; n, the vectors W (u;m) = (f1(u); : : : ; fn(u)) andU(m) = (u0; : : : ; un) may be used. It is especially helpful when weightfunctions are of the form fg(u) = wgu, and �(�) is a summation. Then thedi�usion operator reduces to the scalar productuD(m) = hW (u;m);U (m)i: (8)When a di�usion part is in the form of spatially distributed Boolean val-ues, then transformations from the Boolean spatial form to a continuous oneand vice versa are needed. To perform the �rst transformation an averagingtemplate Av(m) and the corresponding averaging neighborhood NAv(m) areintroduced: Av(m) = f(a0;m); (a1;  1(m)); : : : ; (aq;  q(m))g; (9)NAv(m) = f(u0;m); (u1;  1(m)); : : : ; (uq;  q(m))g; (10)aj 2 f0; 1g. The averaging procedure transforms a Boolean spatial functioninto a continuous one as follows:



Discrete-continuous models for spatial dynamics simulation 21u0(m) = 	(Av(m)�NAv(m)) (11)With 	(�) being the mean value (11), yieldsu0(m) = 1q qXj=1 ajuj : (12)When di�usion is represented in a continuous form, Av(m) degenerates intoAv(m) = m, u0 = u0.With the above de�nitions the following state equation in the cellularform is as followsu(m; t+ 1) = �(W (u;m)�NW (m))� F (	(Av(m) �NAv(m))); (13)where � is a di�usion-reaction operator which denotes some kind of a com-bination of di�usion and reaction values, most frequently used in the arith-metic summation.When a multicomponent process is under simulation, the cellular arrayis considered to be a layered structure, each layer corresponding to one ofthe components. Let k = 1; : : : ; l be a layer index. ThenM =[k M (k); 
 =[k 
(k); 
(k) = f(u;m(k)g; u 2 �; m(k) 2M (k);jM (k)j = jM (j)j for all k; j = 1; : : : ; l. Numeration of names in all the layersis identical, so that m(k)i = m(j)i for all mi 2M , k; j 2 f1; : : : ; lg.Each layer computes its own di�usion part C(k)D which depends on thecorresponding concentration variables, W (k)(u;m), Av(k)(m) being di�erentfor di�erent k 2 f1; : : : ; lg. The reaction part CR(m) is a function of contin-uous or averaged values in the corresponding cells of all layers. To representit in a cellular form a reaction template is introducedRL = f(aju0D; j) : aj = 0; 1; j = 1; : : : ; lg; (14)which is identical for all the layers. The corresponding reaction neighbor-hood is NR(m) = f(u01;m(1)); : : : ; (u0l;m(l))g u0 being the averaged results ofthe di�usion operator execution.Accordingly, the reaction part isy(m) = F (k)(RL �NR(m)): (15)Using the above notations a generalized form of multicomponent reac-tion-di�usion may be written down as a set of the following equations



22 O. Bandmanu(k)(m; t+ 1) = �(W (k)(m)�N (k)W (m))� F (k)(RL �NR(m)); (16)for k = f1; : : : ; lg.The above equations together with the parameters � and M form acellular system. Being set in the initial state 
(0), a cellular system startsfunctioning according to (16). A cellular system together with the parallel bycells, synchronous and iterative mode of computation constitutes a cellularalgorithm.A sequence of the cellular arrays f
(0); : : : ;
(ts)g, obtained in the courseof cellular algorithm execution, is referred to as cellular array evolution.The evolution terminates when a stable state 
s, such that
s(t+ 1) = 
s(t); (17)is reached.If any initial cellular array generates a single terminating evolution, thenthe algorithm is considered to be deterministic.It is clear that the �nite di�erence representation (2) is a particular caseof (13). With l = 1 its cellular form is as followsCD(�(i; j)) = �d=h2(ui�1;j + ui;j�1 + ui;j+1 + ui+1;j + (�4 + h2=�d)ui;j ;CR(�(i; j) = F (ui;j); u(�(i; j); t + 1) = CD(�(i; j) + CR(�(i; j):3. Basic �ne-grained modelsTwo models of �ne-grained parallel computations are considered to be fun-damental. They are cellular automaton and arti�cial neural network. Allothers are either their modi�cations, or hybrids, possessing the features ofboth.3.1. The Cellular automata (CA), introduced by von Neumann half acentury ago, nowadays are intensively studied as models belonging to theso called complex systems [8], which are huge sets of simple interacting pro-cessing elements, whose parallel execution is capable of computing complexfunctions. A CA is represented by a discrete cellular space, each cell be-ing associated with a �nite automaton with inputs from its neighborhoodaccording to a given template.In terms of the generalized notations, a CA may be regarded as a cellularsystem with the following parameters:� CA is a one-layer cellular system, l = 1.� A cellular space has a spatial metrics, i.e., the naming set is a regularstructure. Usually, it is a 1D or a 2D in�nite lattice, either Cartesianor hexagonal.



