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Cellular Automata composition techniques for
spatial dynamics simulation

Olga Bandman

Abstract. A Cellular Automaton (CA) is nowadays an object of ever growing
interest as a mathematical model for spatial dynamics simulation. Due to the
CA ability to simulate nonlinear and discontinuous processes, it is expected to
become a complement to partial differential equations. Particularly, the CA may
be helpful when there is no other mathematical model of a phenomenon to be
simulated. The fact is, there is no formal procedure to construct a CA-model
according to a given qualitative or a quantitative specification of a space–time
process. But, there exists a relatively large bank of CA that may be used for
constructing the new complex CA models out of several known simple ones. In order
to exploit this possibility CA composition methods are needed. The main purpose
of this paper is to present a theoretical foundation and its basis on CA composition
techniques in a generalized and systematic form. To capture all features of a great
diversity of CA-models, a more general formalism for CA-algorithms representation,
namely, Parallel Substitution Algorithm is chosen as a mathematical tool. The
paper combines the results about the subject under consideration that are scattered
in publications, most of them being original.

1. Introduction

A Cellular Automaton (CA) is nowadays an object of ever growing interest
as a mathematical model for the spatial dynamics simulation. Due to its
ability to simulate nonlinear and discontinuous processes, CA is expected
[1, 2] to become a complement to partial differential equations (PDE). Par-
ticularly, CA may be helpful when there is no other mathematical model of
a phenomenon to be simulated. By now, a great variety of CA are known,
whose evolution simulates certain kinds of spatial dynamics. All of them
are descendants of a classical von-Neumann’s CA, which has a Boolean al-
phabet, deterministic single-cell updating transition functions, and a syn-
chronous mode of operation. Such CA are capable of simulating a number
of processes in physics, chemistry, biology and sociology. The most known
are CA-models of physical processes, such as diffusion [1, 3], wave propa-
gation [4], phase transition [2, 5], spatial self-organization [6], etc. More
complicated CA called the Gas–Lattice models [7] are used in hydrodynam-
ics, some of them [8, 9] dealing with a real alphabet. Among the above
CA-models, there are those, which may be described in terms of PDE. Such
are the following: diffusion, liquid flow, solitons. The first two are proved
to correspond strictly to their PDE counterparts [10, 11]. As for soliton [4],
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its CA-model is a bright manifestation of an essential difference in complex-
ity between third order nonlinear PDE and a simple Boolean function that
simulate the same phenomenon.

In chemistry and microelectronics [14], asynchronous probabilistic CA
with multi-adjustable cells (in chemistry being referred to as Monte Carlo
methods), are intensively used for studying a surface reaction on catalysts
[12, 13] and processes of the epitaxial growth of crystals [14]. The processes
are simulated by mimicking real movements and interactions of atoms and
molecules. This type of processes have no mathematical description in terms
of PDE, because continuous functions cannot capture the behavior of dis-
crete particles.

Biology and medicine present a wide range of processes to be simulated
by CA, genetics [15], myxobacteria swarming [16], the growth of tumors
[17] being the examples. In solving ecological problems, CA are used more
and more frequently to simulate the propagation of diseases [18], the growth
of tumors, etc. Recently, CA-models have aroused considerable interest in
simulating the crowds behavior [19, 20]. Moreover, the CA simulation has
now gone beyond the scope of scientific research, being used, for example,
to simulate the process of cement hardening [21].

The diversity of processes being simulated by CA caused the necessity to
extend the cellular automaton concept by allowing it to have any kind of an
alphabet (Boolean, integer, real, symbolic), any kind of transition functions
(deterministic, probabilistic), any mode of functioning (synchronous, asyn-
chronous). Although the imperative properties of CA still remain. They are
as follows:

• CA consists of many identical simple processing units (cells);

• Interactions between cells are constrained by a small (relatively to the
total amount of cells) neighborhood.

Such an extended concept of CA is sometimes referred to as fine-grained
algorithms [22] or complex systems [23]. Nevertheless, hereafter the term
CA or CA-model is used as the most habitual one. In Figure 1, CA-model
types are collected and allocated according to their properties. It is shown
that Cellular Neural Networks (CNN) [24] and an explicit form of discrete
representation of Partial Differential Equations (PDE) are also regarded as
special cases of CA-models.

Unfortunately, there is no formal procedure to construct a CA-model
according to a given qualitative or quantitative specification of a space–time
process. All known models are the result of a trial and error work based on
a high level of experience in CA modeling, and sophisticated understanding
of a phenomenon to be simulated. But now, having a relatively large bank
of CA-models as well as powerful computing systems at hand, the problem
arises how to construct CA-models of complicated real life processes, which
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Figure 1. Properties of CA simulation models: lines connecting the rectangles
show the sets of properties, characterizing certain types of CA-models

may be thought of as a set of interacting simple ones, for whom CA-models
are known. Hence, methods and tools are needed to organize the interaction
of CA in such a way that the evolution of a composed CA represents the
required spatial process. The problem is similar to that in mathematical
physics where a PDE is represented as the sum of differential operators of
certain degrees, each term having its own physical meaning.

Complications in the CA composition are associated with the Boolean
alphabet, because the overall impact of a Boolean CA-component may not
be obtained by means of conventional arithmetics. Even more difficult is
to compose CA-models having different alphabets and/or different modes
of operation which is the case in reaction–diffusion and prey–predatory pro-
cesses, when diffusion is given as a Boolean CA, and reaction –– as a real
function. For example, the snowflakes formation is usually simulated by a
Boolean CA, while if it proceeds in an active medium, a chemical compo-
nent should be added, which may be given as a nonlinear real function. The
first prototype of such a composition is proposed in [26] for combining a
nonlinear reaction function with a Boolean diffusion, and a more general
probabilistic variant is given in [27].

From the above it follows that the CA-composition methods should be
capable of performing algebraic operations on CA-configurations with all
kinds of admissible numerical alphabets: Boolean, real and integer. This
means that some kind of equivalent transformation of CA should be intro-
duced to make CA-models compatible with different alphabets. Based on
such a transformation, a special algebra on CA configurations is to be con-
structed, which allows us to combine the functioning of several CA-models
in a single complex process.
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A fast increase of the variety of CA-models and the growing necessity of
simulating complicated processes require a general formal approach to the
CA composition, which is to be valid for any type of CA and any type of their
interaction. It is precisely the object of this paper, which aims at presenting
a theoretical foundation, and based on it, the CA composition techniques
in a generalized and systematic form. To capture all features of an essential
diversity of CA-models, a more general formalism for the CA-algorithms rep-
resentation, namely, Parallel Substitution Algorithm (PSA) [25], is chosen
as a mathematical tool.

The paper combines the results on the subject that are scattered about
previous papers. It consists of the following sections. In the next section,
main concepts and formal definitions are given and operations on cellu-
lar arrays are defined. Third section presents a sequential composition of
CA-models. In the fourth section a parallel and a mixed composition meth-
ods are given. The fifth section is concerned in computational properties of
composed CA, namely, accuracy, stability and complexity. All composition
methods are illustrated by the original simulation results.

2. Main concepts and formal problem statement

For simulation of the spatial dynamics, an extended concept of CA-model
is considered, whose expressive power is sufficient for simulating natural
phenomena of several kinds. The concept is based on the PSA formalism
[25], which, though intended for the parallel hardware design, seems to be
the most suitable for modeling complex processes. Moreover, due to its
flexibility, the PSA allows a strict formulation of the main principles of CA
composition: 1) conservation of behavioral correctness, and 2) alphabets
compatibility of CA involved in the composition.

2.1. Formal definition of a CA-model

Simulation of a natural phenomenon comprises the determination of a suit-
able mathematical model and computation of a function of time and space.
If a CA is chosen as a mathematical model, then time is a discrete sequence
0, 1, . . . , t, t+ 1, . . . of natural numbers, space is a discrete set referred to as
a naming set, function values are from an appropriate alphabet.

A finite naming set M = {mk : k = 0, . . . , |M |} is further taken for the
space. Its elements mk ∈M in the simulation tasks are usually represented
by the integer vectors of coordinates of a Cartesian space of a finite size.
For example, in the 2D case, M = {(i, j) : i = 0, 1, . . . , I, j = 0, 1, . . . , J}.
The notation m is used instead of (i, j) for making the general expressions
shorter and for indicating that they are valid for any other kind of discrete
space points.
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No constraint is imposed on the alphabet A. The following cases are
further used: AS = {a, b, . . . , n} –– a finite set of symbols, AB = {0, 1} –– a
Boolean alphabet, AR = [0, 1] –– a set of real numbers in a closed interval.
Symbols from the second part of the Latin alphabet {v, u, x, y, . . . , z} are
used to denote the variables defined on A. Appealing to the above extended
concept, the alphabet is dictated by the aim of the study––to combine several
CA of different types into a single one for simulating complex phenomena.
A pair (a,m) is called a cell, a being a cell-state and m being a cell-name.
To indicate the state of a cell named by m both notations u(m) and um are
further used.

The set of cells
Ω = {(u,m) : u ∈ A, m ∈M}, (1)

such that there are no cells with identical names is called a cellular array,
or, sometimes, a global configuration of a CA.

Over the naming set M, a mapping φ : M → M is defined, referred to
as a naming function. It determines a neighboring cell location φ(m) of any
cell named m. In the naming set M = {(i, j)}, naming functions are usually
given in the form of the shifts φk = (i + a, j + b), a, b being integers. The
set of naming functions determines a template

T (m) = {φ0(m), φ1(m), . . . , φn(m)}, (2)

which associates a number of cell names to each name m ∈ M . The cell
named as φ0(m) is called an active cell of a template, where n� |M |, and
φ0(m) = m by condition.

