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Synchronous versus asynchronous cellular
automata for simulating nano-systems kinetics∗

Olga L. Bandman

Abstract. A class of asynchronous cellular automata (ACA) whose evolution sim-
ulates physicochemical kinetics of nano-systems is defined. It is characterized by
multicell probabilistic transition rules and stochastic character of their application.
To simulate real processes in real time ACAs should have huge cellular arrays and a
very long evolution. So, the problem of parallel implementation of ACA algorithms
is actual. But as distinct from a synchronous case, it has not any good and simple
solution. To overcome this difficulty, a method of ACA approximation by a block-
synchronous cellular automata (BCA) is proposed, analyzed and experimentally
studied.

1. Introduction

Cellular Automata (CA) have been widely recognized to be capable of mod-
eling nonlinear spatial processes in the 80-s, when a series of fundamen-
tal works were published [1, 2]. Gas-Lattice [3], reaction-diffusion [4] and
Lattice-Boltzmann [3] CA models are now well studied and used, although
conventional methods based on numerical solution of PDEs also exist. A lit-
tle later, CA models were proposed for simulation of the phenomena which
cannot be described with PDEs because of their nonlinear and discrete char-
acter. The bright examples are “movable cellular automata” [5] modeling
deformation and cracks in solid bodies and CA-models of percolation beds
control [6]. The above mentioned CA deals with the so-called “stylized”
or abstract particles endowed or not with a velocity vector as cell states,
whose transition rules provide the CA evolution identical or similar to the
phenomena under simulation. The next stage of CA simulation develop-
ment is manifested by using CA for mimicking the behavior of real atoms
and molecules in real time, i.e., for simulating kinetics on nano-level. It has
been stimulated by an increase in computation power, which nowadays al-
lows one to observe movements and interactions of molecules on the surface
of square microns during some microseconds on the personal computer mon-
itor. Of course, physicists or chemists who study nano-system kinetics want
to increase these parameters. So, the problem of computation efficiency
improvement is of urgent need.
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There are two ways in searching for the problem solution. The first is
to optimize the CA transition rules and the mode of their application. The
second is to increase the computer power by using parallel implementation
on multi-processor systems. In both approaches, the success can be achieved
if specific features of the CA-models used are exploited as much as possible.
Most of simulations in nano-system kinetics use a restricted class of CA,
whose main features are as follows:

• Most of transition rules prescribe changing a group (one or more) cell
states at once mimicking an act of adsorption, diffusion, sublimation
or chemical transformation.

• The mode of a CA operation is asynchronous, which means that for
each time step only one updating is performed to one randomly chosen
place of the cellular array.

• The updating of cell states obeys probabilistic transition rules applied
in random order.

Such a stochastic character of CA functioning brought about a term
Monte Carlo simulation, which is commonly used among nano-physicists
and nano-chemists. The CA-models with the above properties are referred
to as kinetic asynchronous CA (ACA). The reason for using the terminology
from CA-theory is that the methods proposed are based on CA-theory and
its extensions, particularly, the formalisms used follow a formal model called
Parallel Substitution Algorithm, which is a generalization of the classical
CA [11].

The class of kinetic ACA models being defined, the ways of reducing
simulation time are analyzed with the inference that the most universal
way of simulation time reduction is approximation of an ACA with a block-
synchronous CA. The reason is that as distinct ACA, synchronous CA from
allow formation of packages for interprocess data exchange when imple-
mented in multiprocessor systems, which yields almost ideal parallel effi-
ciency. Since ACA have a very dense exchange, this makes the paralleliza-
tion of their direct functioning meaningless. It follows therefrom that the
need to develop approximation algorithms and evaluate their efficiency is
relevant, which is the aim of the paper.

In Section 2, the class of kinetic ACA is introduced formally and its
important features are outlined. In Section 3, the algorithm of ACA ap-
proximation by a block-synchronous CA is presented and approximation
error is assessed.
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2. Properties of kinetic asynchronous cellular automata

Kinetic ACA simulate phenomena consisting of sets of elementary action, di-
rectly mimicking physical movements or chemical transformations of atoms
on a crystalline lattice [7,9]. In the ACA, the lattice corresponds to a cellu-
lar space Ω, which is a set of cells, a cell being a pair (a,m), where a ∈ A is a
symbol of state alphabet A, m ∈M ia a cell name. The following alphabets
are mainly used in kinetic ACA:

• Boolean alphabet A = {0, 1}, representing existence or absence of a
certain particle in a cell.

