
Bull. Nov. Comp. Center, Comp. Science, 36 (2014), 21–31
c© 2014 NCC Publisher

Cellular automata diffusion models for
multicomputer implementation∗

Olga Bandman

Abstract. Simulating large-scale phenomena by Cellular Automata (CA) meets
the problem of designing CA models that could be efficiently implemented on su-
percomputers with distributed memory. Since most of large-scale spatially dis-
tributed processes contain diffusion as a component which takes a significant part
of computational time, the study of coarse-grain parallelization characteristics of
CA diffusion are of interest. There is a scope of investigations of CA diffusion
models and their modifications. Most of them concern a two-dimensional case,
although in large-scale simulation tasks three-dimensional processes are under in-
vestigation. Moreover, the known information on CA diffusion is incomplete and
scattered among different scientific journals. In this paper, all known data are sys-
tematized and supplemented with parameters of three-dimensional CA diffusion.
Three parameters of the model are considered to be most important for developing
large-scale simulation algorithms: diffusion number of the model, the number of
interprocessor exchanges in parallel implementation, and the computational time.
Based on the given data analysis some recommendations are made how to make a
proper choice of the CA diffusion model.

1. Introduction

Capabilities of CA to simulate nonlinear, non-continuous spatial dynamics,
their algorithmic fine granularity, capability of probabilistic and stochastic
modes of computation, as well as a good adaptability to supercomputer ar-
chitecture, make them particularly useful for investigating the behavior of
large scale complex systems. The number of developed and investigated
CA-models rapidly increases, comprising the study of more and more com-
plicated phenomena in physics, biology, and chemistry [1]. Nowadays there
exists a relatively large bank of well-studied CA-models, as well as a devel-
oped theory and methodology to construct CA compositions for simulating
complex phenomena [2]. Most of them contain CA diffusion as a compo-
nent, which may take a significant part of computational time in the course
of simulation. CA simulation of these phenomena require the usage of high
performance computer systems, hence, a new problem arises concerning the
parallel implementation efficiency. Its solution cannot anymore rely on the
inherent fine-grain algorithmic structure of CA, since the allocation of the

∗Supported by Presidium of Russian Academy of Sciences, Project 15.9-2014.

22 O. Bandman

interacting CA onto a parallel processor system requires efficient coarse-
grain parallelization. So, both levels of parallelism are to be exploited in
developing large-scale CA-models.

Nowadays, the most powerful high performance computing systems are
clusters of processing units with distributed memory and the most efficient
method of parallelization is domain decomposition. There are some in-
vestigations of CA-model implementation on clusters [3–5], which show a
good parallelization efficiency for synchronous [4] and formulate problems
to be solved for asynchronous CA-models [5]. The latter are intensively
used in simulating chemical, biological and social processes. Direct meth-
ods of coarse-grain parallelization of asynchronous CA have rather a low
efficiency [6]. Hence, equivalent transformations of asynchronous into a
synchronized (block-synchronous) mode of CA functioning are proposed [7]
and investigated. Thus, now there is a scope of CA diffusion models and
their modifications with different characteristics. The fact is, the informa-
tion about them is not complete and is scattered in different fields in the
journals. Moreover, three-dimensional CA-models are not studied at all,
although it is the case that is usually needed in large-scale applications.
Thus, the complete systematized data concerning existing CA-models, a
comparative analysis of their characteristics would be useful for developing
CA-models of a wide range of natural phenomena and technological pro-
cesses. This is the reason to do the work presented in this paper. In the
next section, the formalisms used for CA-models presentations are given. In
the third section, all known diffusion 2D and 3D CA-models are described
formally, and their charcteristics are summarized, some of them, unknown
before, being obtained by simulation. The fourth section contains a com-
parative analysis of data presented from the point of view of multicomputer
implementation.