A subset of cells

S(m) = {(u0,m), (u1, φ1(m)), . . . , (un, φn(m))}, (3)

with the names from T (m) is called a local configuration, with T (m) being
its underlying template. The set

US(m) = {u0, u1, . . . , un}

forms a set of local configuration state variables.
A cell (uk,m) changes its state uk to the next–state u′k under the action

of a local operator, which is expressed in the form of substitution [25] as
follows

θ(m) : S(m) ∗ S′′(m)→ S′(m), (4)

where
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S(m) = {(v0,m), (v1, φ1(m)), . . . , (vn, φn(m))},
S′(m) = {(u′0,m), (u′1, φ1(m)), . . . , (u′n, φn(m))}, (5)
S′′(m) = {(vn+1, φn+1(m), . . . , (vn+h, φn+h(m))},

where S(m), S′(m), and S′′(m) are local configurations, the first two having
the same underlying template, and the third one comprises h additional
cells, which together with S(m) conditions the next state values u′k.

The next-states u′k, k = 0, 1, . . . , n, of the cells from S′ are computed as
values of the transition functions fk, of the states of cells from S(m)∪S′′(m),
i.e.,

u′k = fk(v0, . . . , vn, . . . , vn+h), ∀ k = 0, 1, . . . n. (6)

A union of the left-hand side local configurations in (4) S(m) ∪ S′′(m)
is called a cell-neighborhood, where S′′ is a context, S(m) is a base of θ(m).
The right-hand side S′(m) is the next-state base of the local operator. The
underlying templates T (m), T ′(m), and T ′′(m) of the local configuration in
(5) are in the following relation:

T ′(m) = T (m), T (m) ∩ T ′′(m) = ∅, (7)

T (m) being referred to as the basic template of θ.
A local operator θ(m) is said to be applicable to a cell named m ∈M if

S(m) ∪ S′′(m) ⊆ Ω. Otherwise, it is not applicable. Application of θ(m) to
a certain cell (v,m) (a single-shot application) means the following actions.
For all k = 0, . . . , n

1) the next-states u′k are computed according to (6),

2) the cells (vk, φk(m)) ∈ S(m) are updated by replacing the cell states
uk by u′k.

The cells (vn+l, φn+l(m)), l = 0, . . . , h, from the context remain un-
changed. They play the role of an application condition, the states being
used as variables in the transition functions (Figure 2).

Figure 2. Graphical representation
of a local operator

A subset M̂ ⊆M , referred to as an
active naming set is defined, such that
it comprises the names of active cells,
i.e., the cells to which the local opera-
tor is applied to make a cellular array
transit to the next state. Application
of θ to all active cells m ∈ M̂ com-
prises an iteration performing a global
transition:

Φ(M̂) : Ω(t)→ Ω(t+ 1). (8)
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A sequence of iterations results

Σ(Ω) = (Ω,Ω(1), . . . ,Ω(t),Ω(t+ 1), . . . ,Ω(t̂)) (9)

is called CA-evolution.
The CA-evolution is a result of a simulation task, representing the pro-

cess under simulation. If the process converges to a stable global state, then
the CA–evolution has termination, i.e., there exists such t = t̂, that

Ω(t̂) = Ω(t̂+ 1) = Ω(t̂+ 2) = . . . = Ω(t̂+ ξ), (10)

where ξ is a priori given number. If this not so, then the evolution is infinite,
i.e., exhibits an oscillatory or a chaotic behavior [2].

There are different modes of the local operator application ordering in
space and time to perform a global transition from Ω(t) to Ω(t + 1). The
following three are the most important ones.

Synchronous mode provides for transition functions (6) to be com-
puted using the current state values of their variables, i.e.,

S(m) ∪ S′′(m) ⊂ Ω(t). (11)

The transition to the next cell-state values occurs after all the transition
functions in cells from S(m) for all m ∈ M̂ are computed. Theoretically,
it may be done in all cells simultaneously or in any order, which manifests
the cellular parallelism. In fact, when a conventional sequential computer
is used, such a cellular parallelism is imitated by delaying the cell updating
until all the next states are obtained. So, the cellular parallelism is a virtual
parallelism, which cannot be for the benefit when a CA-model is run on
conventional computers.

Asynchronous mode of operation offers no simultaneous operation
(neither real nor virtual). The intrinsic parallelism of the CA is exhibited by
an arbitrary order of cells to be chosen for application of θ(m), the updating
of cell states of S′(m) being done immediately after θ(m) is applied. The
time of such an application is referred to further as time-step τ . So, each
global transition Ω(t) → Ω(t + 1) consists of |M̂ | sequential time steps,
forming a sequence of cellular arrays

γα(Ω(t)) = Ω(t),Ω(t+ τ), . . . ,Ω(t+ |M̂ |τ), (12)

which is referred to as global state transition sequence. An important prop-
erty of the asynchronous mode of operation is that the state values used by
transition functions (4) may belong both to Ω(t) and to Ω(t+ 1), i.e.,
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S(m) ∪ S′′(m) ⊂ (Ω(t) ∪ Ω(t+ 1). (13)

It is the reason why two CA with equal 〈A,M, M̂, θ〉 starting from the same
Ω may have quite different evolutions when operating in different mode.
Although, some exotic “very good” CA are known, whose evolutions and
attractors are invariant whatever mode of operation is used [25].

Multi-stage synchronous mode is also frequently used. It is a mixed
mode. A multi-stage synchronous CA may be regarded both as a synchro-
nized asynchronous CA, and as an asynchronized synchronous one. The
whole cellular array of the CA is partitioned into non-intersecting blocks
each containing b cells. The block partition induces another naming set
partition, called stage partition {M̂1, . . . , M̂b}, whose subsets contain repre-
sentative names of all blocks, so that M̂ = M̂1 ∪ . . .∪ M̂b. Respectively, the
iteration is divided into b stages. At each kth stage, the local operator is
applied to the cells of M̂k synchronously, the stages being processed in an
asynchronous manner. Naturally, the cellular parallelism here is limited by
the subset cardinality.

No matter what is the mode of operation, a global operator is the result
of application of θ(m) to all cells m ∈ M̂ .

From the above it follows that a CA-model, denoted as ℵ is identified by
the five notions:

ℵ = 〈A,M, M̂, θ, ρ〉,

where ρ indicates to the mode of operation, ρ = σ stands for the synchronous
mode, ρ = β stands for the multistage synchronous mode, and ρ = α ––
for the asynchronous mode of the local operator application. When the
indication of the operation mode is essential, the corresponding symbol is
placed as an subindex, e.g. ℵα denotes an asynchronous CA.

2.2. Correctness of the local operator interaction

A CA-model ℵ = 〈A,M, M̂, θ, ρ〉 is called to be correct (in the computational
sense) if its operation satisfies the following correctness conditions.

Non-contradictoriness. At any moment of time, a cell is allowed to be
updated by only one local operator application. Non-contradictoriness pro-
vides the absence of conflicts, i.e., such a situation when a local operator
being applied to the cells m and φk(m) simultaneously is attempting to up-
date one and the same cell by writing into it different state values. Formally,
the non-contradictoriness sufficient condition is formulated as follows [25]:
the simultaneous application of a local operator to mk and ml is allowed
only if
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T ′(mk) ∩ T ′(ml) = ∅ ∀(mk,ml) ∈M. (14)

It is quite clear that the non-contradictoriness condition is always satis-
fied for classical synchronous CA whose local operator has a single-cell base,
i.e. |S′(m)| = 1. It is not so if |S′(m)| > 1, because the local operator has
to change several cells simultaneously. For example, a conflict occurs when
a surface chemical reaction is simulated, where there are pairs of molecules
occurring in contact (in the adjacent cells) which produce pair of other
molecules. In the CA-model this corresponds to changing the states in both
cells simultaneously, which leads to a conflict if the synchronous mode is
used (Figure 3).

Figure 3. A graphical repre-
sentation of the contradictoriness
property. Simultaneous applica-
tion of θ(i) and θ(i+ 1) have dif-
ferent results in the cells named
i, i+ 1, i+ 2, engendering a con-
flict

To avoid the above conflict situation, one has to sacrifice a bit of cellu-
lar parallelism to non-contradictoriness. This may be done either by con-
structing an asynchronous CA, whose evolution simulates the process, or
by replacing the synchronous CA ℵσ = 〈A,M, M̂, θ, σ〉 by an equivalent
multi-stage CA ℵβ = 〈A,M, M̂1, . . . , M̂b, θ, β〉. Such a sequalization is done
according to the following algorithm.

1. The naming set M is partitioned into |M |/b blocks, a block being
defined by the underlying template

B(m) = {ψ0(m), ψ1(m), . . . , ψl(m), . . . , ψb(m)}

in such a way, that

B(mj) ⊇ T ′(mj), ∀j = 1, . . . , |M |/b;
|M |/b⋃
j=1

B(mj) = M, ∀j = 1, . . . , |M |/b;

B(mh) ∩B(mg) = ∅, ∀mh,mg ∈ M̂k, ∀k = 1, . . . , b,

(15)

where T ′(m) is the basic template in θ.

2. On the active naming set M̂ , a stage partition {M̂1, . . . , M̂k, . . . , M̂b}
is defined, i.e.,
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M̂k = {ψk(mj) : k = 1, . . . , b; j = 1, . . . , |M |/b}, (16)

mj = ψ0(mj) being an active cell of a block B(mj) ∈M .

3. Each iteration Ω(t) → Ω(t + 1) is divided into b sequential stages
(t1, t2, . . . , tb), tb = t+ 1, the resulting arrays forming a sequence:

γβ(t) = (Ω(t), . . . ,Ω(t+ tk),Ω(t+ tk+1), . . . ,Ω(t+ 1), tk =
τk

b
, (17)

that are referred to as stage transition sequence. At the k-th stage, k =
1, . . . , b, θ(m) is applied synchronously to all cells from M ′k.

4. The subsets M̂k, k = 1, . . . , b, are sequentially processed in arbi-
trary order, hence, the total number of possible stage transition sequences
is |{γβ}| = b !.