• A set of Boolean vectors A = {(v1, . . . , vb) : vk ∈ {0, 1}}, whose k-th
component represents a particle moving in the direction of the k-th
neighboring cell.

• A set of characters or symbols representing notations of atoms or
molecules (Al, CO, H2, etc.).

• A set of integers, when several molecules are allowed to be allocated
in a single site.

The naming set M = {(i, j, k) : i = 0, . . . , I; j = 0, . . . , J ; k = 0, . . . ,K},
is a set of integer coordinates indicating the place where a particle (or
some particles) may be allocated. There is no restriction on the naming
set structure. Among the most popular are Cartesian arrays, the arrays
based on crystalline and Delonet lattices, as well as those providing a struc-
tural isotropy. For simplicity, when the naming set type is not specified, a
single symbol m is used instead of a set of coordinates.

On the naming set M , a naming function ϕ : M → M may be defined.
If m′ = ϕ(m), then m′ is a neighbor of a cell named m. A set of naming
functions determines a template

T (m) = {m,ϕ1(m), . . . , ϕq(m)}, (1)

which enumerates the neighbors of a given cell m. The set of cells with the
names from T (m)

S(m) = {(v0,m), (v1, ϕ1(m)), . . . , (vq, ϕq(m))} (2)

is called local configuration, T (m) being its underlying template. The cell
(v0,m) ∈ S(m) is further referred to as reference cell for S(m).

Two local configurations S(m) and S′(m) with the same reference cell,
whose underlying templates are written in the form of substitution

ϑ(m) : S(m) → S′(m) (3)

represent an elementary act of cellular array updating. The underlying
templates of the right-hand side and the left-hand side of (3) are in the
following relation:
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T ′(m) ⊆ T (m). (4)

The cell states in the right-hand side of (3)

S′(m) = {(u0,m), (u1, ϕ1(m)), . . . , (up, ϕp(m))}, p ≤ q,

are values of the transition functions, i.e.,

uk = fk(v0, v1, . . . , vq), k = 0, 1, . . . , p. (5)

When the relation between underlying templates is given as a strong inclu-
sion, some states of a subset of cells S′′ ⊂ S(m) remain unchanged, serving
only as variables in (5) and being referred to as context in the substitution.

In kinetic ACA, the substitutions of the form of (3) are to simulate
elementary acts of physical-chemical nano-processes. Some simple typical
examples with A = {a, b, c, . . .}, M = Gas ∪ Solid, are as follows:

• Adsorption. A molecule a is adsorbed from a gas Ω′ = {(a, g) : g ∈
Gas} to an empty site on a solid surface Ω = {(a,m) : m ∈ Solid}
with probability pa

ϑa : {(∅,m)(a, g)} pa−→ {(a,m)(∅, g)}.

• Sublimation. A molecule b is desorbed from a site on a solid surface
to a gas with probability pb

ϑa : {(a,m)(∅, g)} pb−→ {(∅,m)(a, g)}.

• Reaction. If the molecules a and b occur in the neighboring sites on
the surface, they react forming a molecule ab, which outgoes to a gas
with probability pab

ϑab : {(a,m)(b, ϕ(m))(∅, g) pab−→ {(∅,m)(∅, ϕ(m))(ab, g)}.

• Diffusion. If a molecule occurs in the neighborhood of an empty site,
it moves there with probability pd

ϑd : {(a,m)(∅, ϕ(m))
pd−→ {(∅,m)(a, ϕ(m))}.

Besides the above elementary substitutions, many others more compli-
cated are also used, for example, such ones that act in a 3D space, or have
an extended neighborhood, or use certain conditions as context parts, etc.
Moreover, most of real processes consist of many elementary acts. This fact
is reflected in ACA transition rules by superposition of several elementary
substitutions as follows:
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θ(m) = ϑs(ϑs−1(. . . , (ϑ1(m)))), (6)

which is further referred to as local operator. Its underlying template

Tθ(m) = T ′
1(m) ∪ · · · ∪ T ′

s(m). (7)

is a union of those of substitutions included.
A substitution ϑ(m) : S(m) → S′(m) is said to be applicable to a cell

named m ∈M if
S(m) ∈ Ω. (8)

If (8) is not true, nothing happens, and an application attempt is considered
to fail. Otherwise, transition function (5) is computed and the states of cells
in S′(m) are replaced by the obtained values. When it is done for all ϑ(m)
and allm ∈M , Ω(t) is transferred to the next global state Φ(Ω(t)) = Ω(t+1),
Φ being called a global operator. An application of a global operator is
further referred to as an iteration.