2. A formal representation of a CA-model

A CA is a set of identical computing units, denoted by the pairs (u, x), called
cells, where u ∈ A is a cell state from the alphabet A, x ∈ X is a name,
often being given as a vector x = (i, j, k) from a set of coordinates of a finite
b-dimensional (b = 1, 2, 3) discrete space with i = 0, . . . , I; j = 0, . . . , J ;
k = 0, . . . ,K. The set of cells Ω = {(ui,xi) : u ∈ A, x ∈ X, xi 6= xj} is
referred to as a cellular array, and a list of states of cells from Ω–– as a CA
global state ΩA = (u1, u2, . . . , u|X|). A subset of cells in the neighborhood
of any x ∈ X

S(x) = {(u0,x), (u1,x + a1), . . . , (un−1,x + an−1)} (1)

Cellular automata diffusion models for multicomputer implementation 23

forms a local configuration with an underlying template

T (x) = {x,x + a1, . . . ,x + an−1}, (2)

where aj is a shift vector.
The CA functioning is determined by a local operator Θ(x)

Θ(x) = Φ(θ1(x), . . . , θn(x)) (3)

that is a composition of several substitutions of the form

θ(x) : S(x)→ S′(x), (4)

where S(x) and S′(x) differ in the cell states. A substitution θ(x) is ap-
plicable to a cell (u,x) ∈ Ω, if S(x) ∈ Ω. Application of θ(x) results in
replacing the states of cells (uj ,x) ∈ S(x) by

u′j = fj(u1, . . . , un), n = |S(x)|, j = 0, . . . , |S′(x)|, (5)

where fj(u1, . . . , un) is a transition function.
Local operator (3) determines the order of its substitutions application

to any cell [8]. The most frequently used local operators are:

• ΦS –– a sequential application of all substitutions and

• ΦR –– application of one randomly chosen substitution.

Application of Θ(x) to all x ∈ X comprises a global operator Θ(X). Its
application changes Ω(t) for Ω(t + 1), constituting the t-th iteration of the
CA evolution, the latter being a sequence

Ω(0), Ω(1), . . . , Ω(T).

A global operator Θ(X) is correct, i.e. no loss of data can be caused by
its execution [9], if the underlying templates of substitutions, which may be
applied simultaneously, do not intersect:

T ′k(x) ∩ T ′m(y) = ∅, ∀x,y ∈ X, ∀k,m ∈ {1, . . . , n}, n = |Θ(x)|. (6)

There are several modes of the global transition execution, the main of
them being as follows:

Synchronous mode implies the following sequence of actions:

1. For all (u,x) ∈ Ω(t) new states are computed by (5);

2. In all cells (u,x) ∈ Ω(t) the states u(x) are replaced by u′(x).

24 O. Bandman

There are two ways to satisfy correctness condition (6) in the synchronous
mode:

1. Substitutions (4) of Θ(x) should have a single cell base, i.e.

|S′(x)| = 1 ∀θi ∈ Θ(x); (7)

2. The naming set should be partitioned into |X|/|T | = m non inter-
secting subsets X = X1 ∪ . . . ∪ Xl ∪ . . . ∪ Xm in such a way, that
T (x) ∩ T (y) = ∅ for any pair (x,y) belonging to one and the same
Xl, application of Θ(x) should be successively accomplished at m syn-
chronous stages.

Asynchronous mode implies the following procedure of local operator
application:

1. A cell (u,x) ∈ Ω is chosen with probability p = 1/|X|;
2. Θ(x) is applied to a chosen cell and the base cells states (u,x) ∈ S(x)

are immediately replaced by the corresponding (u′,x) ∈ S′(x).

By condition, it is accepted that |X| repetitions of this algorithm comprise
an iteration. Such an agreement is helpful, because it is in accord with the
synchronous mode and with a definition of a step in asynchronous CA, widely
used in the simulation surface chemical reactions, and called by chemists
kinetic Monte Carlo method [10].

Ordered asynchronous mode is a modification of the asynchronous mode,
when Θ(x) is applied sequentially to the ordered cell set.

Due to the fact that in asynchronous CA a local operator is applied to
x ∈ X sequentially, condition (6) is always satisfied. The problem of correct
computation of asynchronous CA arises only if the functioning of the CA is
executed in parallel on several processors.

Block-synchronous mode [7] is introduced for providing efficiency of asyn-
chronous CA in parallel implementation. It is obtained by transformation
of asynchronous mode into a sequence of synchronous computations, which
makes the parallel computation to satisfy correctness condition (6).

