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The concept of invariants in reaction–diffusion
cellular automata∗

Olga Bandman

Abstract. A concept of invariants in the cellular automata (CA) models is in-
troduced, being defined as a dimensionless value that characterizes the process
simulated by a CA evolution irrespective of the form of its mathematical represen-
tation. This paper is concerned with asynchronous CA-models (ACA-models), sim-
ulating reaction-diffusion processes, although it may be expanded to synchronous
case as well. Invariants associate the CA-model parameters with their physical
counterparts, which is important in simulation of real life processes. Particularly,
the invariants may be used for obtaining the scaling values for space and time.
The invariants of some simple reaction-diffusion ACA-models are established and
considered in detail.

1. Introduction

Modern computers are powerful enough to simulate complex physical and
chemical phenomena imitating movements and transformation of real and
abstract particles in discrete space and time. A broad class of such pro-
cesses is represented by mathematical models, where the particles displace-
ment obeys the diffusion law, and particles transformation are given by a
nonlinear function or by simple substitution of the form “current state →
next state” [1–3]. Nonlinearity and discontinuity of the process do not al-
low the use of conventional standard models based on partial differential
equations (PDE). Searching for alternative resulted in the development of
CA-simulation methods. It was found that cellular automata exhibit ex-
tremely useful properties being capable to represent complex phenomena
by common functioning of many simple computing units [7]. Moreover, the
class of asynchronous CA (ACA) is adequate to describe reaction-diffusion
processes which are stochastic by nature. Accordingly, nowadays, there is a
wide class of ACA simulating reaction-diffusion processes on micro and nano
levels, that are used in scientific investigation of heterogenous chemical reac-
tions, phase transition phenomena, biological and ecological systems [4–6].
Nevertheless, there are problems of general type not yet solved. One of
them concerns the relation between the ACA-model variables and the cor-
responding physical values in the system under simulation. In this paper,
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such a relation is established using a concept of a CA-model invariant, which
is a dimensionless characteristic of both: the model and the process under
simulation. Since the most interest nowadays is in asynchronous reaction-
diffusion CA, the paper is focused especially on asynchronous CA.

Apart from the introduction, the paper contains three sections. In sec-
ond section the needed formalism is given. Third and fourth sections are
devoted to invariants of diffusion and reaction asynchronous CA-models,
respectively. In the fifth section invariants of reaction-diffusion ACA mod-
els are considered and the examples are given. The paper concludes by
some considerations about the significance and benefit of the concept for
ACA-simulation development.

2. Formal definition of reaction–diffusion asynchronous
cellular automaton

ACA is defined by the four notions: 〈A,X,Θ〉, which represent a set of
simple identical computing units, referred to as cells. A cell is given as a
pair (u, x), where u is a cell state from a finite alphabet A, x ∈ X is a vector
of coordinates in a m-dimensional space X. A set of cells Ω = {(ui, xi) | i =
1, . . . , |X|} forms a cellular array. On the coordinate lattice X subsets

Tk(x) = {x, x+ a1, . . . , x+ ak−1}, Tk(x) ⊂ X, (1)

called templates, are defined with aj ∈ {(−c, . . . , c)}, |aj | = m, being a shift
vector. A set of cells with coordinates from Tk(x) form a local configuration

Sk(x) = {(u0, x), (u1, x+ a1), . . . , (uk, x+ ak−1)}, k = |Tk(x)|. (2)

Functioning of the ACA is determined by the local operator Θ(x), which
is a composition of a simpler local operators Θj(x) and elementary substi-
tutions θi(x):

Θ(x) = Φ(Θ(x)1, . . . ,Θ(x)l, θ1(x), . . . , θn(x)), (3)

where θi(x), i = 1, . . . , n, is the following substitution of local configurations

θi(x) : Sk(x)→ S′k′(x), (4)

the underlying templates of Sk(x) and S′k(x) being related as follows: |Tk′ | ⊆
|Tk|. The first k′ cells of Sk(x) comprise the base of θk(x), while the remain-
ing ones play the role of a context. A substitution θi(x) is applicable to a
cell (u, x) ∈ Ω if Sk(x) ∈ Ω. Application of θi(x) consists of replacing the
states of cells (uj , x+ aj) ∈ S′k′(x) by the values of transition functions:
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fj(u1, . . . , uk) = u′j , j = 0, 1, . . . , k′. (5)

The following composition operations Φ in (3) are used in reaction–dif-
fusion ACA.