The sequence
Ω(0), Ω(1), . . . , Ω(t), . . .

is referred to as CA evolution. A set of all possible evolutions of ACA =
〈A,M, θ〉, starting with the same Ω(0) ∈ A×M is denoted as Γ(Ω(0)). Its
cardinality is enormous,

|Γ| = |M |!× |C|, (9)

where |M |! is the number of permutations of |M | items, |C| is the amount
of probabilistic choices in the transition rules.

There are different modes of space-time distribution of the local oper-
ator application to perform a transition from Ω(t) to Ω(t + 1). The most
important of them are as follows:

1. Synchronous mode. In all cells, when computing next states, transition
functions (5) use the state values of the neighboring cells (vl, ϕl(m)) ∈
Ω(t). The transition to the next state values occurs after all transition
functions in all cells are computed.

2. Asynchronous mode. Each cell transits to its next state just after a
local operator is applied to it, a transition function being computed
using state values of the neighboring cells at the moment. Cells for
the local operator application are chosen at random.

The main difference between synchronous and asynchronous modes of
operation is in the fact that in the synchronous mode, transition function
arguments in all cells at the t-th iteration are the states of cells from Ω(t),
while in the asynchronous mode, half of the whole amount of arguments
used in transition functions at the t-th iteration are states of the cells which
have already transited to the next state and belong to Ω(t + 1). This is
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the reason why two CA having equal A,M,Φ and starting with the same
Ω(0) may have quite different evolutions. The following example shows it
convincingly.

Example 1. Simulation of wave propagation using the HPP-model. The
HPP-Gas is a Lattice-Gas model known as the first and unsuccessful model
for hydrodynamics, is considered to be useful for simulating acoustic and
electro-magnetic waves [12]. The CA is assigned by the naming set M =
{(i, j) : i, j = 0, . . . , N}, and the alphabet A = {v = (s1, s2, s3, s4) : sl ∈
{0, 1}} which is a set of Boolean vectors of length 4, where sl = 1 means that
in the corresponding cell there exists a particle moving in the direction of
the l-th neighbor with unit speed. The neighbors are numerated according
to T (i, j) = (i, j), (i− 1, j), (i, j + 1), (i+ 1, j), (i, j − 1). The operation is
synchronous, each time being divided into two phases: propagation and
collision. In the propagation phase, each particle moves one cell forward
following the direction of its speed, in the collision phase, two particles turn
to perpendicular directions if they occur to meet. The local operator is
θ(m) = ϑ1(ϑ2(ϑ3(m))), where

ϑ1(i, j) : {(sl, (i, j)), (s′l, ϕl(i, j))} → {(s′l, (i, j))}, l = 1, 2, 3, 4;
ϑ2(i, j) : {(0, 1, 0, 1), (i, j)} → {(1, 0, 1, 0), (i, j)};
ϑ3(i, j) : {(1, 0, 1, 0), (i, j)} → {(0, 1, 0, 1), (i, j)}.

(10)

Figure 1 shows three global states of the CA evolution which mimics the
propagation of a round wave initiated by a dense square spot in the center
of the array.

An asynchronous CA with the same A,M,Φ and Ω(0) evolves in quite a
different way which is illustrated in Figure 2.

t = 0 t = 30 t = 100

Figure 1. Three snapshots of synchronous CA evolution simulating
a round wave, |M | = 200× 200
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t = 0 t = 30 t = 100

Figure 2. Three snapshots of ACA evolution of simulating a round wave,
|M | = 200× 200

3. Block-synchronous CA

As is mentioned in the introduction, the problem of approximation of a ki-
netic ACA with a synchronous CA is very important, because its solution
leads to efficient parallelization of the model. The concept of approximation
has further the same meaning than that of approximation continuous space
by a discrete mesh, i.e. a very large finite set Γ of possible evolutions is re-
placed by a smaller set γ, such that each evolution σk ∈ γ is a representative
of a subset Γk ⊆ Γ, all Γk, k = 1, 2 . . . , |Γ|/|γ|, forming a partition on Γ.
Such an approximation may be constructed by introducing a certain updat-
ing order, making the operation mode partially synchronized. To be formal,
a CA approximating a given ACA=〈A,M, θ〉, should satisfy the following
condition:

