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Simulation of complex phenomena
by Cellular Automata composition∗

Olga Bandman

Abstract. Methods of Cellular Automata (CA) composition are systematically
considered and analyzed. To formally define them some basic mathematical opera-
tions on cellular arrays are introduced. Trivial sequential and parallel composition
types with no shared variables in cell transition functions are given in brief. The
main concern is with two basic methods of composing CA with shared variables.
For each method an example is given and the domain of application is determined.

1. Introduction

The problem of constructing a CA, whose evolution simulates the spatial
dynamics of a complex phenomenon, which is given by some kind of a qual-
itative or a quantitative description, is not completely solved. Meanwhile,
by the present time, a large number of CA-models of natural processes are
proposed and well studied [1]. The best known and practically used are CA
models of diffusion, gas–lattice, phase–separation, snow flakes formation,
stripes formation, etc. In order that a CA be obtained, which simulates
a complex process, such as reaction–diffusion, prey–predatory, snow–flakes
formation in an active medium, etc., it seems reasonable to use a compo-
sition of CA models of its simple components. This idea has been already
used in a number of methods, the best being intended for reaction-diffusion
simulation [2, 3].

A similar problem in mathematical physics also exists. There is a set of
typical functions and differential operators, simulating convection, diffusion,
reaction, wave propagation etc., which are composed to represent complex
processes. The same strategy may be used to form a composed CA of a
number of simple ones. Of course, to approach the problem, a number of
mathematical operations in the CA domain are needed. Some of them were
introduced in [2, 4] for combining diffusion and reaction component when
constructing a diffusion CA with a nonlinear reaction function. As for a
systematic approach to the CA composition, to our knowledge, it has not
been developed by now. Hence, it is not clear in what applications it may
be fruitful, if at all it is worth to be studied.

The paper does not pretend to give an exhaustive answer to the above
questions. The problem is only formally stated, types of the CA composition
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are classified and their capabilities are considered. Taking into account a
poor predictability of the CA behavior, the first priority in the investigation
has been given to the study of experimental case of the compositions. To
attach much importance to practical use of the composition, an extended
concept of CA is considered. This means that all kinds of alphabets and CA
transition function are allowed, the main features of classical CA (cell in-
teraction locality and fine-grained parallelism) being preserved. To capture
all the above extensions, the Parallel Substitution Algorithm formalisms [5]
are used.

Apart from Introduction and Conclusion there are three sections. The
second contains definitions of the concepts under consideration. The third
describes two trivial compositions with independent component evolution:
sequential and parallel. In the third section two composition types with
shared variables are (unidirectional and bidirectional) introduced and con-
sidered.

2. Formal statement of the problem

Cellular Automata are intended for processing spatially distributed func-
tions, represented by cellular arrays, which are finite sets of pairs (u,m)
called cells:

Ω = {(u,m) : u ∈ A,m ∈M}, (1)

u being a cell state from the alphabet A, m – a cell name from a discrete
naming set M . Further, a naming set is used, whose elements are integer
vectors, representing coordinates of a Cartesian space of finite size. For
example, in the 2D case, M = {(i, j) : i, j = 0, 1, . . . , N}. A notion m
instead of (i, j) is used for making general expressions shorter and to indicate
that they are valid for any other kind of a naming set. No constraint but
finiteness is imposed on A, the symbols of A are allowed to be Boolean, real
or integers. To indicate to the state of a cell, named m, a notation u(m) or
um is used.

A mapping φ : M → M , called a naming function, is defined on M . It
determines a neighboring cell location of any cell named m. It is conditioned
that φ0(m) = m. In the naming set M = {(i, j)}, naming functions are
usually given in the form of shifts φk = (i+ a, j + b), a, b being integers not
exceeding a fixed r, called a radius of neighborhood.

