
Bull. Nov. Comp.Center, Comp. Science, 24 (2006), 27–44
c© 2006 NCC Publisher

Using floorplans for software visualization∗

Z. Apanovich, M. Bulyonkov, A. Bulyonkova
P. Emelyanov, N. Filatkina, P. Ruyssen

Abstract. In this article we consider requirements to visualization of semantic
properties of programs appearing in the reengineering process when use of hierar-
chical ordering is an appropriate way to visualize the information of interest. We
consider two algorithms of graph placement that implement geometrical inclusion of
object hierarchy. They use (non)slicing floorplan techniques that is being actively
developed in VLSI design domain. Some illustrating examples are given.

Introduction

Maintenance of complex legacy software is a well-known hard problem that
requires a lot of resources. Any activity in this area, such as reengineering,
refactoring, or retargeting, begins with code analysis and understanding.
Roughly speaking, it consists of the following basic steps:

1) identify objects of interest;

2) attribute the objects with appropriate information;

3) detect relationships between the objects;

4) identify sub-systems of the entire system in order to enforce divide-
and-conquer approach.

All this knowledge should be stored in some sort of repository, that provides
model-based access to object information. The precision of the analysis may
depend on the overall objectives and/or computational resources.

Program reengineering most often is partially automated and requires
user interaction [19]. Therefore there should be some means to visualize the
information from the repository. Naturally, objects and relationships can
be represented in a form of a graph [12]. There exist many both common-
purpose and specialized graph drawing packages for software visualization
[2, 8]. The graph layout methods that are used in these packages may be
categorized as follows:

1) algorithms of tree visualization [14];

∗ This work was supported by the Russian Foundation for Basic Researches under
Grant No. 05-01-00637.



28 Z. Apanovich, M. Bulyonkov, A. Bulyonkova et al.

2) layered placement algorithms [18];

3) force-directed or spring placement algorithms [10].

However, the usability of these methods significantly varies depending on
the kind of graphs. In particular, the scalability is of very high importance:
a method must be reasonably effective for extremely large graphs [2, 11].
Thousands lines of program code can lead to millions of objects and rela-
tionships to be analyzed. Recently developed hierarchical methods of graph
layout and visualization seem to open a promising way to the solution of
this problem.

The rest of the paper is organized as follows: in the first section we
briefly consider graph editor BEDit which is currently used in our reengi-
neering system1. Next we discuss some issues that need to be addressed
for visualization of hierarchical relationships. Finally we consider two algo-
rithms of graph layout that realize hierarchy as geometrical inclusion. They
use both slicing and non-slicing floorplans techniques that are actively used
in VLSI design. Some illustrating examples are given.

1. BEDit

Although the textual representation of the source code is its dominating
representation, there are a number of cases when graphical representations
may make it more understandable. Among typical examples are flowcharts,
call graphs, etc. The BEDit graph editor was implemented for visualization
of objects and relationships. Some textual information can be associated
with them.

The following criteria were taken into consideration for the choice of the
placement algorithms:

1. In the context of reverse engineering graphs help the user in compre-
hension of the source code structure. Hence one of the most important
criteria for evaluation of the quality of visualization is readability of
representation. Recent research has shown that the main factor which
influences the readability of representation is the number of edge cross-
ings [16].

2. Usually the source code is maintained and modified, and graphs are
generated on user demand. For this reason, graphs should be gener-
ated rapidly, in order to reduce the user waiting. The requirement of
interactivity imposes serious restrictions on algorithm efficiency. So,
our attention should be primarily paid to the time consumed by layout
algorithms.

1HyperCode, HCCallie, HCParagraph are components of this system [19].



Using floorplans for software visualization 29

3. There is no need to provide stability of visualization: minor changes
in the source code may lead to generation of a completely different
representation.