Discrete-continuous models for spatial dynamics simulation 23� The neighborhood is formed of the \spatial neighbors", there existinga �nite radius r in a given metrics such that N(m) is enclosed in thesphere of radius r sphere with the center in m.� The alphabet of states is Boolean, � = f0; 1g.� The weight functions fg(u) = agu with ag 2 f0; 1g, g = 1; : : : ; n.Hence W (u;m)�N(m) = fagug : g = 1; : : : ; ng.� The di�usion operator �(�) is a Boolean function, representing thetransition rules of a �nite elementary automaton.The above \classical" model of a CA has many modi�cations. Two ofthem are worth to be considered.1. The cell states � = fui = (u1; : : : ; un) : ug = 0; 1g are Booleanvectors, and, therefore �(�) is a system of Boolean functions. Such CAsare used in Gas-Lattice models, the most known ones being called the FHP[9]. Each component ug in the state-vector represents either the existenceof (ug = 1) or the absence of (ug = 0) of a particle moving at unit speedtowards the g-th neighbor. A modi�cation of the FHP-model extending itsdomain of applicability, and a 3D variant are under investigation [10, 11].2. The right-hand side of (15) represents the next states in a blockof cells B(m), which at the same time is a neighborhood N(m) = B(m).The next state is computed as a mapping of fB(m)g ! fB(m)g. Such amodi�cation is a subject of study in Parallel Substitution Algorithm theory[12]. A well-known particular case of the CA of such a type is called \CAwith Margolus neighborhood" [13]. Apart from other numerous applicationsthe di�usion simulation is one of the most important. In a 2D case, theMargolus neighborhood is a block of four adjacent cellsB(i; j) = f(u0; �(i; j)); (u1 ; �(i+ 1; j)); (u2 ; �(i+ 1; j + 1)); (u3; �(i; j + 1)g:With fg(u) = u, g = 1; : : : ; l, and U = (u0; u1; u2; u3) a di�usion operator�(W (u;m)�N(m)) = ((u1; u2; u3; u0) if p < 1=2;(u3; u0; u1; u2) if p � 1=2 (18)executes the rotation of states in the block clockwise or counterclockwisewith probability p = 1=2.Each iteration of the algorithm contains two steps: at the �rst step, for-mula (17) is applied to the cells whose coordinates sum (i+j) is even, at thesecond step the same is done for the cells with odd (i+j). The experimentalstudy of the above algorithm has shown its good correspondence to the PDEsolutions [14].3.2. The Arti�cial Neural Network (ANN) is a concept of a class ofmodels, usually referred to as paradigms. All of them manifest a �ne-grained



24 O. Bandmanparallelism, but do not possess the interaction locality property. Moreover,two ANN properties { weight connections and learning capability { havebeen inherited by a powerful reaction-di�usion model called Cellular Neu-ral Network (CNN). The CNN is derived from the ANN paradigm calledHop�eld Neural Associated Memory, which can be represented in terms ofa cellular system as follows:� Each node of the network is a processing element called a neuron.� Array structure is given by a strongly connected graph. Hence, thecell neighborhood is formed of all neurons in the network. Weight tem-plates are di�erent for di�erent cells, hence, weight functions dependnot only on u but also on m, i.e.,W (u;m) = f(w0(m)u0;m); : : : ; (wn(m)un; �n(m))g� The cell state alphabet is a \semi-continuous" one. This means that itsdomain is an interval (0; 1) or (�1; 1), which is the value of a \sigmoid"of a di�usion operator. Continuous, piecewise linear and fully discreteforms of a sigmoid function may be met in numerous studies of theHop�eld paradigm, the most widespread is a threshold one, whichturns the alphabet of a state to the Boolean one.� Weight templates entries are fg(u;m) = wg(m)ug, g = 0; : : : ; n. Adi�usion part is thus computed as followsuD = �(W �N(m)) = �� nXg=0wg(m)ug�; (19)where �(�) is a sigmoid function.� A reaction function F (u) = 0, although sometimes constants are addedto provide the correctness of learning results [15].A di�culty to realize the full-connection Hop�eld associated memoryhas brought up the question, whether its storage capability degrades if theneighborhood in it is reduced to a local one [16]. The new system wascalled the Cellular Neural Associative Memory (CNAM). The CNAM isclassi�ed in [17] as \nonhomogeneous" cellular neuron network, because likein a Hop�eld associative memory, the weight functions are di�erent fromcell to cell. Moreover, the CNAM is not intended to simulate reaction-di�usion processes. Nevertheless, its investigation has been very useful forthis purpose, because it has clari�ed the stability conditions, and determinedthe learning principles for all types of Cellular Neural Networks (CNN) [17].