On cellular arrays, some mathematical operations are defined [4]. When
all operands have the state alphabet in the domain of real numbers, the
following ordinary cell-by-cell arithmetical rules may be used. Let the sign
“�” represent +,− or ×, then

Ω = Ω1 � Ω2 : (u,m) = (u1 � u2,m) ∀m ∈M,
Ω = cΩ1 : (u,m) = (cu1,m), ∀m ∈M.

(2)
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In the class of Boolean arrays, the logical cell-by-cell operations AND,
OR and NOT are defined in the same way.

When operands have different alphabet types, hybrid cellular array oper-
ations are defined based on the requirement that the above arithmetic rules
be valid for the averaged form Av(Ω) of the Boolean array The latter has
the cell states 〈v(m)〉 in the real interval (0, 1) ⊂ R, being equal to mean
values of the cell states in the averaging area Av(m) ∈ Ω,

Av(m) = {(v0, ψ0(m)), (v1, ψ1(m)), . . . , (vq, ψq(m))}, (3)

and

〈v(m)〉 =
1
q

q∑
k=0

vk, vk ∈ {0, 1}, 〈v(m)〉 ∈ (0, 1). (4)

Let Ω1 = {(um,m)} and Ω2 = {(vm,m)} have alphabets of different
types, i.e., uij ∈ (0, 1), vm ∈ {0, 1}, then their addition, resulting in the
Boolean array Ω = {(v′ij , (i, j)} is as follows [3, 4]:

Ω = Ω1 ⊕ Ω2 :

v′m =

 v̄m with probability π1(m) if (um > 0 & vm = 0),
v̄m with probability π2(m) if (um < 0 & vm = 1),
vij otherwise,

(5)

where v̄ is the logical inversion of v, the probabilities being computed as
follows:

π1(m) =
um

1− 〈vm〉
, π2(m) =

|um|
〈vm〉

. (6)

The local interaction between cells in a cellular array is determined by a
weighted template

Q(m) = {(w0, φ0(m)), (w1, φ1(m)), . . . , (wn, φn(m))}. (7)

The weight values wk ∈ R in (7) form a weight vector W = (w0, . . . , wn),
the naming functions – a naming vector Γ = (φ0(m), φ1(m)), . . . , φn(m)).
When for all k = 0, 1, . . . , n, wk = 1, a template is called unweighted.

A naming vector puts into correspondence to each name m ∈M a subset
of cells

S(m) = {(u0, φ0(m)), (u1, φ1(m)), . . . , (un, φn(m))}. (8)

which is called a local configuration. Its cell state values form a state vector
of the local configuration U(S(m)) = (u0, . . . , un).

Each cell of Ω acts as a finite automaton with a transition rule, which is
represented as a set Φ = {Φ1, . . . ,Φn} of parallel substitutions [5]:
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Φk : S(m) → S′(m), Γ′(m) ⊆ Γ(m), k = 0, . . . , n, (9)

where Γ(m), Γ′(m) are underlying naming templates for S(m), S′(m), re-
spectively, and S′(m) is the next state local configuration, whose cell states
are the results of a cell transition function application

um(t+ 1) = fk(W (m), U(m)). (10)

There are two modes of operation of CA. Synchronous mode, when all
cells compute their next states in parallel and transit to the next state at
once on time steps t = 0, 1, . . . , changing the global cellular array state,
and asynchronous mode, when the cells execute transitions sequentially in a
certain order. In any case, the transition to the next global state, Ω(t+1) =
Φ(Ω(t)), is considered to be an iteration. The sequence of cellular arrays,

Ω(0),Ω(1), . . . ,Ω(t), . . . ,Ω(T ),

obtained by iterative application of Φ to the initial array Ω(0) is called
evolution. The time T is a termination step. It has a finite value if a CA
comes to its stable state. Otherwise, the evolution should be stopped by an
external signal.

With the above notions, a CA is defined as a pair Θ = (Ω,Φ) together
with indication to of the mode of operation. When CA functioning under
certain initial conditions is of interest, the initial cellular array Ω(0) should
also be given, as well as the termination condition.