• Sequential execution

Φs(θ1(x), . . . , θn(x)) = θ1(x), . . . , θn(x). (6)

• Random choice of one out of n substitutions:

Φr(θ1(x), . . . , θn(x)) = θj , j > rand× n ≥ j − 1. (7)

• Arithmetic operations on integers and reals

Φplus(θ1(x), . . . , θn(x)) = θ1(x)± . . .± θn(x). (8)

• Arithmetic operations on Boolean values with their transformation
into reals

Φplus−tr(θ1(x), . . . , θn(x)) = Disc(Av(θ1(x))± . . .±Disc(Av(θn(x))),
(9)

where, according to [8],

Disc(θ(x)) =

{
1, rand < v′(x),
0, rand ≥ v′(x),

Av(θ(x)) =
1
|Av|

∑
Av

v′(x), (10)

Av(x) being an averaging template.

Application of Θ(x) to all x ∈ X comprises an iteration transforming a
global cellular array Ω(t) into a next global state Ω(t + 1). Asynchronous
mode suggests Θ(x) be applied sequentially to randomly chosen cells with
immediate change of their states.

3. Invariants in CA-models simulating diffusion

The diffusion process is fully determined by the dimensionless value of a
diffusion coefficient, referred to as diffusion number. When the process is
represented in the finite difference form of a Laplace equation, the diffusion
number is

D =
dτ

h2
, (11)
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where d [kg ·m2/s] is a diffusion coefficient, τ [s] is a time step, h [m] is a
space.

A simple consideration based on the definition of a diffusion coefficient
as a quantity of substance mass passing through a unit of space during a
unit of time with a concentration gradient equal to one (the first Fick’s law),
makes possible to assess D for the ACA diffusion as follows. In a ACA with
Boolean alphabet, the gradient between two adjacent cells, say (1, x) and
(0, x − 1), is 1, and so are space and time units. Hence, the probability of
the states exchange between these cells equals D. Such a reasoning may not
be taken as a proof and is further confirmed by computational experiments.

The naive diffusion ACA [9] mimics the movements of particles as fol-
lows: a cell, chosen randomly from X exchanges states with one of its adja-
cent cells randomly chosen as well. In a two-dimensional case, a probabilistic
substitution θ(i, j), based on local configurations S5(i, j) is used, the tran-
sition function (5) being as follows:

v′k =

{
v0, (k − 1)/4 ≤ rand < k/4,
vk, otherwise,

k = 1, 2, 3, 4;

v′0 = vk, if (k − 1)/4 ≤ rand < k/4.

(12)

Since in the course of an iteration particle exchange between a cell (i, j)
and its neighbor (i, j)′ ∈ Tk is performed twice: when θ is applied to the
cell (i, j), and when it is applied to (i, j)′, both times with p = 1/4, the
invariant according to Fick’s law should be D = 0.5.

In a one-dimensional case, X = {0, 1, . . . , I}, the template T3(i) is used,
θ(i) performs the state exchange with one out of two neighbors with prob-
ability p = 0.5, the transition function differing from (12) only in the value
of k, which is now k = 2.

In the course of an iteration, each pair of adjacent cells makes the ex-
change twice, each time with p = 0.5, so, D = 1. Reasoning in the same
way, the diffusion CA-model for a three-dimensional case D = 1/3, which is
in agreement with [10] for nano-particles moving in a crystal lattice.