γ(Ω) ⊆ Γ(Ω) ∀Ω ∈ A×M. (11)

There is another condition which is engendered by the danger of multicell
synchronous updating incorrectness [11]. The fact is that if a local operator
in a synchronous CA prescribes multicell updating, i.e., |S(m)| > 1, then
some data may be lost. This occurs when a substitution, being applied
simultaneously to different cells, makes an attempt to update the same cell.
Sufficient condition to prevent it is as follows:

T ′(m) ∩ T ′(m′) = ∅ ∀m,m′ ∈M ×M, (12)

where T ′(m) is an underlying template for all ϑ(m) ∈ θ(m). It is clear that
classical synchronous automata having |T ′(m)| = 1 are correct. So are ACA,
because although they may have |T ′(m)| ≥ 1, their local operators can be
applied only to one cell at the same time.

From the above it follows that the problem of ACA approximation is
in constructing such a CA, that its mode of operation satisfy two condi-
tions. On the one hand it should contain synchronous parts, on the other
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hand–– correctness conditions (12) are to be met. Block-synchronous mode
of operation seems to be appropriate.

Block-synchronous mode is an intermediate one between synchronous
and asynchronous modes of operation: the transition Ω(t) → Ω(t+ 1) con-
sists of q asynchronous steps, each one operating as a synchronous CA on a
subset of cells. In more detail, the block-synchronous CA (BCA) mode of
operation is as follows:

1. On the naming set M , a set of partitions Π = {Π1, . . . ,Πk, . . . ,Πr},
each consisting of G = |M |/r blocks, is defined as follows:

Πk = {B1
k, . . . , B

G
k },

⋃
g

Bg
k = Ω, Bg

k ∩B
h
k = ∅, g 6= h. (13)

2. Each block comprises r cell names defined by the block template

TB(mk) = {mk, ψ1(mk), . . . , ψr(mk)}. (14)

the reference cell names {m1
k, . . . ,m

G
k } = Π′

k.

3. Each iteration time is divided into r steps. At the k-th step, θ(mk)
is applied synchronously to the cells of Πk. The partitions Πk, k =
1, . . . , r, being chosen in a random order.

Since the algorithm of a BCA functioning and its evolution depend on the
size and the shape of the block-template TB, the latter should be indicated
in the BCA definition, which comprises four concepts:

BCA = 〈A,M, θ, TB〉.

Let an ACA=〈A,M, θ〉 be given with Tθ(m) = {m,ϕ1(m), . . . , ϕp(m)}
as an underlying template of θ. A TB(m) is called an overlaying template
for Tθ(m) if

Tθ(m) ⊆ TB(m), (15)

and if there exists a partition Π of M such that

TB(m′
i) ∩ TB(m′

j) = ∅, m′
i 6= m′

j , m′
i,m

′
j ∈ Π; (16)⋃

m′∈Π

TB(m′) = M. (17)

The case TB(m′) = Tθ(m′) means that Tθ(m) has a shape, which may form
a pavement on M . The simplest example is when M = {(i, j, k)} and Tθ(m′)
has the shape of a parallelepiped in M .

The background for constructing a BCA approximating a given ACA is
further formulated in the form of the following proposition.
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Proposition. A BCA = 〈A,M, θ, TB〉 is an approximation of an ACA =
〈A,M, θ〉 if TB(m) is an overlaying template for θ(m).

Proof. To prove that a BCA is an approximation of an ACA, it is suffi-
cient to show that two conditions (11) and (12) hold, in the latter T ′(m)
standing for TB(m). According to point 3 of the block-synchronous mode
of application, each transition θ(Ω(t)) ⇒ Ω(t+1) of BCA may be expanded
to a sequence

σ = Ω(t), Ω1(t+ τ), . . . , Ωr(t+ rτ), (18)

where each Ωk(t + kτ) is a result of synchronous application of θ to
Ωk−1(t+ (k − 1)τ), and Ωr(t+ rτ) = Ω(t+ 1), τ = t/r.