3. Trivial CA composition methods

3.1. Sequential trivial composition. The common functioning of two
CA is considered to be a trivial composition if their transition rules use
disjoint sets of variables. So, they evolve independently, interacting only at
the start and the termination.

Two CA Θ1 = 〈Ω1,Φ1〉 and Θ2 = 〈Ω1,Φ1〉 are said to form a trivial
sequential composition Θ = 〈Ω,Φ〉 if the following condition holds:

Ω(0) = Ω1(0), Ω(T1 + T2) = Ω2(T2),
Ω1(T1) ⊆ Ω2(0), M1 ⊆M2.

(11)

It should be noted that time steps of the CA are allowed to be different,
and the second CA starts only after the first one terminates. The composi-
tion is useful, especially, in pipelined systems executing fine-grained parallel
cellular computation or image processing.

A special case of trivial sequential composition is its periodic functioning:
when the resulting state of Θ2 serves as the initial state to Θ1 and both CA
work in cycle. The reaction–diffusion CA, based on composing CA-diffusion
with reaction function [2, 3], represent this kind of composition with T1 =
T2 = 1.
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Example 1. Two CA Θ1 = 〈Ω1,Φ1〉, and Θ2 = 〈Ω2,Φ2〉 form a sequential
composition, both having Boolean alphabet and identical naming sets M1 =
M2 = {(i, j), i, j = 0, 1, 2, . . . , 200}. The initial cellular array Ω1(0) has two
vertical belts on the borders of the array with u1 = 1, all other cells being
in zero state.

The CA Θ1 performs T1 = 100 iterations according to the CA diffusion-
transition rules proposed in [6], which are as follows. At each even iteration
(t = 0, 2, 4, . . .), for the local configurations

S(i, j) = {(a, (i, j)), (b, (i+ 1, j)), (c, i+ 1, j + 1)), (d, (i, j + 1))}, (12)

where a, b ∈ {0, 1}, and both i and j even, are replaced by

S′1(i, j) = {(b, (i, j)), (c, (i+ 1, j)), (d, i+ 1, j + 1)), (a, (i, j + 1))} or

S′2(i, j) = {(d, (i, j)), (a, (i+ 1, j)), (b, i+ 1, j + 1)), (c, (i, j + 1))}
(13)

with probabilities p or 1−p, respectively. At each odd iteration (t = 1, 3, . . .)
the same is done relative to the local configurations (i, j), whose both co-
ordinates are odd. In other words, even and odd blocks of cells are in turn
replaced by similar blocks but rotating clockwise or counterclockwise accord-
ing to a given probability, whose value determines the diffusion coefficient
D. With p = 0.5, D = 1.5 [7], any other D may be obtained by changing p.

The CA Θ2, is a totalistic CA [1], which evolves to a stable pattern. It
has a weighted template

Q(i, j) = {(1, (i+ k, j + l))} ∪ {(−0.2, (i+ g, j + h))},

where k, l = −1, 0, 1, g, h = −3,−2, 2, 3. Its cell transition function is as
follows:

uij(t+ 1) =
{

1 if Uij ×Wij > 0,
0 otherwise (14)

In Figure 1, three snapshots of a composed CA are shown: Ω(0), Ω(100),
and Ω(115), the latter being a stable pattern.

3.2. Parallel trivial CA composition. Two CA Θ1 = 〈Ω1,Φ1〉, Ω1 =
{(u,m)}, and Θ2 = 〈Ω2,Φ2〉, Ω2 = {(v,m)}, are said to form a trivial
parallel composition Θ = 〈Ω,Φ〉 if the following conditions are satisfied:

M1 = M2, Ω(0) = Ω1(0) = Ω2(0), Ω(T ) = Ω1(T1) � Ω2(T2). (15)

In (15), “�” is any cellular array rule allowed on the results of parallel
operands.