As for asynchronous CA, they always satisfy non-contradictoriness con-
ditions, because at each step only one application of θ(m) is allowed.

Fairness. At each iteration, θ(m) should be applied to all cells m ∈ M̂ ,
to any cell m ∈ M̂ being applied only once. The fairness ensures that all
cells have equal rights to participate in the CA operation process, therefore,
it is sometimes referred to as equality of cells [29]. Synchronous classical
CA satisfy this property according to the definition of synchronicity. When
the multi-stage synchronous mode is used, the fairness is provided by con-
ditions (14) and (15). In asynchronous CA, the property is consequence of
the binomial probability distribution of cells chosen for the local operator
application.

2.3. Operations on cellular arrays

When a phenomenon under simulation consists of several interacting pro-
cesses, its CA-model should be composed of a number of CA which have
to interact, executing some operations on intermediate results both on the
local and on the global level. The problem in determining such an oper-
ation emerges when it turns to be incompatible with the alphabet of the
CA-models under composition. For example, Boolean cellular arrays are
incompatible with arithmetic addition. To solve this problem, a kind of
CA-composition algebra on cellular arrays is introduced [28].

Like in any algebraic system, unary and binary operations are defined in
the CA composition algebra.

Unary operators on cellular arrays. Two unary operators are defined:
averaging which transforms Boolean cellular arrays into the equivalent real
ones, and state discretization, which performs the inverse operation.



Cellular Automata composition techniques. . . 11

Averaging of the Boolean cellular array Av(ΩB) is a unary global op-
erator which comprises the application of a local operator Av(m) to all cells
of the cellular array, i.e., Av(ΩB) ∈ AR ×M , where ΩB = {(v,m) : v ∈
{0, 1},m ∈M}, ΩR = {(u,m) : u ∈ [0, 1],m ∈M}.

The local operator Av(m) computes the average value of cell states in
the averaging area

TAv(m) = {m,ϕ1(m), . . . , ϕq(m)}. (18)

In the case of the 2D Cartesian cellular array, TAv(i, j) = {(i, j),
(i+ k, j + l) : k, l = −r, . . . , r}, r being referred to as averaging radius.

Averaging may be regarded as a local operator

Av(m) : SAv(m)→ (u,m), u(m) = 〈v〉 =
1
q

q∑
k=0

vk, (19)

SAv(m) having TAv(m) as an underlying template. Angle brackets in (19)
and in the sequel mean the averaged state values.

Discretization of a real cellular array Dis(ΩR) is a unary global oper-
ator

Dis(ΩR) ∈ AB ×M,

resulting from the application of a local operator Dis(m) to all cells of the
cellular array. Dis(m) is a single-cell local operator that replaces a real state
value u ∈ [0, 1] by 1 with probability p = u:

Dis(m) : (u,m)→ (v,m), v = Bool(u) =
{

1 if u < rand,
0 otherwise, (20)

where rand is a random number in the interval [0, 1], Bool(u) means a dis-
cretized value of u ∈ [0, 1]. The above two unary operations are in the
following relationship:

Dis(ΩB) = ΩB, Dis(Av(ΩB)) = ΩB,

Av(ΩR) = ΩR, Av(Dis(ΩR)) = ΩR.
(21)

Binary operators on cellular arrays. Binary operators are defined on
cellular arrays Ω ∈ AB × M1 ∪ AR × M2, if between M1 = {(m1)i} and
M2 = {(m2)i} there exists an one-to-one correspondence ξ : M1 →M2,

(m2)i = ξ((m1)i), ∀(m2)i ∈M2,

(m1)i = ξ−1((m2)i), ∀(m1)i ∈M1.
(22)

The cells (v, ((m1)i)) ∈ Ω1 and (u, ((m2)i)) ∈ Ω2 are further denoted as
(vi,m1) and (ui,m2), respectively, which means that vi and ui are states in
the corresponding cells of Ω1 and Ω2.
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Binary operations are defined on the basis of the following principle: ordi-
nary arithmetic rules should be valid for the averaged forms of the operands,
i.e.,

Ω1♦Ω2 ⇔ Av(Ω1) �Av(Ω2), (23)

where ♦ stands for the cellular array addition ⊕, subtraction 	 or multipli-
cation ⊗, and � stands for +, −, and ×, respectively.

Condition (23) may also be given in terms of ordinary arithmetics applied
to cell states, i.e.

vi(m1) � ui(m2)⇔ 〈vi(m1)〉 � 〈ui(m2)〉 ∀i ∈ 1, . . . , |M |, (24)

where � stands for ordinary arithmetical +, −, and ×, respectively.
The reason for taking averaged state values as a generalized alphabet

is twofold: 1) to allow ordinary arithmetic to be used for modeling spatial
functions interactions, and 2) to make the results more comprehensive in
terms of physics.

From (23) and (24) it follows that when all operands have real alpha-
bets, the cellular array arithmetic coincides with the corresponding real
cell-by-cell arithmetical rules. Otherwise the rules depend on the operands
alphabets.

Let Ω1 = {(v,m1) : v ∈ A1,m1 ∈M1} and Ω2 = {(u,m2) : u ∈ A2,m2 ∈
M2} be operands and Ω3 = {(w,m3) : w ∈ A3,m3 ∈ M3} be a result, then
binary operations are as follows.

The cellular array addition Ω1 ⊕ Ω2 = Ω3. For different operands
alphabets, the cellular addition looks somewhat different. The following
cases are of major importance.

1. Both operands Ω1 and Ω2 are Boolean cellular arrays, Ω3 is wanted
to have a real alphabet, then according to (23) Ω3 is computed as follows.

Ω3 = Av(Ω1)⊕Av(Ω2),
wi = 〈vi〉+ 〈ui〉 ∀i = 1, . . . , |M |.

(25)

2. Both operands are Boolean and Ω3 is also wanted to have a Boolean
alphabet, then

Ω3 = Dis(Av(Ω1)⊕Av(Ω2)),

wi =
{

1 if rand < (〈ui〉+ 〈vi〉),
0 otherwise, ∀i = 1, . . . , |M |.

(26)

3. Both operands and the sum are Boolean, the latter being used as an
intermediate result. So, it is convenient to update one of the operands, say
Ω2, so, that it be equal to the resulting array, i.e.,
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Ω2(t+ 1) = Ω1(t)⊕ Ω2(t).

In that case, it suffices to invert a number of zero-states in the cells (0,m2) ∈
Ω2. It should be done in such a way, that in every cell (ui,m2) ∈ Ω2 its
averaged state value be increased by 〈vi〉. According to (20), the probability
of such an inversion is the relation of the value to be added to the number
of “zeros” in the averaging area of each cell of Ω2:

u′i =

{
1 if ui = 0 & rand < 〈vi〉

1− 〈ui〉
,

ui otherwise,
∀i = 1, . . . , |M |. (27)

4. The operands have different alphabets. Let Ω1 have a Boolean al-
phabet, Ω2 has a real one, and Ω3 is wanted to be a real cellular array,
then

Ω3 = Av(Ω1)⊕ Ω2,

wi = 〈vi〉+ ui ∀i = 1, . . . , |M |.
(28)

5. Ω1 has a Boolean alphabet, Ω2 has a real one, and Ω3 is wanted to
be a Boolean real cellular array. Two ways are possible: 1) to discretize Ω3,
obtained by (28), and 2) to update Ω1 using the following operation

wi =

{
1 if vi = 0 & rand < ui

1− 〈vi〉
,

vi otherwise,
∀i = 1, . . . , |M |. (29)

Cellular array subtraction Ω3 = Ω1 	 Ω2. The following cases are
worth to be considered.

1. Both operands are Boolean, the result is wanted to be real or Boolean.
The operations are performed similar to those of the cellular addition. It is
merely needed to replace “+” by “−” in (25) and (26).

2. Both operands are Boolean, and Ω2 is to be updated to obtain Ω2 =
Ω1 	 Ω2. In that case, some cell states (1,m2) ∈ Ω2 should be inverted as
follows:

u′i =

{
0 if ui = 1 & rand < 〈vi〉

〈ui〉
,

ui otherwise,
∀i = 1, . . . , |M |. (30)

3. Ω1 has a Boolean alphabet, Ω2 has a real one, and Ω3 is wanted to
be a Boolean cellular array. Two ways are possible: 1) to discretize Ω3,
obtained by arithmetic subtraction, which performs the following operation:

Ω3 = Dis(Av(Ω1)− Ω2), (31)
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2) to update Ω1 as follows

v′i =

{
0 if ui = 1 & rand < vi

〈ui〉
,

ui otherwise,
∀i = 1, . . . , |M |. (32)

Cellular array multiplication Ω3 = Ω1 ⊗ Ω2. The operation is de-
fined on real cellular arrays. The cell states are computed according to (25)
with “×” instead of “+”. If any or both of the operands are Boolean, they
should be averaged beforehand. Multiplication is used in the CA composi-
tion in those cases when one of the two operands is a constant cellular array,
i.e., such one, where all cell states have the same value. This is helpful when
subsets of cells have to be masked or scaled.

Since addition and subtraction are defined on cellular arrays with the
alphabet restricted by the interval [0, 1], the same condition should be satis-
fied for all cells in the resulting cellular arrays. If this is not so, the alphabet
is to be renormalized.

Having a set of operations on cellular arrays in hands, it is possible
to formulate the CA composition techniques. General composition princi-
ples prescribe to distinguish sequential, parallel, and intermixed composition
techniques. The sequential composition represents several CA for process-
ing one and the same cellular array by alternating their application at each
iteration. The parallel composition suggests each CA to process its own
cellular array, albeit having neighborhoods in the others. Both sequential
and parallel types of composition have their versions for a local and a global
levels of operation. The global composition techniques require that each CA
be applied to a result of the global operator application. The local compo-
sition allows the application of local operators of different CA in any order
during an iteration.