Asynchronous integer diffusion ACA-model [11] differs from its Boolean
counterpart in two aspects: alphabet is a finite set of integers,
A = {0, 1, . . . ,M}, and only an nth portion of state value is involved in
the exchange of states. The transition function results in the following next
states:

v′k =

{
(1− n)v0 + nvk, (k − 1)/4 ≤ rand < k/4,
vk, otherwise,

k = 1, 2, 3, 4;

v′0 = nv0 + (1− n)vk, if (k − 1)/4 ≤ rand < k/4.

(13)

One-dimensional case differs in that the template used is T3 and k = 2.
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Relying on Fick’s law the following diffusion numbers are derived: D =
0.5n for the two-dimensional diffusion and D = n for the one-dimensional
case.

Computational experiments for the above diffusion numbers confirmation
consisted in comparing the values 〈v(I/2, j)〉, obtained by ACA simulation,
with u(I/2, j), obtained by numerical solution of the Laplace equation with
DL as the diffusion number. The computations were performed for t =
0, 1, . . . , T , where T = 300 is the number of iterations when the process
practically terminates. If the values 〈v(I/2, j)〉 and 〈v(I/2, j)〉 coincide for
all j = 0, . . . , J , and for all t = 0, 1, . . . , T , then DACA = DL and DACA is
the ACA invariant. The obtained values of diffusion ACA invariants are the
following:

Alphabet 1D Boolean 2D Boolean 1D Integer 2D Integer
DACA 1 0.5 n 0.5n

The invariant helps to obtain the scaling coefficients, namely, the size of
a cell h [m], and the time of an iteration τ . These two values correlate the
model parameters with their physical counterparts. For example, the task
is to construct an ACA-model simulating a diffusion process, the following
being given:

• the size of the area S [m2],

• the diffusion coefficient of the substance equal to d [kg ·m2/s],

• the initial distribution of substance density u0(x) over the area under
simulation.

According to the size of particles assumed as units of the substance,
(atom, molecule, granule, etc.) and the required frequency of evolution ob-
servation, h and τ are obtained by (11). It gives the possibility to obtain the
remaining data of the ACA: the size of the cellular array |X| = S/h2, the
probability of Θ(x) application p = d·τ/(DACA ·h2), and Ω(0) by calculating
v0(x) = Disc(uo(x)) for all x ∈ X [8].

4. Invariants in CA-models simulating chemical reactions

The main characteristic of chemical reaction is its reaction rate, r = ∆C/∆t
[kg/(m2 · s)], which represents the relative increment of the substance per
area (for surface reactions) and per second [12]. To associate the reaction
rate with the ACA-model evolution it is reasonable to use the dimensionless
relative concentration change, which may be connected to the probability of
the corresponding local operator. So, the value of the invariant is

ΥR = rτh2. (14)
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In the most known reactions on catalyzed surface, the reaction rate is pro-
portional to the mole ratio of the gas from, where the reactant is adsorbed,
i.e., the invariant may be Υ = kAY (A), kA being the reaction constant.

An example of such a reaction is hydrogen dissociation H2 = H++H++2e
on catalyzed surface, used in hydrogen energetics. The process consists of
two reactions: adsorption of H2 from the gas onto a catalyst with dissociation
of the hydrogen molecule into two protons and two electrons, and desorption
of the protons to the gas and the electron to the electric circuit.

ACA-model of the reaction has the alphabet A = {∅,H, e, E}, where E
is the amount of produced electrons, X = C ∪ {x = (i, j), i, j = 0, . . . , N},
C is a counter of electrons, and Θ = Φr(θads, θdis), where

θads : {(∅, x), (∅, x+ al)}
pads−−→ {(H, x), (H,x+ al)}

θdis : {(C,E), (H, x), (H, x+ al)}
pdis−−→ {(C,E + 2), (∅, x), (∅, x+ al)}.

(15)

In (15), x + al ∈ T5(x), l = 1, 2, 3, 4, is chosen randomly. Since rads ≈ rdis,
the probabilities pads = pdis = 0.5.

Similar to the diffusion case, ΥR helps to obtain the value of τh2, as-
suming that rH and kH are known. This allows to calculate all parameters
of the ACA for simulating the reaction of hydrogen dissociation S [m2] and
YH being given.