In this composition, the CA may have different alphabets and different
timings, hence, they need a synchronization signal to start � operation.
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a b c

Figure 1. Sequential composition of two CA: a) initial CA Ω(0), b) the interme-
diate result of Ω(100), c) the composed CA result Ω(115)

Example 2. A separation phase process is simulated by two different CA
independently in parallel and the resulting cellular arrays are then compared
by taking unsigned arithmetic difference of the final cellular arrays.

Here Θ1 is totalistic CA with Boolean alphabet, the square local config-
uration

S(i, j) = {(ui+k,j+l, (i+ k, j + l) : k, l = −3, . . . , 0, . . . , 3},

an unweighted template, and the following cell transition function:

uij(t+ 1) =
{

1 if s > 25 or s = 24,
0 otherwise, (16)

where s =
∑

k

∑
l ui+k,j+l. The initial state Ω1(0) is a random distribution

of “ones” with density ρ = 0, 5.
A CA Θ2 is a finite difference explicit solution to the PDE proposed in

[8], cited in [2]:

∂v

∂t
= 0.2

∂2v

∂x2
− 0.2(v − 0.1)(v − 0.5)(v − 0.9). (17)

The initial state Ω2(0) is taken equal to the averaged form of Ω1(0) with
the averaging area of radius r = 8. So, vij(0) = ρ + ∆v, where ∆v is a
deviation from the averaged value due to the stochastic character of the
initial random distribution, needed for having small bifurcation.

Both CA evolve to their steady states (Figures 2a and 2b). The difference
in the results (Figure 2c) shows the borders of the pattern and narrow
bridges.
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a b c

Figure 2. Parallel composition of two different CA, simulating the phase separa-
tion process: a) by a Boolean CA (16), b) by a finite difference solution of a PDE
(17), and c) the difference in the result

4. The CA composition with shared variables

4.1. Unidirectional composition. A CA Θ = 〈Ω,Φ〉 is unidirectional
composition of Θ1 = 〈Ω1,Φ1〉 and Θ2 = 〈Ω2,Φ2〉 if transition rules of Θ2

use the state variables of Θ1, while the latter evolve independently. So, the
CA Θ1 plays the role of a context for Θ2 and is referred to as context CA,
Θ2 being called basic CA.

To formally define the unidirectional composition, let A1, M1 and A2,
M2 characterize the cellular arrays of Ω1 and Ω2, and f1 and f2 be cell
transition functions of finite automata, respectively. Then the composition
requires that the following conditions be met:

1. A1 ∩A2 = A0, A0 6= ∅, M1 ⊆M2,

2. Each local configuration S2(m) in the transition rules Φk(Θ2) (9) con-
tains two parts:

S2(m) = S22(m) ∪ S21(m), S22(m) ⊂ Ω2, S21(m) ⊂ Ω1. (18)

Similarly, the weighted templates T2(m) = T22(m) ∪ T21(m) with the
naming underlying templates Γ22(m) ⊂M2, Γ21(m) ⊂M1.

3. Interactions between two-component CA should be synchronized, i.e.,
one iteration of the first may be performed in several interactions of the
second, or vice versa. A widespread mode of operation is synchronous
with a common synchronizing clock.

The composition is especially useful in those cases, when the process
under investigation needs to be observed with some parameters changing
over time or over space, the basic CA serving for making the context CA
results observable and comprehensive.
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Example 3. A soliton-like 1D process [9] is simulated by a parity totalistic
CA Θ1 = (Φ1,Ω1) with A1 = {0, 1}, M = 0, 1, . . . , N . The local configura-
tion of Φ1) (9) is as follows:

S(i) = {(ui−k, i− k), . . . , (u, i), . . . , (ui+k, i+ k)}, S′(i) = (u′i, i)

with k = −r, . . . , 0, . . . , r and an unweighted template. The cell transition
function

u′i(t+ 1) =
{

1 if
∑r

k=−r ui+k is even, but not 0,
0 otherwise.