Basically a link between two objects is represented by an edge connecting
corresponding boxes. The input format of BEDit is xml-based and looks as
follows:

<Diagram ...>

<Boxes>

<Box ID="main#group" Left="1" Top="1" Width="29" Height="23" .../>

<Box ID="B1" Left="2" Top="2" Width="5" Height="5" .../>

<Box ID="G1"Left="2" Top="8" Width=27"" Height="17" .../>

<Box ID="B2"Left="3" Top="15" Width="5" Height="5" .../>

<Box ID="B3"Left="14" Top="9" Width="25" Height="5" .../>

<Box ID="G2"Left="3" Top="9" Width="10" Height="7" .../>

<Box ID="B4"Left="4" Top="10" Width="8" Height="5" .../>

</Boxes>

<Edges> ... </Edges>

</Diagram>

The algorithm [18] was adapted to be used in the reengineering environ-
ment. A new algorithm realizing a kind of layered drawing was developed
for layout of mostly acyclic graphs.

The algorithm consists of the following steps:

1) identification of an acyclic graph, distribution of nodes by levels, and
detection of the base trees;

2) layout of spanning trees and sorting of nodes at the same level;

3) reduction of the occupied space and correction of placement of nodes
at each level;

4) correction of the placement to fit box sizes;

5) layout of edges.

Our algorithm pays more attention to the initial placement of the span-
ning tree than the classical algorithms do. This allows us to reduce in ad-
vance the number of edge crossings and hence to reduce the time consumed
by the following phases of the algorithm.

Sorting of nodes at each level is done by the barycentric method [7]. The
initial tree layout, together with sorting of nodes, is a good approximation
to the desired result and significantly improves convergence of the iterative
barycentric process.

When the placement and sizes of nodes are fixed, we minimize the num-
ber of edge crossings. Since we consider only the orthogonal edges, the
problem can be reduced to the graph coloring problem. This problem is



30 Z. Apanovich, M. Bulyonkov, A. Bulyonkova et al.

Figure 1. Visualization in BEDit graph editor

NP-complete and we used a heuristic algorithm [4]. An example of using of
BEDit that shows dependencies among program modules of a legacy system
is given on Figure 1.

2. The use of geometrical-inclusion representations in
program understanding

In the process of program understanding [5], we consider a program as a col-
lection of related entities that have appropriate attributes. This is similar to
the usage of the well-known model of entity-relationship diagrams (ERD).
The model was adapted for the visualization purposes in the following way:

1. The relationship of nesting was introduced. It reflects the syntactical
hierarchy of program constructs.

2. The formal model was enriched with a textual representation of objects
so that the objects of the model become attached to the syntactical
constructs that represent the objects.



Using floorplans for software visualization 31

3. The model was extended to provide for the abstract types and inher-
itance mechanism. This allows for definition of type hierarchy. For
instance, the “statement” type may have descendants types “condi-
tional statement”, “assignment statement”, etc. which inherit state-
ment’s attributes and relationships.

We used the geometrical-inclusion representations in the form of floor-
plans (see the definition in Section 3). Before their description, we give some
examples arising in reengineering and program understanding.

2.1. Syntactical nesting

First of all, floorplans may be used to represent the syntactical construct
nesting. Usually the tree-like representation is used for this purpose: a
program is presented as a set of trees, each root corresponding to a module
or file, which constitute the program. Although such representation may
have a considerably lower level of details as compared to the full abstract
syntax tree, it still may be over-detailed. So in some cases it may be useful
to restrict the set of displayed types, for example, to display only calls,
conditionals and procedures.

In this case, the use of a floorplan instead of a tree-like representation
may result in a more compact general view of a program. For example,

1. Synchronization of this representation with the source code may ease
the location of the search construct.

2. The color of conditionals may vary depending on the number and
depth of nested conditionals. That may give the average and maximum
estimates of the program complexity.

3. A similar coloring of floorplans allows visual estimation of other mea-
surable characteristics, such as the frequency of certain variables in
different procedures, or location of input/output operations, etc.