Let T (x) be the underlying template of Θ(x), and B(x) ⊇ T (x), then
the block-synchronous transformation is as follows:

1. X is decomposed into m = |B(x)| non-intersecting subsets X =
X0∪, . . . , Xl, . . . ,∪Xm in such a way, that ∀j ∀l ∀x:

|Bj(x) ∩Xl| ≤ 1. (8)

Cellular automata diffusion models for multicomputer implementation 25

2. At each t-th iteration a local operator Θ(x) is applied to Ω(t) at m
successive stages, at each l-th stage –– to all x ∈ Xl synchronously,
l = 0, . . . ,m.

3. Data exchange between the adjacent subdomains of X is performed af-
ter each stage. Such a mode of functioning is further called multistage
synchronous mode.

The mode of functioning is an essential parameter of a global operator,
i.e. if two CA differ only in functioning modes, their evolutions may still
be quite different. Thus, a global operator should be indexed by the mode
of functioning, which is denoted as Θρ, where ρ ∈ {α, β, σ, ω}, α standing
for asynchronous mode, β –– for block-synchronous, σ–– for synchronous, and
ω –– for ordered asynchronous.

3. The CA models of diffusion

Diffusion CA belong to a large class of CA models where all operations may
be interpreted as movements of abstract particles, represented as “ones”
in CA with Boolean alphabet. In such actions, several neighboring cells
have to change their states simultaneously. Hence, to satisfy correctness
condition (6), asynchronous CA or synchronous multi-stage CA should be
used. If a model is intended to be implemented on a multiprocessor system,
asynchronous CA should be transformed into its block synchronous multi-
stage version. Obviously, the less is the number of stages the higher is
parallelization efficiency

Synchronous CA with Margolus’ neighborhood. Among the known CA-
models of diffusion, the most efficient parallel implementation seems to be
the CA with Margolus’ neighborhood [11, 12], which is a two-stage syn-
chronous CA. Its functioning is performed according to the following algo-
rithm:

1. Two subsets of cells are formed in Ω(t):

Ω0(t) = {(u,x) : i mod 2 = 0, j mod 2 = 0, k mod 2 = 0},
Ω1(t) = {(u,x) : i mod 2 = 1, j mod 2 = 1, k mod 2 = 1}.

Each subset Ωl(t), l = 1, 2, generates partitioning Bd of Ω(t) into
|Ω(t)|/m, m = 2d, square (d = 2) or cubic (d = 3) blocks Bd(x) =
{x + a0,x + a1, . . . ,x + am}, where shift vectors for d = 2 are

a0 = (0, 0), a1 = (0, 1), a2 = (1, 1), a3 = (1, 0), (9)

26 O. Bandman

and for d = 3

a0 = (0, 0, 0), a1 = (0, 1, 0), a2 = (1, 1, 0), a3 = (1, 0, 0),

a4 = (0, 0, 1), a5 = (0, 1, 1), a6 = (1, 1, 1), a7 = (1, 0, 1).
(10)

2. Each t-th iteration is divided into 2 stages: t = (t0, t1). At the j-th
stage, a local operator Θd is applied to all x ∈ Ωj(t).

3. The substitutions of Θd are constructed based on the following pattern:

θ : {(u0,y0)(u1,y1)(u2,y2)(u3,y3)}
p−→

{(u1,y0)(u2,y1)(u3y2)(u0,y3)},

θ′ : {(u0,y0)(u1,y1)(u2,y2)(u3,y3)}
1−p−−→

{(u3,y0)(u0,y1)(u1,y2)(u2,y3)}.

(11)

For the two-dimensional case Θ2 = ΦR(θ0, θ
′
0), the substitutions being

obtained from θ, θ′ (11) by setting yq equal to x + aq, q = 0, 1, 2, 3, a-from
(9).

For the three-dimensional case Θ3 = ΦR(θ0, θ
′
0 . . . , θ5, θ

′
5), substitutions

θl, θ
′
l being obtained by replacing yq by x + aq, a from (10), and also by

replacing (uq,yq) by a pair of the adjacent cells according to the following
formulas:

(uq,y0) = {(u0,x+a0), (u1,x+a1)}, (uq,y1) = {(u4,x+a4), (u5,x+a5)},
(uq,y2) = {(u6,x+a6), (u7,x+a7)}, (uq,y3) = {(u2,x+a2), (u3,x+a3)},
(uq,y4) = {(u0,x+a0), (u3,x+a3)}, (uq,y5) = {(u1,x+a1), (u2,x+a2)},
(uq,y6) = {(u5,x+a5), (u6,x+a6)}, (uq,y7) = {(u4,x+a4), (u7,x+a7)},
(uq,y8) = {(u3,x+a3), (u7,x+a7)}, (uq,y9) = {(u0,x+a0), (u4,x+a4)},

(uq,y10) = {(u1,x+a1), (u5,x+a5)}, (uq,y11) = {(u2,x+a2), (u6,x+a6)}.