3. The sequential composition techniques

Sequential composition represents a common functioning of several CA, re-
ferred to as components. Their local operators are applied in a certain order
to one and the same cellular array. This type of composition is conceptually
identical to the CA superposition. It comprises a number of techniques dif-
fering in ordering of component operators application to the cellular array
under processing.

Global superposition suggests the synchronous alternation of components
global operators application. When those operators use different alphabets,
their compatibility should be provided by transforming a Boolean cellular
array into a real one, and vice versa. Apart from the general case of global
superposition, two particular cases are worth to be distinguished: 1) self-
superposition, which is in fact a multistage mode of a CA operation, and
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2) so-called trivial sequential composition [22] which is the superposition of
evolutions.

Local superposition is the composition when at each iteration the local
operators of all components involved in the composition are applied in any
order or at random. Naturally, the components should be asynchronous CA.

3.1. Global superposition

A number of CA form a global superposition ℵ = ΨGl(ℵ1, . . . ,ℵn), ℵ =
〈Ak,M, M̂k, θk, ρk〉 if its global operator Φ(Ω) is the result of the sequential
application of the global operators Φk to Ωk = Φk−1(Ωk−1), k = 1, . . . , n,
providing compatibility of Ak and Ak−1, i.e.,

Φ(Ω) = Φ′n(Φ′n−1(. . .Φ′1(Ω1))), (33)

each Φ′k being itself a superposition of Φk and a unary operator, i.e.

Φ′k = Φk(Un(Ωk)), (34)

where

Un(Ωk) =
{

Av(Ωk) if Ak = [0, 1] & Ak−1 = {0, 1},
Dis(Ωk) if Ak = {0, 1} & Ak−1 = [0, 1].

Components of the superposition may differ in alphabets, local operators
and modes of operating, but the same naming set should be used.

The following particular cases of the global superposition are of special
importance: self-superposition, trivial superposition, and the general type
of superposition of CA with different types of alphabets.

Global Self-Superposition is the simplest superposition, being defined
only for synchronous CA. A CA ℵ = 〈A,M, M̂, θ, σ〉 is a self-superposition
ℵ = ΨSs(ℵ1, . . . ,ℵn), ℵk = 〈A,M, M̂k, θ, σ〉 if its components differ only in
active subsets M̂k.

Since the same local operator is applied at all stages of the superposition,
there is no need to take care about their compatibility, so,

Φ(Ω) = Φn(Φn−1(. . . (Φ1(Ω)))).

The self-superposition is usually obtained by modifying a synchronous
CA-model of a process which requires several neighboring cells to be updated
simultaneously. Since it causes violation of non-contradictoriness condition
(14), one should sacrifice some amount of cellular parallelism by dividing
the iteration into a number of stages, which is done as follows:

1. Each k-th iteration is divided into n stages t1, . . . , tn, the results of
the k-th stage being Ω(tk).
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2. At the k-th stage, θ is applied to all cells named mk ∈ M̂k of Ω(tk).

A bright manifestation of a synchronous self-superposition is a well-
known two-stage CA-model of diffusion, which is described and studied in
[1, 3, 10].

Example 1. Diffusion is a random wandering of particles aiming at the
even distribution. It may be simulated by exchanging cell states in any pair
of the adjacent cells. Since the synchronous simulation of such a process is
contradictory, as is shown in Section 2.2, the self-superposition of two CA:
ℵ1 = 〈A,M, M̂1, θ, σ〉 and ℵ2 = 〈A,M, M̂2, θ, σ〉 is used, where A = {0, 1},
M = {(i, j) : i, j = 0, 1, . . . , N},

M̂1 = {(i, j) : i mod 2 = 0, j mod 2 = 0},
M̂2 = {(i, j) : i mod 2 = 1, j mod 2 = 1},

(35)

M̂1 and M̂2 being referred to as even active subset and odd active subset,
respectively. The local operator is as follows:

θ : {(v0, (i, j)), (v1, (i, j + 1)), (v2, (i, j + 1)), (v3, (i, j + 1))} →
{(u0, (i, j)), (u1, (i, j + 1)), (u2, (i, j + 1)), (u3, (i, j + 1))}, (36)

where

uk =
{
v((k+1) mod 4), if rand < p,
v((k−1) mod 4), if rand > (1− p), k = 0, 1, 2, 3,

the probability p depending on the diffusion coefficient.
Each iteration of a composed CA is divided into two stages: the even

stage and the odd stage. At the odd stage, θ1 is applied to all cells from
M̂1; at the even stage, θ2 is applied to all cells from M̂2.

In Figure 4, three snapshots are shown of the CA evolution simulating
the diffusion of a black dye slopped onto the water surface.

t = 0 t = 4 t = 8

Figure 4. Snapshots of diffusion process, simulated by synchronous
self-superposition of CA with a local operator (36). Black pixels stand

for v = 1, white pixels –– for v = 0
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Global trivial superposition ℵ = ΨTr(ℵ1, . . . ,ℵn), where ℵk = 〈Ak,M,
M̂k, θk, ρk〉, suggests the evolution of ℵ is a sequential composition of the
evolutions Σℵk

(Ω′k(t̂k)) of its components, where Ω′k(t̂k) is a result of a unary
operator(34) application to Ωk(t̂k) if Ak and Ak+1 are incompatible.

It is important to notice that the order of component application is
essential.

Example 2. The pattern formation process starts in the cellular array ob-
tained by a short-time application of a diffusion CA to a a cellular array
with two areas of high concentration (black bands along the vertical bor-
ders) and empty (white) background (Figure 5(a)). Diffusion is simulated
by an asynchronous probabilistic CA ℵ1 = 〈A,M, M̂, θ1, α〉. The pattern
formation is simulated by the synchronous CA ℵ2 = 〈A,M, M̂ θ2, σ〉. Both
CA have a Boolean alphabet A = {0, 1}, their naming sets are identical as
well as active naming subsets, M = M̂ = {(i, j) : i, j = 0, . . . , 300}.

Local operator of the diffusion CA ℵ1 is as follows:

θ1 : {(v0, (i, j)), (v1, (i− 1, j)), (v2, (i, j + 1)), (v3, (i+ 1, j)), (v4, (i− 1, j))}
→ {(u0, (i, j)), (u1, (i− 1, j)), (u2, (i, j + 1)), (u3, (i+ 1, j)), (u4, (i− 1, j))}

(37)
with the transition functions

u0 = vk if 0.25k < rand < 0.25(k + 1),

uk =
{
v0 if 0.25k < rand < 0.25(k + 1),
vk otherwise,

k = 1, . . . , 4.

(38)

A local operator in the pattern formation CA ℵ2 is as follows:

θ2 : (u0, (i, j)) ∗ {(uk, φk(i, j)) : k = 1, . . . , q} → (v0, (i, j)), (39)

where q = (2r + 1)2, r = 3 being a radius of the neighborhood template,

φk(i, j) = (i+ gk, j + hk), gk = (k mod (2r+ 1))− r, hk = bk/(2r+ 1)c;

v0 =
{

1 if
∑n

k=0wkvk > 0;
0 otherwise, (40)

where

wk =
{

1 if g ≤ 1 & h ≤ 1
−0.2 otherwise.

The sum in (40) can be also obtained by imposing the weighted template
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W =

a a a a a a a
a a a a a a a
a a 1 1 1 a a
a a 1 1 1 a a
a a 1 1 1 a a
a a a a a a a
a a a a a a a

, a = −0.2,

onto a cell and computing the sum of products of its entries by underlying
cell states.

In Figure 5, three snapshots of trivial composition of two CA (ℵ1 sim-
ulating diffusion and ℵ2 simulating the pattern formation) are shown. The
cellular array size is 300× 300, t̂1 = 10, t̂2 = 12. The pattern obtained is a
stable one, further application of θ2 to Ω2(t̂2) implies no change in it.

a b c

Figure 5. Snapshots of the process, simulated by trivial superposition
of asynchronous diffusion CA and synchronous pattern formation CA:

a) initial array, b) t̂1 = 10, c) t̂2 = 12

Global superposition of arbitrary CA is a technique for obtaining a
CA ℵGl = ΨGl(ℵ1, . . . ,ℵn), combining the operation of several CA ℵk =
〈Ak,M, M̂kθk, ρ〉, k = 1, . . . , n, whose alphabets and local operators are
allowed to be incompatible, and modes of operation which may be different.
The operation of the composed CA is as follows:

1. Each t-th iteration of the composed CA consists of n stages t1, . . . , tn,
the results of the tk-th stage being Ω(tk) = Φk−1(tk−1).

2. At the k-th stage θk is applied to all cells m ∈ M̂k of Ω′(tk). The
latter should be obtained by transformation of Ω(tk) according to (34)
if needed.

Example 3. Simulation of the alga spreading over the water is considered
to combine three elementary processes:

1) agglomeration of randomly distributed alga,

2) diffusion of alga into water,
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3) procreation of alga.

The first process is represented by a Boolean CA [31] ℵ1 which is some-
times called a phase-separation CA [22], the second –– by the two-stage dif-
fusion CA ℵ2 given in Example 1 (Section 3.1), the third–– by ℵ3 computing
a nonlinear logistic function [32] in each cell. Accordingly, each iteration of
the composed CA has three stages.

At the first stage t1, the transition Ω1 → Ω2 is performed by application
of ℵ1 = 〈A1,M, M̂1, θ1, σ〉 with a single-cell updating local operator, where
A1 = {0, 1}, M = {(i, j) : i, j = 0, . . . , N}, M̂ = M , σ stands for the
synchronous mode.

θ1(i, j)) : S̃(i, j)→ {(v′, (i, j))} ∀(i, j) ∈M, (41)

where

S̃(i, j) = {(vk, φk(i, j)) : φk(i, j) = (i+ g, j + h), g, h ∈ {−2, 0, 2}},

and

v′ =
{

1 if s < 24 or s = 25,
0 if s > 25 or s = 24, where s =

2∑
g=−2

2∑
h=−2

vi+g,j+h.