5. Invariants of CA-models simulating reaction–diffusion
processes

If an CA-model is represented as a composition of several diffusion and
reaction ACA [8], then its invariant ΥRD is defined as a specific characteristic
of the whole process, which, usually, cannot be expressed as a function
of diffusion and reaction invariants. Hence, ΥRD should be obtained by
simulation for each type of ACA-models and treated as a physical constants.

Example 1. The heterogenous reactions on catalysed surface attract great
attention. The most known is the so called ZGB-reaction [15], which ini-
tiated a wide application of ACA-simulation (kinetic Monte-Carlo method)
[16]. The reaction is given by the following system of chemical equations:

∅ kCO−−→ COads

O2
kO−−→ 2Oads

COads + Oads −−→ CO2,

COads + ∅ kdif−−→ Z + CO.

(16)
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In (16), kCO and kO are adsorption rate constants, respectively. The fourth
equation represents the diffusion of CO over the surface. The whole process
proceeds as follows. On the catalyst surface (∅) carbon monoxide (CO) and
oxygen (O2) are adsorbed from the gas, and when occurring in contact, they
react producing carbon dioxide gas that leaves the surface. The adsorbed
CO-particles tend to be distributed evenly. The probabilistic ACA of the
reaction-diffusion process (16) has the alphabet A = {∅,CO,O}, the naming
set X, and a local operator Θ = Φr(θ1, θ2, θ3, θ4), where

θ1 : (∅, x)
pCO−−→ (CO, x),

θ2 : {(∅, x), (∅, x+ al}
pO−−→ {(O, (i, j)), (O, x+ al)},

θ3 : {(CO, x), (O, x+ al)} −−→ {(∅, x), (∅, x+ al)},

θ4 : {(CO, x), (∅, x+ al)
pdif−−→ {(∅, (i, j)), (CO, x+ al)},

(17)

In (17), x + al is the kth neighbor of x in T5(x), pCO, pO, and pdif are
probabilities of θ1, θ2 and θ4 application depending on the reaction rates as
follows:

pi =
ki

kO + kCO + kdif
, i ∈ {O,CO,dif}.

The results of the CA simulation (Monte-Carlo method) of the above re-
action are reported, for example, in [17, 18]. The investigation aimed at
determining the influence of the diffusion number on the phase-transition
critical values of the mole ratio Y (CO). In these investigations Y (CO) is
treated as the invariant of the model. It is quite reasonable, since just this
value determines the main features of the process, namely, the amount of
each substance involved in the reactions at each iteration.

So, the ACA parameters may be obtained as follows. The invariant
Y (CO) and the adsorption rate rCO be given, the value τh2 should be ob-
tained from (14). Then, to allow for diffusion influence, τ is to be calculated
by (11) with h chosen according to the nature of the process.

Example 2. A bright example of reaction–diffusion process is the propa-
gating front process, studied in [13, 14] on the basis of the following partial
differential equation

ut = Duxx + F (u), (18)

where D is a diffusion invariant and

F (u) = αu(1− u), 0 < α ≤ 1, 0 ≤ u ≤ 1, (19)

represents a reaction component. In [13], the asymptotic assessment of the
dimensionless front propagation velocity value is obtained as a following
function of the of the diffusion and the reaction invariants:
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V0 = 2
√
Dα, (20)

being equal to a maximal front velocity with t→∞. Of course, the velocity
is most important characteristic of the process and it should be taken as
invariant.

An ACA analog ℵ = 〈A,X,Θ〉 of equation (18) obtained by the compo-
sition method [8] has A = {0, 1}, X = {0, . . . , N}, and

Θ(i) = Φplus−tr(θdiff(i), θreac(i)),

where θdiff(i) is a local operator of a diffusion ACA, whose transition function
(5) transfers (u, i) ∈ Ω(t) into (v, i) ∈ Ωdiff(t+ 1), and

θreac : (v, i)→ Disc(〈v〉+ F (〈v〉)

is a reaction contextless local operator.
Assuming the velocity be the invariant of the process, and to verify

whether (20) is valid for the ACA-model the following computational exper-
iment was performed.