Discrete-continuous models for spatial dynamics simulation 254. Hybrid �ne-grained modelsHybrid models use both discrete and continuous computations [6], and pos-sess properties of both basic models. Two hybrid models are studied atour department and presented below: Cellular Neural Automaton (CNA)and Cellular Neural Networks (CNN). The CNA is an integration of theCA di�usion with continuous reaction, the latter being approximated by aBoolean array with the use of a probabilistic neuron. So, a large share ofcomputation in the CNA is in Boolean domain. The CNNs possess all theproperties of the ANN, except the array structure inherited from the CA.Thus, its alphabet is semidiscrete, and most of the computation is in thedomain of real numbers.4.1. The Cellular Neural Automaton is an original model. It has beenproposed in [7]. The CNA combines in a single iterative procedure theBoolean operations of the CA di�usion with Boolean approximation of thereaction part. Motivation to such an approach relies upon the existence ofsimple stable and e�ective CA models of di�usion. The CNA is intended tobe used as an alternative to a reaction-di�usion PDE solution. It may berepresented as cellular system of the form (15) with the following parameters:� Array structure is a multilayer regular Cartesian lattice provided witha metrics, the number of layers being equal to the CNA order.� Intercell communications are determined by weight templates, averag-ing templates, and a reaction template of the form (4), (9), and (14),respectively.� Cell state alphabet is Boolean, though intermediate computations ofa reaction operator are done in real numbers.� Any di�usion CA algorithm may be chosen, particularly, the one givenin Subsection 2.1. So, the di�usion operator is computed according to(17), resulting in Boolean cell states uD(m).� Reaction operator is performed according to (12) for averaging thedi�usion results and (15) { for the computing reaction part.The next-state is computed as a probabilistic neuron value, which up-dates the di�usion resulting array by appending to it the reaction part asfollows:u(m; t+ 1) = 8>><>>:1 if u(m; t) = 0; y(m; t) > 0; T+(y(m; t)) > rand(1);0 if u(m; t) = 1; y(m; t)) < 0; T�(y(m; t)) > rand(1);u(m; t) otherwise; (20)



26 O. Bandmanwhere rand(1) is a random number from the interval (0,1), T+(y) and T�(y)are probabilistic neuron functions, equal to probabilities of the event accord-ing to which the cell should change its state u(m) = 0 for u(m) = 1, andu(m) = 1 for u(m) = 0, respectively,T+(y) = y1� u0 ; T�(y) = jyju0 : (21)Computer simulation of a number of typical reaction-di�usion processeshas shown the possibility of using the proposed model for studying phenom-ena in active media [18].4.2. The Cellular Neural Network. The CNNs theory and possible ap-plications have been proposed by L. Chua and his team [5]. The subjectof their study is the so-called standard CNN. In a discrete form a standardCNN is represented by a cell functioning as follows:v(t+ 1) = �v(t) + hW ;U(t)i+ z; (22)u(t+ 1) = jv(t+ 1) + 1j+ jv(t+ 1)� 1j2 ; (23)where v 2 R is an internal state of a neuron, W is a vector of connectionweights equal for all neurons, U is a state neighborhood.The neuron state u 2 (�1; 1) is a piecewise sigmoid function like (23) inits internal state. Its range has three parts: u = �1, u = 1 are saturatedparts, and u = v is a linear part. If the process under simulation is given bya single pair of the variables (v; u), then a CNN is considered to be of �rstorder, otherwise it is of second order (the third order of CNNs also exists,but has not been studied yet at our department).Investigation results of a standard CNN show that the model is capableof simulating a wide range of reaction-di�usion phenomena, whose PDEsare sometimes unknown. Instead, several global states of the system, areavailable, serving as prototypes for the learning procedure [19].The CNN is a multicomponent cellular system with the following param-eters:� Array structure is a multilayer regular Cartesian lattice provided witha metrics, the number of layers being equal to the CNN order.� Intercell communications are represented by weight templates and areaction template of the form (4) and (14), respectively. Weight func-tions are polynomials, most frequently of �rst order.� Cell state alphabet is a \semi-continuous" one. This means that itsdomain is within the interval (�1; 1).