At the second stage, ℵ2 performs a transition Ω2 → Ω3 by application θ2

(36) to all cells of Ω2, the value of the probability in (36) being p = 0.5. As
the alphabet A2 is compatible with transition function (41), θ2 is applied
directly to the cells of Ω2 resulting in a Boolean array Ω3 = {(u, (i, j))}.

At the third stage, the alga procreation CA ℵ3 = 〈A3,M, M̂k, θ3, σ〉 is
applied to Ω3. But since A3 = [0, 1] and, hence, θ3 is incompatible with
Ω3, the latter is transformed into Ω′3 by averaging: the operator Av(i, j) is
applied to Ω2 replacing each cell state (v(i, j) by 〈v(i, j)〉 computed according
to (19) with the template TAv(i, j) = {(i+ k, j + l) : k, l = −8, . . . , 8}. The
local operator θ3 is as follows:

θ3 : (〈u(i, j)〉, (i, j))→ (F (〈u(i, j)〉), (i, j)), (42)

which replaces the cell state 〈u(i, j)〉 by the value of a nonlinear logistic
function

F (〈u(i, j)〉) = 0.5〈u(i, j)〉(1− 〈u(i, j)〉).

The resulting cellular array having real states should be discretized according
to (20) in order to become compatible with Ω(t + 1), which is the initial
cellular array for the first stage in the (t+ 1)th iteration.

The composition has been applied to an initial Boolean cellular array Ω
with v = 1 randomly distributed so that 〈v(i, j)〉 ≈ 0.5 for all (i, j) ∈ M ,
the boundary conditions being periodic.
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t = 5 t = 25 t = 70

Figure 6. Snapshots of alga spreading in water, simulated by the syn-
chronous global superposition of ℵ1 with θ1 (41), ℵ2 with θ2 (36) and
ℵ3 with θ3 (42), black pixels stand for a maximal concentration of alga,

white pixels –– for clear water

In Figure 6, three snapshots of the simulation process are shown, the
cellular arrays being averaged for making the observation more comprehen-
sive. Black pixels stand for a maximum concentration of alga, white ones
represent clear water. It is seen that in the first iterations, the total amount
of alga decreases, but if some compact spots remain large enough, the pro-
creation activity enhances their growth up to the saturation.

3.2. Local superposition

Asynchronous local superposition is mainly used in simulating biological
processes and nano-kinetics, i.e., the processes on a micro- or nano- level,
which according to their nature are considered to be completely stochastic.
This technique aims at obtaining a CA-model ℵ = ΨLoc(ℵ1, . . . ,ℵn} com-
posed of asynchronous CA ℵk = 〈A,M, M̂k, θk, α〉, k = 1, . . . , n, which differ
only in local operators and (perhaps) in active subsets. The way of their
common functioning is as follows. An iteration Ω(t) → Ω(t + 1) consists
of |M | cycles, a cycle being a sequence of single-shot applications of θk(m),
k = 1, . . . , n, to a randomly chosen cell from Ω(t). Each θk is executed
immediately after application. There is no constraints neither on the order
of choosing a cell during an iteration, nor on the order of choosing θk for
application during a cycle. Sometimes, the natural features of the process
under simulation dictate a certain ordering or a grouping of local operators
in a cycle, but usually they are randomly chosen.

Example 4. A chemical reaction of CO oxidation over platinum catalysts,
well known in the surface chemistry as Ziff–Guilari–Barshod model [30], is
represented by a local superposition of four simple local operators, mimick-
ing an elementary action of adsorption, reaction, oxidation, and diffusion.

The cellular array Ω corresponds to a catalysts plate, each site on it
being named as (i, j) ∈M , |M | = N ×N , M̂ = M . The alphabet contains
three symbols A = {a, b, 0}, so that (a, (i, j)), (b, (i, j), and (0, (i, j)) are
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Figure 7. Graphical representation of local operators involved in an asynchronous
local superposition simulating chemical oxidation of CO on platinum

cells corresponding to the sites occupied by the molecules of CO, O, or
being empty, respectively. In the initial array, all cells are empty. The CO
oxidation process consists of the following elementary molecular actions in
any cell named (i, j) (Figure 7):

1) Adsorption of CO from gas: if the cell (i, j) is empty, it becomes
occupied by a CO molecule with probability p1, whose value depends on the
partial pressure of CO in the gas above the plate.

2) Adsorption of oxygen O2 from gas: if the cell (i, j) is empty and has
an empty adjacent cell, both become occupied by an atom of oxygen with
probability p2. The probability depends on the partial pressure of oxygen
in the gas. One out of h < 4 adjacent cells of the cell (i, j) is chosen with
probability pn = 1/h.

3) Reaction of oxidation of CO (CO + O→ CO2): if the cell (i, j) occurs
to be in a CO state and its adjacent cell is in O state, then the molecule CO2,
formed by reaction, transits to the gas and both cells become empty. One
out of h < 4 adjacent cells occupied by oxygen is chosen with probability
pn = 1/h.

4) Diffusion of CO over the plate: if the cell (i, j) occurs to be in a
CO state when one of its adjacent cells is empty, the cell (i, j) becomes
empty, and the empty cell gets the state CO. This occurs with probability
p3. One out of h < 4 adjacent cells of the cell (i, j) is chosen with probability
pn = 1/h.

Formally, local operators of the above actions are represented as follows:

θ1(i, j) : {(0, (i, j))} → {(a, (i, j))} if p1 > rand,

θ2(i, j) : {(0, (i, j))(0, φk(i, j))} → {(b, (i, j)), (b, φk(i, j))}
if (k − 1)pn < rand < kpn & p2 > rand,

θ3(i, j) : {(a, (i, j))(b, φk(i, j))} → {(0, (i, j)), (0, φk(i, j))}
if (k − 1)pn < rand < kpn,

θ4(i, j) : {(a, (i, j))(0, φk(i, j))} → {(0, (i, j)), (a, φk(i, j))}
if (k − 1)pn < rand < kpn) & p3 > rand,

(43)

for k = 1, . . . , 4.
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t = 2 t = 40 t = 80

Figure 8. Snapshots of the oxidation reaction simulation by an asyn-
chronous superposition of local operators (43). Black pixels stand for

CO, gray pixels –– for O, and white pixels –– for empty sites

In Figure 8, three snapshots of the simulation process are shown, the
initial cellular array Ω(0) = {(0, (i, j)) : ∀(i, j) ∈M}, |M | = 200× 200.

In the general case, the local superposition is neither commutative nor
associative, i.e., if θ1 6= θ2 6= θ3, then

θ1(θ2(m)) 6= θ2(θ1(m)), θ3(θ2(θ1(m)) 6= (θ3(Φ2))(θ1(m)). (44)

The above two properties are very important, because the results of the
simulation may essentially differ if the order of superpositions is changed.
Although in case of a long evolution, a repetitive sequence of superpositions,
for example, such as θ1(θ2(θ1(θ2(m) . . .))), makes the composition insensitive
to the substitution being the first. If it is not the case, the only way to make
the result independent of the order of substitutions in the composition is
their random choice at any step of application (Monte Carlo method).

4. Parallel CA composition

The parallel composition suggests functioning of a number of n interacting
CA, each processing its own cellular array. Taking into account the fact
that the number of possible interactions in the composition exponentially
increases with n, and for clearness of presentation, the composition ℵ =
Υ(ℵ1,ℵ2) of not more than two CA is further considered. The components
ℵk = 〈Ak,Mk, M̂k, θk, ρk〉, k = 1, 2, are allowed to have different alphabets,
different modes of operation, different local operators, and between M1 =
{(m1)i}, and M2 = {(m2)i}, i = 1, 2 . . . , |M |, condition (22) is satisfied.

Since θ1 and θ2 are to be executed simultaneously, the computation is
dangerous from the point of view of non-contradictoryness condition (14),
which states that no local operator may attempt to update simultaneously
one and the same cell. On the other hand, in order that the component
transition functions in θ1 and θ2 interact, one should use the same cell state
variables. Hence, with respect to (11) and (13), the left-hand sides of θ1 and
θ2 should have a non-empty intersection, i.e.,
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(S1((m1)i) ∪ S′′1 ((m1)i) ∩ (S2((m2)i) ∪ S′′2 ((m2)i) 6= ∅.

Combining this statement with (14), the condition for a parallel composition
yields

Tk((mi)k) ⊆Mk, (45)
T ′′k ((mi)k) ⊆ (M1 ∪M2) ∀k ∈ {1, 2}. (46)

From (45) it follows that θ1((m1)i) and θ2((m2)i) may update cells only
from their own cellular array, from (46) they are allowed to use cell states of
the both. This means, that the neighborhoods of the cells (m1)i and (m2)i,
may intersect only by their contexts.

The above conditions are valid both for local and global composition
techniques, as well as both for CA with synchronous and asynchronous
modes of operation.

4.1. Global parallel composition

Similar to a sequential case, a trivial parallel CA composition is also distin-
guished.

A trivial parallel composition ℵ = ΥTr(ℵ1,ℵ2), ℵk = 〈Ak,Mk, M̂k, θk,
ρk〉, k = 1, 2, is a degenerate particular case of parallel composition, when
the components are completely independent, i.e., their neighborhood tem-
plates do not intersect at all, i.e.

(S1((m1)i) ∪ S′′1 ((m1)i) ∩ (S2((m2)i) ∪ S′′2 ((m2)i) = ∅. (47)

Nonetheless, after both components have terminated, a binary operation on
the resulting cellular arrays may be performed. Hence, the result of the
composed CA computation is

Ω(t̂) = Ω1(t̂1) ♦ Ω2(t̂2), (48)

where ♦ is any binary operator given in Section 2.3.