(19)

The transition rule is applied in the ordered asynchronous mode. This
means, that (19) is applied sequentially to the cells named 0, 1, . . . , N .
Hence, at the time of the rule execution the first (t+1) items of the sum oc-
cur to be in the next states. The soliton-like behavior can be obtained only
with initial patterns (referred to as “particles”) satisfying certain conditions
[9]. In the example, two “particles” are used: “11011” and “10001001”. The
first has the displacement d = 7 cells to the left with a period p = 2. The
second has d = 12 also to the left, and p = 6. So, each 6 iterations the dis-
tance between the particles diminish by 9 cells. Between the 12th and the
24th iterations the particles are superimposed, and after the 30th iteration
the first “particle” is ahead, as is shown in the following states of Ω1(t):

t = 0 : 00000000000000000 . . . 00100010010000000000000000001101100
t = 6 : 000000000 . . . 0010001001000000001101100000000000000000000
t = 30 : 00000000000000000000011011000010001001 . . . 00000000000000
t = 36 : 011011000000000000100010010000000 . . . 0000000000000000000

The basic CA Θ2 performs the double averaging. Its alphabet A2 = R.
The mode of execution is synchronous. Each iteration is divided into two
steps. At each step, averaging of Boolean states is performed with a radius
r = 4 according to (4). The boundary conditions are periodic, and the two
particles run around from right to left, the speed of the first being larger
that of the second one (Figure 3).

t = 36 t = 30 t = 6 t = 0

Figure 3. Unidirectional composition of two CA: a totalistic parity CA simulating
a soliton-like process and an averaging CA for transforming the CA results to a
comprehensive form. Three snapshots of the composed CA are shown for t = 6, 30
and 36
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4.2. Bidirectional composition. A CA Θ = 〈Ω,Φ〉 is bidirectional com-
position of Θ1 = 〈Ω1,Φ1〉 and Θ2 = 〈Ω2,Φ2〉 if each component of CA uses
variables from both alphabets. It means that the transition rules of each
component depend on local configurations in both CA components.

To be formal, let A1, M1 and A2, M2 characterize the cellular arrays
of Ω1 and Ω2, and f1 and f2 be cell transition functions of Θ1 and Θ2,
respectively. Then the bidirectional composition is characterized by the
following properties:

1. A1 ∩A2 = A0, A0 6= ∅, M1 = M2,

2. The intercell interaction structure is represented by four types of local
configurations: the first type includes S11 and S22 with the naming
functions φ11 : M1 → M1 and φ22 : M2 → M2, determining the
neighborhoods of a cell from Ωk in the same cellular arrays Ωk, k =
1, 2; the second type of local configurations S12, S21 with the naming
functions φ12 : M1 → M2 and φ21 : M2 → M1, determining the
neighborhood of a cell from Ωk allocated in Ωj , j 6= k, k, j = 1, 2.

3. The transition rules of Θ1 and Θ2 are as follows.

Φ1(m) : S11(m) ∪ S12(m) → S′1(m),
Φ2(m) : S22(m) ∪ S21(m) → S′2(m)

(20)

4. Interactions between two component automata should be synchro-
nized, i.e., one iteration of the first CA is performed during several
iterations of the second one or vice versa. The most usable mode of
operation is synchronous action of each iteration.

The composition is useful in all those cases when a process with two or
more species is under simulation. That is the case when spatial dynamics of
reaction-diffusion is investigated, where diffusion components are indepen-
dent and the reaction functions depend on all or several species taking part
in the process. In conventional mathematics such phenomena are usually
represented by a PDE system.