In other words, the 2D diffusion algorithm is as follows: at the j-th
stage (j = 1, 2) each 2 × 2 block of Ωj rotates its cell states clockwise
(θ0) or counterclockwise (θ′0) depending on a random number and a given
probability relation (Figure 1). In the 3D diffusion algorithm, at each j-th
stage three similar operations are executed, each rotating four pairs of the
adjacent cell states around the axis that is parallel to the segment between
the pair cells centers (Figure 2). In both cases for the isotropic diffusion the
substitutions in Θd(x) are chosen with equal probability.

Binate diffusion CA model has a local operator, consisting of a single
substitution defined on a pair of the adjacent cells (thereafter the name of
a model). Although it is the most simple operator, it requires 2d subsets
to be formed out of the cellular array, and, hence, 2d interprocessor data
exchanges are needed to be done per iteration.

Cellular automata diffusion models for multicomputer implementation 27

Figure 1. Graphical represen-
tation of a local operator Θ2(x)

Figure 2. 3D block of B3(x)

The subsets of cells Ωl(t) that are processed at each lth stage, l =
0, . . . , 2d, are as follows:

Ω0(t) = {(u, (i, j, k)) : i mod 2 = 0, j = 0, . . . , J, k = 0, . . . ,K},
Ω1(t) = {(u, (i, j, k)) : i mod 2 = 1, j = 0, . . . , J, k = 0, . . . ,K},
Ω2(t) = {(u, (i, j, k)) : j mod 2 = 0, i = 0, . . . , I, k = 0, . . . ,K},
Ω3(t) = {(u, (i, j, k)) : j mod 2 = 1, i = 0, . . . , I, k = 0, . . . ,K},
Ω4(t) = {(u, (i, j, k)) : k mod 2 = 0, i = 0, . . . , I, j = 0, . . . , J},
Ω5(t) = {(u, (i, j, k)) : k mod 2 = 1, i = 0, . . . , I, j = 0, . . . , J},

A local operator Θ(x) consists of a single substitution

θ(x) : {(u0,x), (ul,x + al} → {(ul,x), (u0,x + al}, (12)

where for d = 2: l = i, j, ai = (01), aj = (10), for d = 3: l = i, j, k,
ai = (001), aj = (010), ak = (100). At each l-th stage, θ(x) is applied to a
randomly chosen x ∈ Ωl(t)

Naive diffusion CA model. The well-known naive diffusion CA [11] in its
classic asynchronous case is defined by a single substitution local operator

θ(x) : {(u0,x + a0), . . . , (ul,x + al), . . . , (ud,x + ad)} →
{(ul,x + a0), . . . , (u0,x + al), . . . , (ud,x + ad)}, (13)

where l is a randomly chosen number from {1, . . . , 2d}.
A block synchronous version of the naive diffusion has 2d+1 stages, being

applied to the following subsets. For a two-dimensional case, l = 0, . . . , 4,
x = (i, j), al : (al, bl),

28 O. Bandman

Bl = {(i, j) : (i mod 5 = al, j mod 5 = bl)∨
(i mod 5 = al + 1, j mod 5 = bl + 2)}, (14)

where a0 = (0, 0), a1 = (1, 0), a2 = (0, 1), a3 = (4, 0), a4 = (0, 4).
For a three-dimensional case, l = 0, . . . , 6, x = (i, j, k), al = (al, bl, cl),

Bl = {(i, j, k) : (i mod 5 = al, j mod 5 = bl, k mod 5 = cl)∨
(i mod 5 = al + 1, j mod 5 = bl + 1, k mod 5 = cl + 1)∨
(i mod 5 = al + 1, j mod 5 = bl + 2, k mod 5 = cl)}, (15)

where a0 = (0, 0, 0), a1 = (1, 0, 0), a2 = (0, 1, 0), a3 = (0, 0, 1), a4 =
(4, 0, 0), a5 = (0, 4, 0), a6 = (0, 0, 4).