Example 5. Two phase separation models are to be compared by comput-
ing a difference between two resulting cellular arrays:

1) Ω1(t̂1) obtained by the evolution of a totalistic CA ℵ1 = 〈A1,M1,
M̂1, σ〉, which is already described in Example 3 (Section 3.1) with θ1, given
as (41), and

2) Ω2(t̂2) obtained by solving a PDE proposed in [33], which describes
the same process,
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∂u

∂t′
= 0.2

(
∂2u

∂x2
+
∂2u

∂y2

)
− 0.2(u− 1)(u− 0.5)(u− 0.9). (49)

The finite-difference representation of (49) is a synchronous CA ℵ2 =
〈A2,M2, M̂2, θ2, σ〉, where A2 = [0, 1], M2 = M̂2 = {(i, j)2 : i = x/h, j =
y/h, i, j = 0, . . . , N}, h being a space step, t = t′/(∆t)–– iteration time,

θ2 : (u0, (i, j)2) ∗ {(u1, (i−1, j)2), (u2, (i, j+1)2), (u3, (i+1, j)2), (u4, i, j−1)2)}
→ (u′0, (i, j)2), (50)

where
u′0 =

u1 + u2 + u3 + u4 − 4u0

2h
.

The initial cellular arrays Ω1(0) and Ω2(0) for ℵ1 and ℵ2 are identi-
cal, having equal distribution of “ones” and “zeros”, so, that 〈v(i, j)1〉 =
u(i, j)2 = 0.5 for all (i, j)1 ∈M1 and all (i, j)2 ∈M2.

The comparison of the results of both components

Ω1(t̂1) = {(v, (i, j)1) : v ∈ A1, (i, j)1 ∈M1},
Ω2(t̂2) = {(u, (i, j)2) : u ∈ A2, (i, j)2 ∈M2},

is done by computing the absolute value of their cellular subtraction defined
in Section 2.3. Since Ω1(t̂1) and Ω2(t̂2) are incompatible the first is to
be averaged according to (19). The final result is obtained as Ω′2(t̂) =
{(u′2, (i, j)2)}, where

u′2((i, j)2) = |〈v1((i, j)1)〉 − u((i, j)2)|. (51)

The three resulting cellular arrays: Ω1(t̂1), Ω2(t̂2), and Ω′2(t̂) are shown in
Figure 9.

a b c

Figure 9. Snapshots of a parallel trivial composition of two CA simulating
the phase separation: a) resulting cellular array obtained by a totalistic CA
(41), b) resulting cellular array obtained by a CA based on PDE (50), and
c) their difference. Black pixels stand for 1, white for 0, the gray-scale

intensity corresponds to values from [0, 1]
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Nontrivial parallel composition ℵ = Ψ(ℵ1,ℵ2) suggests that all com-
ponent ℵk, k = 1, 2, interact at each iteration. Two types of interaction be-
tween ℵ1 and ℵ2 determine two types of parallel composition techniques: uni-
directional parallel composition and bidirectional parallel composition [22].

In unidirectional parallel composition, one of the components, say ℵ1,
evolves independently, i.e., the transition functions of θ1 do not depend on
the states of cells from Ω2. But, the transition functions of ℵ2 depend of
states of cells from both cellular arrays. Hence, conditions (45, 46) take the
following form

T ′′1 ((m1)i) ⊆M1, ∀(m1)i ∈M1, (52)
T ′′2 ((m2)i) ⊆ (M1 ∪M2) ∀(m2)i ∈M2. (53)

Such a kind of composition is frequently used when simulating a cer-
tain process by ℵ1, an auxiliary CA, let it be ℵ2, is added for transforming
simulation results of ℵ1 into a proper form for analyzing or visualizing its
evolution. For example, ℵ1 is a Boolean CA, and observation of its evolu-
tion requires it to be real values. Then, ℵ1 evolves independently, and ℵ2

performs the averaging of Ω1(t) at each iteration using cell states of Ω1 in
its transition functions.

In bidirectional parallel composition, the transition functions of both
components depend on the states of cells from both cellular arrays, i.e.,

T ′′1 ((m1)i) ⊆ (M1 ∪M2) ∀(m1)i ∈M1,

T ′′2 ((m2)i) ⊆ (M1 ∪M2) ∀(m2)i ∈M2, (54)

(45) being preserved as well. If the alphabets of ℵ1 and ℵ2 are incompatible,
then a suitable unary transformation should be done after each iteration on
Ω1(t) and Ω2(t).

Example 6. A 2D reaction–diffusion process of propagation of an auto-
catalytic reaction is simulated by bidirectional parallel composition of two
CA:

1) a two-stage synchronous diffusion CA ℵ1 = 〈A1,M1, M̂1, θ1, σ〉 is given
in Example 1 (Section 3.1), and

2) a single cell synchronous CA ℵ2 = 〈A2,M2, M̂2, θ2, σ〉, which computes
a real nonlinear function of the cell state.

Since A1 and A2 are incompatible, unary operators Av(i, j) and Dis(i, j)
are to be added to the local operators θ1 and θ2, respectively. This may be
done as follows:

θ1 : {(v0, (i, j)1), (v1, (i, j + 1)1), (v2, (i+ 1, j)1), (v3, (i, j − 1)1)} ∗
{(u0, (i, j)2), (u1, (i, j + 1)2), (u2, (i+ 1, j)2), (u3, (i, j − 1)2)} →
{(v′0, (i, j)1), (v′1, (i, j + 1)1), (v′2, (i+ 1, j)1), (v′3, (i, j − 1)1)}, (55)
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where

v′k =
{

Bool(u(k+1) mod 4) if rand < p,
Bool(u(k−1) mod 4) if rand > (1− p).

In reaction CA ℵ2, the local operator θ2((i, j)2) is combined with
Av((i, j)1), which results in the following:

θ2 : (u, (i, j)2) ∗ {SAv((i, j)1)→ {f(〈v((i, j)1)〉, (i, j)2)} (56)

where
f(〈v((i, j)1)〉) = 0.5〈v((i, j)1)〉(1− 〈v((i, j)1)〉),

〈v(i, j)1)〉 being obtained according to (19).
The simulation space is a 300× 300 cells square area with some rectan-

gular obstacles through which the reaction cannot penetrate (in Figure 10,
shown in light gray). The initial condition is a little spot of a reactant of
high density in the central part of the top side of the area, which corresponds
to the cellular array with an aggregate of “ones” in-between the obstacles
at the top. The front propagation is shown in Figure 10 by six snapshots of
the simulation process.

t = 0 t = 10 t = 26

t = 40 t = 55 t = 75

Figure 10. Snapshots of ℵ2 evolution of a parallel bidirectional compo-
sition simulating the front propagation of autocatalytic reaction. Gray
pixels stand for obstacles, black pixels –– for a maximal concentration of

the reactant, white–– for the absence of a reactant

4.2. Local parallel composition

Like in the sequential case, this type of a composition is aimed at obtaining
an asynchronous CA-model ℵ = ΥLoc(ℵ1,ℵ2) composed of two asynchronous
CA ℵk = {Ak,Mk, M̂k, θk, α}, k = 1, 2. The components may differ in



Cellular Automata composition techniques. . . 27

alphabets and in local operators, naming sets M1 and M2 being in relation
(22). The way of the composed CA functioning is as follows.

Both components operate in parallel in asynchronous mode: at each tth
iteration, θk is applied to all cells of M̂k, the cells being selected in any order
and updated immediately after selection. All variations of the cell selection
ordering are allowed, namely, the following ones are possible:

1) random selection of cells in both CA independently according to given
probability distribution, usually the binomial distribution is used;

2) random selection of cells but one and the same for both CA, the cells
(mi)1 and (mi)2 = ξ(mi)1 being updated simultaneously;

3) prescribed order of cell selection, one and the same in both CA;

4) alternation of θ1 and θ2 application with any order of cells selection.

Like in the global parallel composition case, the local parallel composition
may be unidirectional and bidirectional, depending on the number (one or
both) of components having local configuration contexts in the cellular array
of the other component.

Example 7. A soliton-like 1D process is simulated by a parity totalistic
CA [4] ℵ1 = {A1,M1, M̂1, θ1, α}. Since A1 is a Boolean alphabet the process
is difficult to recognize as two moving waves passing one through the other.
So, to make the process observable in a habitual form, ℵ1 is composed with
another CA ℵ2 = {A2,M2, M̂2, θ2, α} which performs averaging of any cell
state in Ω1 just after its updating. Thus, the composition of ℵ1 and ℵ2 is
local unidirectional: ℵ1 operates independent of ℵ2, and ℵ2 uses cell states
of Ω1 as the context in θ2. The naming sets M1 = M̂1 = {i1 : i = 0, . . . , N},
and M2 = M̂2 = {i2 : i = 0, . . . , N}, are in one-to-one correspondence, i.e.,
i2 = ξ((i2)). A local operator

θ1 : (v0, i1) ∗ {(vj , i1 + j) : j = −r, . . . ,−1, 1, . . . , r} → (v′0, i1), (57)

where

v′0(i1) =
{

1 if w 6= 0 & w = 0 mod 2,
0 otherwise, w =

r∑
j=−r

vj . (58)

The mode of ℵ1 operation is an ordered asynchronous one: θ1 is applied
sequentially to i1 = 0, 1, . . . N , the cells (v, i1) being immediately updated.
Hence, in transition function (58), the cell states v(i1 + j) with j < 0, which
are leftwards of i1, are already in the next state, while the rightward cells are
still in the current state. The boundary conditions are periodic. The initial
global cellular state Ω1(0) has certain patterns referred to as “particles” [4].
Here, the two following particles are used: P1 = 1101, and P2 = 10001001
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t = 0 t = 4 t = 30

Figure 11. Snapshots of the soliton propagation obtained by simulat-
ing the process using a local parallel composition of two CA with local

operators given by (57) and (59)

with r = 4. All other cells are in zero states. The evolution of ℵ1 shows that
the first particle P1 appears in Ω1(t) any two iterations being displaced by
d1 = 7 cells to the left. And the second particle P2 appears in Ω1(t), any
6 iteration being displaced by d2 = 12 cells also to the left. So, while each
six iterations P1 are displaced by 21 cells, and P2 is displaced by 12 cells.
Hence, a distance between particles diminishes by nine cells in six iterations.
After the start (t = 0) during the period from t = 12 up to t = 24, particles
are superimposed, and after t = 30 the first particle is ahead, as is shown in
the following global states:

t = 0: 0000 . . . 000000000000010001001000000000000000000000001101100
t = 6: 0000 . . . 001000100100000000000000110110000000000000000000000
t = 30: 000000000000000000000001101100001000100100 . . . 0000000000000
t = 36: 001101100000000000000001000100100000 . . . 0000000000000000000

The second CA ℵ2 performs an asynchronous averaging of Ω1, in order to
transform the patterns displacement into the waves propagation. The steps
of ℵ2 are synchronized with those of ℵ1, and the order of cell selection is the
same:

θ2 : (v0, i1) ∗ {(vj , i1 + j) : j = −r, . . . ,−1, 1, . . . , r} → (〈v0〉, i1), (59)

where

〈v0〉 =
1

(2r + 1)

r∑
j=−r

vj .