Cellular array size was I × J = 200× 800 with initial global state

v(i, j) =

{
1, 0 < i < 200, j ≤ 40,
0, otherwise.

For three above values ofD and α = 0.1, 0.2, . . . , 1 the velocity was computed
as V = (j2 − j1)/(t2 − t1), where t2 and t1 being such that u(j2, t2) =
u(j1, t1) = 0.5 with j2 = 700, j1 = 500. The choice of j1 and j2 is approved
by the experimental fact that after t = 300 the velocity becomes constant.
The dependencies of front propagation velocity on α with D = 0.2, 0.5, and
1 were calculated by three methods–– formula (20), PDE (18) solution, and
ACA simulation. It is seen from Figure 1 that CA process coincide with
that obtained by PDE solution, but is a little slower that the theoretical
assessment.

Figure 1. Dependence of front propagation velocity on α with D = 0.5
obtained by (20), PDE (18), and ACA simulation
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The invariant is the normalized front velocity Υ = V , which is related
to the ACA scaling parameters as follows. In order to simulate front prop-
agation with the maximum velocity v [m/s] in the medium with diffusion
coefficient d [kg ·m/s], the ratio of scaling parameters should be τ/h = V/v,
from what τ is obtained if h is chosen from physical conditions.

Example 3. Another example of a reaction–diffusion process is the so
called diffusion limited aggregation, which represents the processes of crys-
tallization, coral growth, snowflake formation etc. In ACA-models of such
processes the reaction intensity is given as probability of the reaction occur-
rence, known as a sticking coefficient which is considered to be the invariant.
A most simple ACA, simulating the diffusion limited aggregation has an al-
phabet A = {a, b, c}, discrete space X = {(i, j) : i, j = 0, 1, . . . ,M},

Θ = Φr(θdiff , θsol),

where θdiff is naive diffusion local operator (12) with A = {a, b}, and θsol is
the local operator of solidification

θsol : {(c, (i, j)), (a, (i+ k, j + l))} p2−→ {(c, (i, j)), (c, (i+ k, j + l))}, (21)

where (k, l) ∈ {(0, 1), (1, 0), (−1, 0), (0,−1)}, p2 is a sticking coefficient.
The process suggests that the initial cellular array has more than 90%

of cells in the state b, less than 10% cells in the state b, and some isolated
cells in the state c (called seeds). In the course of the evolution, a growing
structure is formed around seeds exhibiting fractal properties and, hence,
being characterized by the fractal dimension

δ =
logN(R)
log πR2

, (22)

where R is a radius of a circle in the formed structure area with the center
in the seed-cell, N(R) is the a number of cells with c states in the circle
area.

The dependence of fractal dimension on the invariant is investigated in
[19] by simulation. So, given the invariant, it is possible to obtain the fractal
dimension, i.e., to determine the velocity of the growth and the density of
the structure. Then, comparing these model parameters with the natural
process, find the needed scaling coefficients.

In Figure 2, three snapshots of the ACA evolution are shown that were
obtained while simulating the process by an the ACA with the size of cellular
array 200 × 200, initial density of cells d(a, (i, j)) = 0.05, p2 = 1. The
fractal dimension was calculated according to (22) as an average of values
for R = 40, 45, . . . , 80. The obtained value δ = 1.66 is in agreement with
those given in [19].
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Figure 2. Snapshots of diffusion-limited aggregation ACA evolution

6. Conclusion

For ACA-models of reaction-diffusion processes, a concept of a invariant is
introduced. It is a dimensional value that characterizes the process as it is
and is expressed in terms of ACA parameters. The concept is useful for con-
structing the ACA-model and calculating scaling ACA parameters: iteration
time and size of the cell. The examples show that for reaction–diffusion ACA
invariants should be determined by computational experiments and stored
in the same manner, that it is done for physical and chemical properties, ob-
tained in-situ and stored in data books. It is necessary for ACA-simulation
working in practice.
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