There are many other block-synchronous versions of the naive diffusion
(13) that are obtained by taking Bl having m × m redundant size, i.e.
Bl(x) ⊃ T (x), with m = 3, 5, 7, . . . Obviously, they are executed on md

subsets of the form

Bl = {(i, j, k) : i mod m = al, j mod m = bl, k mod m = cl}.

The diffusion CA belong to a large class of CA models where all oper-
ations may be interpreted as movements of abstract particles, represented
as “ones” in CA with Boolean alphabet. When simulating real natural phe-
nomena, where all values are assessed in real numbers, we come up against
a new problem of transforming spatial functions into Boolean array and vice
versa. The problem has been solved by using two operators: discretization
and averaging [13]. The operator of averaging summarizes the state values
in the vicinity of any x ∈ X and divides the sum by the number of cells
in this area. If the area is small, the averaging results in a non-smooth
function, i.e. having a big “automata noise”. Averaging over a large area
distorts the diffusion effect [14]. When averaging is used only at the end of
simulation, the distortion is insignificant, but being used at each iteration,
the automata noise becomes harmful. In such cases the following diffusion
CA-model is helpful.

Diffusion CA-model with integer alphabet is proposed in [15], where it is
called “the multi-particle diffusion model”. Is shown there that using the
integer alphabet instead of Boolean one allows one to decrease the automata
noise, and, hence, to eliminate the process of averaging. Moreover, the model
effectively combines with CA-models that have integer alphabets [16].

The main idea is to represent the cell states as a sum of two integers
u = γu + (1 − γ)u, γ ∈ (0, 1], only one of them being transferred into the
neighboring cell.

Such a modification may be applied to any asynchronous diffusion CA
as follows:

Cellular automata diffusion models for multicomputer implementation 29

1. The alphabet of a CA is a finite set of non-negative integers: A =
{0, 1, . . . ,M}, M being chosen according to the requirement of aver-
aging accuracy, or compatibility with other simulation system compo-
nent.

2. Each state u ∈ A is represented as a sum

u = u′ + u′′, (16)

where u′ = bucγ+δ, u′′ = u−u′, δ = 1 with probability p = (u−buc)γ,
and δ = 0, otherwise.

3. Each substitution in local operator (3), which simulates the exchange
of states between the neighboring cells is replaced by

θ(x) : {(u′0 + u′′0),x), (u′l + u′′l),x + al} →
{(u′′0 + u′l,x) + (u′′l + u′0,x + al)}, (17)

The above principle of constructing the integer version Int-CA may be
applied to any asynchronous diffusion CA model. The obtained Int-CA
would differ from its Boolean counterpart Bool-CA ΘBool−CA(x) in its sub-
stitutions, being constructed according to (16) or (17). The diffusion num-
ber of integer CA D(Int-CA) = γD(Bool-CA). In the multi-processor im-
plementation, block-synchronous transformations of integer CA should be
used, being constructed in a similar way as their Boolean counterparts and
having the same numbers of exchanges per iteration.

4. The main characteristics of CA diffusion models

Three characteristics of the diffusion CA models are important for designing
large-sale simulation programs, including CA as a component: diffusivity,
the number of synchronous stages, the time of computation. Diffusivity is
a characteristic that may be expressed in terms of physical parameters of
the process simulated by the CA evolution, hence, it is called a CA invari-
ant [17]. The invariant is a dimensionless characteristic of the process that
does not depend on its mathematical representation allowing one to deter-
mine the scaling coefficients between model parameters ant their physical
counterparts. Since the CA evolution simulates spatial dynamics, its in-
variant should represent the relation between spatial and temporal scales.
In the case of diffusivity, such a relation is given by the formula

D =
cdτ

h2
,

where cd (m2/s) is a diffusion coefficient, τ (s) is iteration time, and h (m)
is the linear size of a cell. Diffusion numbers (D) and the number of syn-
chronous stages (#) of the above CA-models are summarized in the table:

30 O. Bandman

d
Marg-N Binate Naive-3 Naive-m

D # D # D # D #

2 1 2 0.75 4 0.5 9 0.5 m2

3 1 2 0.75 6 0.33 27 0.5 m3

5. Conclusion

The CA diffusion models are considered and analyzed from the point of
view of using them in large-scale complex tasks to be implemented on su-
percomputers. The models are characterized by their diffusion numbers and
the numbers of synchronous stages equal to the number of interprocessor
exchanges per iteration. The information about these two characteristics
is of great importance when developing a parallel algorithm for simulating
complex phenomena by CA.