4.3. The mixed composition

In practice, the simulation of complex phenomena requires a number of CA
to be included in different type of the composition forming a complicated
scheme of composition techniques. The main principle for constructing such
a mixed composition is that any component may represent a composed CA.
Hence, the mixed composition is a hierarchical structure, any level of hier-
archy being a composed CA.
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Example 8. A simplified process of vapor nucleation in a binary system
(vapor, gas–carrier) is simulated using a mixed CA composition. The process
has been studied in a number of investigations on self-organizing reaction-
diffusion systems. For example, in [34], an attempt is made to solve the
PDE system which describes the process as follows:

∂v

∂t
= 0.025

(∂2v

∂x2
+
∂2v

∂y2

)
+ 0.2v − v3 − 1.5u,

∂u

∂t
= 0.0025

(∂2u

∂x2
+
∂2u

∂y2

)
+ v − u.

(60)

Since two species are involved in the process, a bidirectional parallel
composition should be used. The resulting CA ℵ = Υ(ℵ1,ℵ2) has two com-
ponents, each simulating a reaction-diffusion process in Ω1 = {(v, (ij)1)}
and Ω2 = {(u, (ij)2)}, respectively. The component ℵk = ΨGl(ℵDk,ℵRk), in
its turn, is a sequential composition of ℵDk = 〈AD,Mk, M̂k, θDk, β〉 which
represents the diffusion, and ℵRk = 〈AR,Mk, M̂k, θRk, σ〉, which represents
the reaction. The two diffusions CA, ℵD1 and ℵD2, independently operate,
each in its own cellular array. Their results are used by the reaction CA ℵR1

or ℵR2, which are in the bidirectional parallel composition with each other.
Since the alphabets AD and AR are incompatible, the diffusion global op-
erator result ΦDk(ΩDk

(t)) is averaged and that of the reaction ΦRk(ΩRk
(t))

is discretized, which yields the following superposition of global operations
of ℵk:

Φk(Ωk(t)) = Dis(ΦRk(Av(ΦDk(Ωk(t− 1)))), k = 1, 2. (61)

Diffusion is simulated by the two-stage synchronous CA given in Exam-
ple 1 (Section 3.1) with θDk given as (36). The difference between ℵD1 and
ℵD2 is in the values of probabilities used in the transition function. They are
taken as pv = 0.5, pu = 0.05, which corresponds to the diffusion coefficients
in (60) with the time step ∆t = 0.6 s and the space step h = 0.1 cm.

Reaction is simulated by a single cell context-free CA with the following
local operators:

θR1 : (〈v〉, (i, j)1)→ (fv(〈v((i, j)1)〉, 〈u((i, j)2)〉), (i, j)1),
θR2 : (〈u〉, (i, j)2)→ (fu(〈v((i, j)1)〉, 〈u((i, j)2)〉), (i, j)2),

(62)

where
fv(x, y) = 0.2x− x3 − 1.5y, fu(x, y) = x− y.

The size of both cellular arrays is 300 × 300 cells with periodic boundary
conditions. The initial conditions are Boolean cellular arrays with the fol-
lowing evenly distributed concentrations of vapor and gas: 〈v(i, j)1〉 = 0.1,
〈v(i, j)2〉 = 0.9.
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Ω1(0) Ω1(12) Ω1(40)

Figure 12. Snapshots of the vapor nucleation process obtained by sim-
ulating it as a parallel composition of two superpositions or diffusion and

reaction. Black pixels stand for the vapor particles

The evolutions of ℵ1 and ℵ2 show the processes of vapor and gas distri-
bution in time, respectively. In Figure 12, three snapshots are shown for the
vapor nucleation process.

5. Computational properties of composed CA

In real simulation tasks, when dealing with a large CA size and a large num-
ber of iterations, the computational properties, such as accuracy, stability,
and complexity are of main importance. Hence, the impact of the above
composition techniques on these properties should be assessed. As for the
accuracy, the study of this property is focused on the procedures which are
beyond the conventional cellular automata theory, i.e., the cellular array
operations, which may contribute some errors. The stability assessment of
the composition directly depends on the same property of its components,
which may exhibit different kinds of behavior [2], their evolutions tending
to a stable state or never reaching it, or being chaotic. So, the attention is
focused on the stability conservation, provided the components of CA com-
position are stable. The property of complexity is concerned with additional
operations, which are incorporated to eliminate incompatibility between the
interacting components.

It should be noted that contemporary mathematics has no well-estab-
lished concepts of CA computational properties, as well as no methods for
their quantitative assessment. So, the subsections below may be regarded
as some considerations for the problem, indicating to the points for further
investigation.

5.1. Accuracy of the composed CA

One of Boolean CA advantages is that they are absolutely accurate from
the computational standpoint, i.e., there are no rounding off errors. But,
once the averaging Av(Ω) or the discretization Dis(Ω) is used and, hence,
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real numbers are processed, the errors may be brought in.
In trivial compositions, both sequential and parallel, the two above op-

erations are performed only once at the beginning and at the end of the
simulation process, bringing in inessential approximation error. But in non-
trivial compositions, when Av(Ω) and Dis(Ω) are used in each iteration, their
impact on the result may be significant. So, just this pair of operations are
further considered from the point of view of the accuracy problem.

Let ΩB be the tth iteration result of a composed CA, and ΩR = Av(ΩB)
should be obtained to make the next operation compatible. Then according
to (19) the Boolean states (v,m) ∈ ΩB are replaced by real ones from the
finite set of numbers Q = {0, 1/q, . . . , 1} , where q = |Av(m)|. Hence, the
error EAv(m) incorporated by approximating a Boolean representation of a
spatial function by discrete values from a finite set Q is constrained by

EAv ≤
1

|Av(m)|
=

1
q
. (63)

A Boolean discretization of ΩR = {(u,m)} performed according to (20)
and resulting in ΩB = {(v,m)} also brings in some errors. Probabilistic
formula (20) provides that the obtained ΩB in its averaged form is equal to
Av(ΩB), which means that the following equalities condition the accuracy
of discretization:

ΩR = Av(ΩB), u(m) = 〈v(m)〉 ∀m ∈M, (64)

discretization error EDis(m) being the difference

EDis(m) = |u(m)− 〈v(m)〉|. (65)

The error vanishes in those cells where

u(m) = 〈v(m)〉 =
1
q

q−1∑
k=0

v(φk(m)), (66)

which happens very rarely, for example, when a fragments of a linear func-
tion or a parabola of odd degree is discretized. The error is most serious in
the cells, where u(m) has extremes.

The most correct representation of the discretization error is a function
EDis(m, t), which shows possible deviations of u(m, t) in all cells during the
evolution. But sometimes in particular cases, error values in a certain part
of M , or a maximal error in extremes of the spatial function at a certain
time is of interest. For a general assessment of the CA composition, the
mean discretization error at a given t = t̂
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EDis(t̂) =
1
|M |

∑
m∈M

|u(m, t̂)− 〈v(m, t̂, 〉|, (67)

is also used.
From (66) and (67) it follows that discretization errors depend on the

averaging area size q and on the smoothness of u(m) on TAv(m). Both these
parameters are conditioned by the discretization step h, which should be
taken small, allowing q to be chosen large enough to smooth the extremes.
Since h = S/|M |, where S is a physical space under simulation, a small h
means a large cellular array size.

The following experiment gives the quantitative insight into the accuracy
problem.

Example 9. A half-wave of a sinusoid u = sinx, 0 < x < π, is chosen
for the experimental assessment of the discretization error dependence of
via |M | and Av(m). The cellular array representation of a given continuous
function is as follows:

Ω =
{

(u(m),m) : u(m) = sin
πm

|M |
, m = 0, 1, . . . , |M |

}
. (68)

To obtain the dependence of EDis(|M |), 30 discretizations {Disk(Ω) :
k = 1, 2, . . . , 30} of (68) have been obtained with |Mk| = 60 × k, which
corresponds to the argument domain 60 < |Mk| < 1800, or in the angular
form 2◦ > h > 0.1◦. Each Disk(Ω) has been averaged with |Avk(m)| =
0.2|Mk|, and the mean errors EDis(|Mk|) have been computed according to
(67) (Figure 13).

To obtain the dependence EDis(q), q = |Av(m)|, 30 discretizations
{Disj(Ω) : j = 1, 2, . . . , 30} of (68) have been obtained with fixed |M | = 360
but different qj = |Avj |, where qj = 5× j. Each Disj(Ω) has been averaged
with Avj(m), and the mean errors EDis(qj) have been computed according
to (67) (Figure 14).