2.2. Data visualization

One of the most frequently investigated program objects are data and their
declarations [6, 9]. In this case the tree-like representation reflects the data
type rather than data organization. Even not considering dynamically allo-
cated data, pointers, etc., one may find examples where the data declaration
structure differs from their physical allocation. The constructs like union in
C, REDEFINE in COBOL, etc., impose different types on the same memory
location. When this feature is used not for realization of different logical
variants, but for different access to the same memory location, the user
needs to know the exact allocation scheme. Here, the exact correspondence
of data element sizes to visual representation sizes may be unnecessary and



32 Z. Apanovich, M. Bulyonkov, A. Bulyonkova et al.

Figure 2. HyperCode. Allocation of data structures with the use of REDEFINES
mechanism

even undesirable. More important is a clear presentation of the mutual lo-
cation of data elements: for example, one element is an exact subelement of
another, or they have exactly the same location, or they intersect.

In the COBOL language, there are several sources of dependencies be-
tween variables. First of all, this is the mechanism of REDEFINES which
allows us to overlay several data structures with different names (see Fig-
ure 2). In case of such overlay, i.e. when the structure A is declared as A
REDEFINES B, any modification of a field of one structure implicitly changes
some field of the other one. Moreover, since both the size and the structure
of A and B may differ, an assignment to a single field of A may affect several
fields of B. The dependencies between variables from A and B are determined
based on the intersection of the corresponding memory locations.

In the case of statically allocated memory, it would be natural to repre-
sent the inclusion relationship using the floorplan, and the A REDEFINES B
relationship — by edges over it. The second kind of relationships may also
be reflected by positioning of boxes in the floorplan: alternatives should be
displayed in parallel, side by side.

Another source of data flow are COMPUTE and MOVE statements. They
differ in the sort of induced dependencies between the arguments and the
result. If complex data structures appear on both sides of the assignment,
the COMPUTE statement implies dependence of every part of the result on the
whole argument, while MOVE statement dependencies are similar to those of
REDEFINES.

Arbitrary complexity of data structures and partial overlay during eval-
uation of dependencies lead to the conclusion that the basic items for the
description of data flow should be all elementary memory locations produced
by the intersection of overlayed data elements, rather than the syntactical
concept of “variable” (see Figure 3). Nevertheless, for proper comprehension
of such data flow representation, the user should be able to easily obtain in-
formation about the origin of a particular location with appropriate reference
to the source code.



Using floorplans for software visualization 33

Figure 3. HyperCode. Representation of the data flow of structured data

So, in this case, we also have two types of relationships: nesting and
data dependencies. A floorplan is used to display the hierarchical data
structure, and the data flow is shown as links between the most nested
boxes corresponding to elementary fields.

2.3. Control visualization

The control structure of a program is a traditional candidate for being rep-
resented in the graphical form. Obviously, in this case the graphical repre-
sentation is one of the most easily understandable. However, it also has a
number of technical and methodological difficulties.

First of all, it requires more space than, say, the textual representation.
The whole graph of a real program most probably won’t fit the screen size
with sufficient details, so the user will have to scroll it back and forth with-
out any guarantee of seeing the interesting parts of the graph all at once.
Another problem is that the control flow graph for real programs may be
very cumbersome and require complex layout algorithms, which may not
be acceptable because of the interactive character of visualization. A com-
promise between the response time and quality of visualization should be
found.

A significant simplification of the call graph may be achieved by intro-
duction of a graph hierarchy. The natural two-level hierarchy for COBOL is
a separate representation of the paragraph call graph (HCCallie) and con-
trol inside paragraph (HCParagraph). Following this approach, the user
can see all details of control without losing the overall picture. Moreover,
construction of the intra-paragraph control may be more efficient and simple
due to better structuring (see Figure 4).

More generally, simplification of the graphical representation of the con-
trol flow may be achieved by using floorplans for inclusion of procedures and
separate control graph for each procedure (see Figure 5).