According to (16), blocks do not intersect. So, condition (12) is satisfied
for each synchronous step, i.e., the updating in blocks is completely inde-
pendent. Hence, the result depends neither on order of blocks updating,
nor of the mode of operation inside a step. Since it is true for all Ωk(t),
k = 1, . . . , r, and

⋃
k Ωk = Ω, the transition Ω1(t) → Ω1(t + 1) is a result

of independent updating of all cells of Ω1(t), which coincides with one out
of |M |! possible global operator applications to Ω1(t). The above holds for
any iteration and any initial Ω ∈ A×M . So, both conditions are proved to
satisfy approximation conditions.

The proposition ensures that the block-synchronous mode is a restric-
tion of the asynchronous one. How serious is the discrepancy from the true
process under simulation – it is the question which may be answered with a
comprehensive experimental study. Our yet rather a poor experience exhib-
ited no estimable difference between the two modes of CA operation, which
is shown by the following example.

Example 2. A simple model of epitaxial growth on Silicon (Si) surface is
a composition of the two following actions:

1. Absorption of Si-atoms from gas with probability pa. Each act of the
absorption adds an atom to the surface increasing the thickness of the
absorbed layer.

2. Diffusion of absorbed atoms over the surface. An atom diffuses to a
neighboring cell if the state of the latter is less that of its own. If there
is n such neighbors (n = 1, 2, 3, 4), then probability of the diffusion act
is pd = 0.054−n, and the choice among n possible directions to move
to, is equiprobable, pd = 1/n.

The process may be described by an ACA = 〈A,M, θ〉, where A = N ,
M = {(i, j) : i = 0, . . . , I, j = 0, . . . , J}. A cell (a, (i, j)) corresponds to
a site on Si surface, where the thickness of the adsorbed layer is equal to a
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atoms. The transition rule θ(i, j) is a superposition of two elementary local
operators: ϑ1 being responsible for absorbtion, ϑ2 –– for diffusion.

θ(i, j) = ϑ2(ϑ1(i, j))),

where

ϑ1 = {(v0, (i, j))}
pa−→ {(v0 + 1, (i, j))}, (19)

ϑ2 = {(v0, (i, j)), (v1, ϕ1(i, j)), (v2, ϕ2(i, j)), (v3, ϕ3(i, j)), (v4, ϕ4(i, j))}
pd−→

{(u0, (i, j)), (u1, ϕ1(i, j)), (u2, ϕ2(i, j)), (u3, ϕ3(i, j)), (u4, ϕ4(i, j))},

where

u0 =
{
v0 if (∀l : vl ≥ v0) ∨ (ξ > pn),
vk − 1 if (vk < v0) ∧ (ξ ≤ pn),

uk =
{
vk if (∀l : vl ≥ v0) ∨ (ξ > pn),
vk + 1 if (vk < v0) ∧ (ξ ≤ pn),

ξ being a random number in the interval [0, 1]. In the asynchronous opera-
tion mode, the global transition Ω(t) → Ω(t+1) is a result of application of
(19) to all cells in Ω(t) each being randomly chosen.

In the block-synchronous mode, each next global state is a result of nine
synchronous steps. At the l-th step, local operator (19) is applied to the
l-th reference cells of all blocks belonging to the l-th partition, blocks being
3× 3 squares. The simulation process shows the formation of islands on the

Figure 3. The dependence P (t′) for ACA (solid line) simulating epitaxial growth
and its approximation by a BCA (dotted line), |M | = 100×100, pa = 0.2, t′ = t/500
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surface. One of the features under investigation is the dependence P (t) of
the total perimeter of the islands on time. The time is measured in iteration
numbers, P is measured in the number of cell pairs having different states.
During the process, P (t) exhibits oscillations. In Figure 3, the first waves
Pas(t) and Pbs(t) of such oscillations are shown for asynchronous and block-
synchronous modes of operation with nine array partitions into 3×3 blocks.
It is seen that the perimeter curves almost coincide. A mean relative error
of approximation is E = 0.0412.

4. Conclusion

The method of CA with the block-synchronous mode of operation, whose
evolution approximates that of a kinetic ACA, is presented. The approxi-
mation error may be considered to be sufficiently good. Preliminary experi-
mental parallel implementation of the BCA shows that the efficiency of 80 %
can be achieved. But the investigation of its dependence on the features of
the ACA transition rules, as well as of the relation between the block size
and the array size are to be investigated in the future.
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