Figure 13. The mean discretization er-
ror dependence on the naming set size
|M | with |Av(m)| = 0.2|M | for cellular
array (68)

Figure 14. The mean discretization er-
ror dependence on the size of the aver-
aging area |Av(m)| with |M | = 360 for
cellular array (68)
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From Figures 13 and 14 we may be conclude the following:

1) the mean error EDis(|m|) follows the increase of |M | and does not
exceed 1 % with |M | > 360, corresponding to h < 0.5◦;

2) the mean error E2(|Av(m)|) has a minimum when |Av(m)| ≈ 36◦, i.e.
qEDis=min = 0.2|M |.

From this example it follows that regulating the smoothness of the ex-
tremes by an appropriate choice of the CA size the needed accuracy of the
CA composition may be attained. Of course, the complexity of simulation
increases with an increase of |M |.

5.2. The CA composition stability

There are two aspects of stability concerning the CA composition. The first
is behavioral stability, which determines whether the CA evolution tends to
a stable state or to a periodic cycling. The property is studied for simple
Boolean CA in [2], but no method is known to check behavioral stability
for an arbitrary CA. As for CA with real alphabets and nonlinear functions,
their behavioral stability is a subject of the nonlinear dynamic system theory
and may be checked using its methods, as is usually done in the continuous
mathematics (see, for example, [35]). The problem which is of interest in
connection with CA composition is as follows: all CA component being
stable, is the composition obtained by the above techniques also stable? Till
now the problem remains open. Moreover, the current level of knowledge
about the CA behavior stability does not seem to be high enough for its
solution.

The second stability aspect is computational stability. This property is
associated with the round-off errors, which are inevitable when the floating
point arithmetics is used. This aspect of stability is more effectual for in-
vestigation because there are at least two particular cases of composition
methods, for which the computational stability may be quantitatively as-
sessed.

The first case comprises the local and the global sequential compositions
of Boolean CA-models. Since all alphabets are Boolean, there are no round-
off errors, and since cellular arrays under processing have a finite size, the
resulting averaged values are bounded and stable.

The second case includes sequential or parallel global composition tech-
niques of Boolean and real CA-models, where cellular array transformations
Av(ΩR) and Dis(ΩB) are used at each iteration. In this case, the following
assertion is true: if ℵR is stable, and, hence, its state values can be bounded
by the real closed interval [0, 1], then the composition is computationally
stable. This assertion is evident at the same time it is of considerable im-
portance for widely used diffusion–reaction processes, because it states that



34 O. Bandman

composition of Boolean diffusion and real reaction is free of the so-called
Courant constraint imposed on the PDE counterpart of the process. The
courant constraint in the PDE explicit solution is associated with second
order partial derivatives of spatial coordinates (Laplace operator), repre-
senting a diffusive part in the PDE. It forbids, for example for the 2D case,
the value CPDE = τd

h2 to exceed 0.25, where h is a spatial step, d is a diffusion

coefficient. From the above follows that the time step τ <
1

2

h2

d
, should be

small enough, which results in a significant increase of computation time.
Meanwhile, the diffusion part may be simulated by a CA without any con-
straint. For example, a CA given in Example 1 (Subsection 3.1), has the
Courant constant CCA = 1.5, which is proved in [10]. Another example of
CA-diffusion is proposed in [26], where CCA depends on an averaging radius
as follows: CCA = r(r + 1)/6 for 2D case.

Example 10. A diffusion–reaction process called a propagating front is
simulated by two models: (1) an explicit finite-difference method of the
PDE solution and (2) composition of a Boolean diffusion CA and a real
reaction CA. The PDE is as follows:

∂u

∂t
=
∂u2

∂x2
+
∂u2

∂y2
+ 0.5u(1− u), (69)

where d = 0.33 cm2/s. The discretized 2D space is M = {(i, j) : i, j =
0, 1, . . . , 639}. The initial state for the PDE solution is

u(0)(i, j) =
{

1 if 280 < i, j < 360,
0 otherwise.

The finite difference representation of (69)

u(t+1)(i, j) = u(t)(i, j) + 0.33
(
u(t)(i− 1, j) + u(t)(i+ 1, j) + u(t)(i, j + 1) +

u(t)(i, j − 1)− 4u(t)(i, j)
)
. (70)

With the time-step τ = 1 s and the spatial step h = 1 cm, the Courant
value CPDE = τd/h2 = 0.33, which is out of the Courant constraint. So, the
function u(t)(i, j) obtained with (70) is not stable.

The same process may be simulated by the superposition ℵ =
Ψ(ℵdiff ,ℵreac). The first component ℵdiff = 〈A,M, M̂, θ1, σ〉 is an approxi-
mation of a Laplace operator by averaging as it is proposed in [26], where
A = [0, 1], q = |Avr(i, j)|, M = {(i, j) : i, j = 0, 1, . . . , 639}, M̂ = M1,

θ1 : SAv(i, j)→ (u, (i, j)), u(i, j) =
1
q

∑
Av(i,j)

u(φk(i, j)). (71)
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Figure 15. Simulation of a 2D propagation front initiated by a dense
square in the central part of a cellular space, the profile u(i, 319) is obtained
for t = 20 by: a) CA superposition of ℵdiff with θ1 (71) and ℵreac with θ2

(72), b) solution to finite-difference equation (70)

The second component ℵreac = 〈A,M, M̂, θ2, σ〉 is a single-cell CA com-
putation in each cell a reaction function f = 0.5u(1 − u) with subsequent
discretization, where A,M, M̂, σ are equal to those of ℵ1, the local operator
being

θ2 : (u, (i, j))→ (v, (i, j)), v = Dis(0.5u(1− u)). (72)

Snapshots of both processes (PDE solution) and (CA superposition) af-
ter 20 iterations are shown in Figure 15. It is seen that evolution of CA
superposition is absolutely stable, while a finite difference solution to (71)
exhibits a divergence.

5.3. Composition complexity

Here, an attempt is made to assess how much of additional work a composed
CA has to do as compared to the total complexity of the components. Such
an assessment cannot be precisely done. There are many reasons for that.
The most significant are the following: (1) complexity relations between dif-
ferent arithmetic operations strongly depend on hardware architecture; (2)
the same is true for comparing Boolean and real operations; (3) complexity
of performing CA transition functions range from O(n) to O(2n), n being
the cardinality of the neighborhood in the local operator. Nonetheless, an
insight may be given into the relation between the complexity of transi-
tion function computation and that of transformations needed for providing
compatibility.

In case when the sequential local asynchronous composition and global
synchronous composition techniques contain no averaging and discretization
operations, no additional time is needed, and the total number of elementary
operations is equal to the sum of those of the component CA.
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When the global synchronous composition, no matter sequential or par-
allel, is used, transformation of a Boolean cellular array into a real one and
vice versa is to be performed at each iteration. In such a case, the iter-
ation time is increased by the following number of additional elementary
operations.

tadd = (tAv + tDis)|M |, (73)

where tAv and tDis are numbers of elementary operations which have to
be executed by a cell while performing the averaging according to (19),
or discretization according to (20), respectively. As for tAv, it is clearly
seen from (19) that the time needed to compute Av(vm) may be assessed
as tAv = τCAv|Av(m)| where CAv ≈ 1 is a constant, τ being the time of
elementary function execution; tDis = τCrand according to (20) depends only
on a random number generator used, which may be taken Crand < 5. Since
the transformation is used in the composition techniques where both Boolean
and real components are included, the time tadd should be compared to the
transition functions computation time tcomp = tB+tR, where tB = τCB and
tR = τCR. The coefficients CB and CR essentially depend on the character
of the transition functions but, usually, both functions require to execute
not more than 100 elementary operations.

Comparison of tadd with tcomp yields:

tadd

tcomp
=
CAv + CDis

CB + CR
,

which enables us to conclude that tadd and tcomp have identical order of com-
plexity, hence, Boolean–real transformations twice increase the computation
time.

6. Conclusion

Till now, no mathematical method and no promising approach are known
to the CA synthesis from a given description of its evolution. Nevertheless,
some way out should be found. A simple one is to follow a well-known ap-
proach used in the PDE theory which implies composing PDE systems out
of a set of differential operators and functions. Such an approach seems to be
expedient when considering the following similarities between the CA com-
position and the PDE system construction. For example, first order and
second order differential operators in PDEs with respect to space have their
CA counterparts in the form of shift and diffusion local operators, respec-
tively. And in both cases for obtaining a mathematical model of the re-
action–diffusion process, those operators are composed with nonlinear re-
action functions. Unfortunately, the above similarities are only particular
cases. In general, there is no formal procedure to obtain a CA simulating
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the space-time nonlinear behavior. It is just the fact that has provoked the
development of compatible algebraic operations on cellular arrays, allowing
one to integrate continuous functions into a CA composition techniques.

But the most important destination of the CA composition is not in
presenting another way of simulating processes which may be described in
terms of PDE, but in obtaining the capability of constructing mathematical
models for those phenomena for whom no other mathematical description
is known. Such processes are mostly associated with the fields of science
which are in the initial stage of development. For example, plant growth,
embryo fetation, cellular division, morphogenesis (biology); surface oxida-
tion, chemical reaction on catalyst, dissociation, adsorption (chemistry);
epitaxial growth, crack formation, rubber deformation, robotics (engineer-
ing); tumor growth (medicine), etc. Of course, the available experience in
science and engineering is not sufficient to forecast the future of the CA sim-
ulation methodology. Anyway, now it is clear that only a small part of the
huge amount of CA have evolutions which resemble natural phenomena,
and, hence, may be used for simulation. Moreover, those, which occur to
be helpful, ought to be enriched with some additional properties, such as
probability into transition functions, complicated modes of operations, a
composite alphabet, a non-homogeneous cellular space, etc. All these being
oriented to obtain CA-models of complex phenomena require a unique for-
malism for composing complex CA-models from a number of simpler ones.
The above considerations allow us to hope that the presented attempt to
construct a systematic approach to the CA composition is not futile.
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