Example 4. A process of localized structures appearance, interaction and
oscillation, which has been studied in a number of publications on self-
organizing reaction-diffusion systems [10, 11] is simulated as bidirectional
composition of two CA, each component being constructed as a probabilistic
(hybrid) reaction-diffusion CA [3], according to the PDE system, which is
in its simplified form as follows [10]

∂v

∂t
= dv

(
∂2v

∂x2
+
∂2v

∂y2

)
+ λv − av3 − bu, (21)
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∂u

∂t
= du

(
∂2u

∂x2
+
∂2u

∂y2

)
+ v − u. (22)

The simulation has been performed with λ = 2.0, a = 1, b = 1.5, du =
0.025 cm2/s, dv = 0.0025 cm2/s, with a time step τ = 0.6 s, and space
step h = 0.1 cm, which yields for the normalized diffusion coefficients Dv =
τdv/h

2 = 1.5 and Du = τdu/h
2 = 0.15 and provides the averaged state

values of both CA being in the interval (0, 1). The initial conditions are
random distributions of “ones” with averaged densities: ρ1 = 0.1 in Ω1(0)
and ρ2 = 0.9 in Ω2(0). The alphabets and the naming sets are taken as
follows: A1 = A2 = {0, 1}, M1 = M2 = {(i, j) : i, j = 0, 1, . . . , N}, N = 200.

The two CA-components of the composition are almost identical. They
differ only in the values du, dv and in the reaction functions, which are as
follows:

R1(ij) = τ(λvij − av3
ij − buij), R2(i, j) = τ(vij − uij). (23)

Hence, it is convenient to denote any CA as Θk = (Ωk,Φk), k = 1, 2.
Both CA have a diffusion part which may be realized as a Boolean

CA, described in Example 1, and the reaction part, which computes real
functions (23) of variables both from Ω1 and Ω2. The results of the dif-
fusion and the reaction parts should be summed up, which requires per-
forming at each t-th iteration in 2 steps. The first step is to compute two
functions on each Ωk: a diffusion iteration, applying (13) and obtaining
Ω′

k(t) = {(zk, (i, j)) : zk ∈ {0, 1}}, and computing the result of a reac-
tion iteration Ω′′

k(t) = {(yk, (i, j)) : yk ∈ R} according to (23), where
yk = Rk(〈u〉, 〈v〉). Then the main substitution (20) of the composed CA
takes the following form:

Φk(i, j) : Skk(i, j) ∪ Skl(i, j) → S′kk(i, j), k, l = 1, 2, k 6= l, (24)

where Skk(i, j) = (〈zk〉, (i, j)), Skl(i, j) = (yk, (i, j)), S′k(i, j) = (xk, (i, j)),
x1 stands for v, x2 stands for u and is computed as follows (5):

xk(i, j) =


z̄k(i, j) with πk1(i, j) if (yk(i, j) > 0 & xk(i, j) = 0),
z̄k(i, j) with πk2(i, j) if (yk(i, j) < 0 & xk(i, j) = 1),
zk(i, j) otherwise.

(25)

The probabilities πk1, πk2 according to (6) take the following form:

π1k(i, j) =
yk(i, j)

1− 〈zk(i, j)〉
, π2k(i, j) =

yk(i, j)
〈zk(i, j)〉

. (26)

In Figure 4, three snapshots of both CA evolutions are shown, the av-
eraged state values being displayed in gray palette. In a few time steps
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Ω1(0) Ω1(12) Ω1(40)

Ω2(0) Ω2(12) Ω2(40)

Figure 4. Bidirectional composition of two CA. Three snapshots are are given. At
t = 12, in both CA two localized structures appear, at t=40 height become larger
with oscillations inside

two dense spots appear and begin growing, while the densities outside them
become equal. In the spots, the cell states oscillate with a constant fre-
quency but a slightly changing amplitude. The spots grow gradually filling
the whole cellular array with oscillating cell states.

5. Conclusion

Since the construction of transition rules for a CA, simulating complex phe-
nomena, is a hard task and sometimes impossible, the idea of composing
simple ones seems to be fruitful. So, the systematic formal approach to the
CA composition technology is important, because it enables one to extend
the domain of CA application for spatial dynamics simulation. In this paper,
the main methods of the CA composition are shown, based on the unique
formalism and illustrated by computer experiments. There is a good deal of
investigations to be done in future for obtaining computational characteris-
tics of the considered methods, such as loss of accuracy, providing stability,
computational complexity, etc. Although, the true assessment may be done
on the basis of practical applications.
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