Discrete-continuous models for spatial dynamics simulation 27� Di�usion operator �(U) = �� nXg=0 fg(u)�;where �(�) is a piecewise sigmoid of the form (23).� Reaction functions F (k)(�) are linear (though polynomials of higherdegrees are also possible).The �rst order CNNs are used to simulate reaction-di�usion processes,whose evolution results in a stable state, representing a spatial pattern. Ifthe template is symmetrical, i.e.,�g � �h = 0! wg = wh;then the system is stable. Whatever the initial global state is given, a CNNevolves to one of the stable states. Determining template parameters of aCNN by a number of given stable states is done by learning. A learningmethod has been developed [18], which provides a tool for studying thepattern formation processes, and enables us to investigate a relationship be-tween CNN parameters and properties of patterns, which can be generated.The results of this study may be used to clarify the phenomenon of patternformation in crystallization, biological evolution, ecological processes, etc.The second order CNNs are represented by two-layer arrays withW (k)(u;m) in the form of (3) [19],RL = f(1;m(1)); (1;m(2))g; RL �NR = fu(1)(m); u(2)(m)g;F (1) = f(a1u(1) + b1; u(2))g; R(2) = f(a2; u(1)) + (b2; u(2))g (24)with b2 = �b1.Their evolution simulates emergency and propagation of di�erent typesof autowaves (propagating front, propagating pulse, oscillations). Function-ing of a neuron pair (m(1);m(2)) is studied using a method of qualitativetheory of nonlinear systems, resulting in the relations between the CNNparameters (weight and reaction templates), which provide generation ofa particular type of autowaves [21, 22]. Computer program package hasbeen developed, which is used for experimental study of autowaves behaviorunder di�erent external conditions.5. ConclusionIt is shown that a number of �ne-grained reaction-di�usion models, whichcombine discrete and continuous modes of computation, form a class of cel-lular systems. A generalized representation of such systems is proposed,



28 O. Bandmanwhich is useful for the creation of a uni�ed technology for parallel program-ming. Apart from the inherent parallelism, the proposed models have someadvantages derived from discreteness of the di�usion part, which providesthe absence of the round-o� errors and the improvement of the computationstability.References[1] Bandman O. Fine-grained parallelism in computational mathematics // Pro-grammirovanie. { 2001. { ü 4. { P. 5{20 (in Russian),[2] Rothman D.H., Zaleski S. Lattice-Gas Cellular Automata. Simple models ofcomplex hydrodynamics. { Cambridge: University Press, 1997.[3] Chen S., Wang Z., Shan X., Doolen G.D. Lattice-Boltzmann computationaluid dynamics in three dimensions // J. Statistical Physics. { 1992. { Vol. 68,ü 3/4. { P. 379{407.[4] Bandman O.L. Cellular-neural models of time-spatial dynamics // Program-mirovanie. { 1999. { ü 1. { P. 1{14 (in Russian).[5] Chua L. CNN: A Paradigm for Complexity. { Singapore: World Scienti�c,1999.[6] Bandman O.L. A hybrid approach to reaction-di�usion processes simulation //Lecture Notes in Computer Science. { Berlin: Springer, 2001. { Issue 2127. {P. 1{16.[7] Bandman O.L. Cellular neural-automaton model of reaction-di�usion pro-cesses // Neuroinformatics and its Application. Proceedings of IX NationalSeminar, Krasnoyarsk, Oct. 5{7, 2001. { Krasnoyarsk: KGTU, 2001. { P. 10{11(in Russian).[8] Wolfram S. Cellular Automata Fluids 1: Basic Theory // J. StatisticalPhysics. { 1986. { Vol. 45, ü 3/4. { P. 471{526.[9] Frish U., d'Humiere D., Hasslacher R., Lallemand P., Pomeau Y., Rivet J.Lattice-gas hydrodynamics in two and three dimensions // Complex Systems. {1987. { Vol. 1. { P. 649{707.[10] Medvedev Yu. Modeling ows of uids and gases with cellular automata //Modeling of nonequilibrium systems{2001. Proceedings of IV National Sem-inar (Krasnoyarsk, Oct. 12{14, 2001). { Krasnoyarsk: KGTU, 2001. { P. 98(in Russian).[11] Medvedev Yu. A modi�ed cellular-automata model of uid ow // New Infor-mation Technologies in Discrete Structures Study. Proceedings of III NationalConference (Tomsk, Sept. 12{14, 2000). { P. 84{89 (in Russian).
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