References

[1] Simulating Complex Systems by Cellular Automata. Understanding Complex
Systems / A.G. Hoekstra, et al., eds. –– Berlin: Springer, 2010.

[2] Bandman O. Cellular Automata Composition Techniques for Spatial Dynam-
ics Simulation // Simulating Complex Systems by Cellular Automata. Un-
derstanding Complex Systems / A.G. Hoekstra et al. eds. –– Berlin: Springer,
2010. –– P. 81–115.

[3] Bandman O. Using cellular automata for porous media simulation // J. Su-
percomputing. –– 2011.–– Vol. 57, No. 2. –– P. 121–131.

[4] Medvedev Yu. Dynamic load balancing for lattice gas simulations on a clus-
ter // Proc. Int. Conf. on Parallel Computing Technologies, PaCT-2011 /
V. Malyshkin, ed. –– 2011.–– P. 181–191.–– (LNCS; 6873).

[5] Bandman O. Implementation of large-scale cellular automata models on multi-
core computers and clusters // High Performance Computing and Simulation
(HPCS), 2013 Int. Conf. / IEEE Conference Publications.––2013.––P. 304–310.

[6] Kalgin K. Parallel implementation of asynchronous cellular automama on
32-core computer // Siberian J. Num. Math. –– Novosibirsk: SBRAS Press,
2012. –– Vol. 15, No. 1. –– P. 55–65.

[7] Bandman O. Parallel simulation of asynchronous cellular automata evolution
// Proc. 7th Int. Conf. on Cellular Automata for Research and Industry, ACRI
2006 / S. El Yacoubi, B. Chopard, S. Bandini, eds. –– 2006. –– P. 41–48. ––
(LNCS; 4173).

[8] Achasova S., Bandman O., Markova V., Piskunov S. Parallel Substitution
Algorithm. Theory and Application. –– Singapore: World Scientific, 1994.

Cellular automata diffusion models for multicomputer implementation 31

[9] Achasova S., Bandman O. Correctness of Parallel Processes. –– Novosibirsk:
Nauka, 1999 (In Russian).

[10] Jansen A.P.J. An Introduction to Monte-Carlo Simulation of Surface Reac-
tions. –– arXiv:cond-mat/0303028v1[stst-mech], 2003.

[11] Toffolli T., Margolus N. Cellular Automata Machines: A New Environment
for Modeling. –– USA: MIT Press, 1987.

[12] Malinetsky G.G., Stepantzov M.E. Simulating diffusion processes by cellu-
lar automata with Margolus’ neighborhood // J. Comp. Math. and Math.
Physics. –– 1998.–– Vol. 36, No. 6. –– P. 1017–1021.

[13] Bandman O. Algebraic Properties of Cellular Automata : the Basis for Com-
position Technique // Proc. 6th Int. Conf. on Cellular Automata for Research
and Industry, ACRI 2004 / P.M.A. Sloot, B.Chopard, A.G. Hoekstra, eds. ––
2004.–– P. 688–697. –– (LNCS; 3305).

[14] [14] Weimar J. Cellular Automata for Reaction Diffusion Systems // Parallel
Computing. –– 1997. –– Vol. 23, No. 11. –– P. 1699–1715.

[15] Medvedev Yu.G. Multiparticle Cellular Automata for Diffusion Simulation //
MTPP Proc. –– Berlin: Springer, 2011. –– P. 204–211.–– (LNCS; 6083).

[16] Afanasiev I. The CA-model of populations’ dynamics of organisms living in
Baikal // Bull. Novosibirsk Comp. Center. Ser. Computer Science. –– Novosi-
birsk, 2012. –– Iss. 33. –– P. 11–23.

[17] Bandman O. The concept of invariants in reaction-diffusion cellular-automata
// Bull. Novosibirsk Comp. Center. Ser. Computer Science. –– Novosibirsk,
2012. –– Iss. 33. –– P. 24–36.

32