34 Z. Apanovich, M. Bulyonkov, A. Bulyonkova et al.

Figure 4. HyperCode. Intra-paragraph control flow graph

Figure 5. HyperCode. Inter-paragraph control flow graph



Using floorplans for software visualization 35

Figure 6. HyperCode. Procedure call graph

2.4. Inter-program visualization

We have already mentioned that analysis of program components is only
the beginning of understanding of a program system. At the next stage,
the data and control flow between program modules should be understood.
The preparation of information for visualization is essentially very similar
to the process of linking separately compiled modules. Modules may be of
different nature: programs, database table definitions, description of screen
forms, etc. An important requirement is that information be collected and
placed into the repository incrementally, while modules are analyzed one
by one. The possibility to view and analyze incomplete information is even
more important because quite often the system are either incomplete or
not closed, since they may use system or third party components which are
unavailable in the reengineering environment.

One should also keep in mind that, in general, the static program analysis
can give only approximation of data flow. This happens, in particular,
when SQL queries or screen forms are generated dynamically depending
on the values of program variables. In such cases the system may require
information from the user.

The user should have a possibility to change the level of consideration:
from the analysis of interaction of program components to their internal
structure, and, after navigation inside a program, back to the upper level,
perhaps in a different place. In other words, it should be possible to hide
certain levels of a floorplan and to lift relationships to the parents, and to
promptly return the hidden when necessary. For example, on Figure 6 we
see a call graph, and on the next picture (Figure 7) — the same graph and
the content of the paragraph TTY1, preserving the general call context.

A similar approach can be used for the data flow, as well (see Figure 8).
The grouping based on programs and procedures provides a natural hierar-
chy. Floorplans, together with the possibility to collapse boxes, significantly
simplify the process of exploration of data flow by hiding the details which
are not relevant to the current program.



36 Z. Apanovich, M. Bulyonkov, A. Bulyonkova et al.

Figure 7. HyperCode. Joint representation of procedural calls and internal
procedure control

Figure 8. HyperCode. Inter-program data flow

3. Floorplans

A relationship between objects may be represented not only by edges but
also by nesting of boxes. Figure 2 shows visualization of the contains–
relationship: an arc between two boxes means that the second object is a
part of the first one.

At the first step to representation of the same relationship by geometrical
nesting, each node of the graph which has outgoing arcs becomes a group
of related nodes. If a node has more than one incoming arc (i.e., the object
belongs to several groups), it is copied — one copy per each incoming arc.
As a result we obtain the nesting tree, and edges of this type are no longer
explicitly specified in the xml-representation:

<graph>
<groups>

<group id="main#group">
<box id="B1" minxsize="5 minysize="5"/>
<group id="G1">

<box id="B2" minxsize="5 minysize="5"/>
<box id="B3" minxsize="25" minysize="5"/>



Using floorplans for software visualization 37

<group id="G2">
<box id="B4" minxsize="8" minysize="5"/>

</group>
</group>

</groups>
</graph>

Now we need to find an optimal placement of elements of each group in
the hierarchy such that the boxes should not overlap, the occupied space
should be minimal, and the resulting rectangle should have the required
proportions. This is a typical problem of the rectangle packing and its
NP-completeness is proven, for example, in [3]. This problem was actively
studied in the recent years in the context of VLSI design and is known as
the problem of an optimal floorplan.

Our first layout algorithm is based on the model of so-called slicing floor-
plans described for the first time in [15]. This model treats the nesting tree
as a scheme which determines the order of assembling rectangular elements
with a specified height and width pair by pair. We used the algorithm gen-
erating a solution that does not require an iterative procedure improving its
quality for the reasons of efficiency. The heuristics consisted in bottom-up
traversal of the nesting tree in an attempt to generate a layout for each
group independently with a minimal size and its aspect ratio close to 1.

The kernel of the algorithm is the procedure of placement of a set of
rectangles. Since the sizes of the elements of the group are already known,
we can sort them descending the maximal size of each rectangle, and then
add them one by one to the placement.

At each step of the placement, the set of so-called control points is main-
tained. We try to place the next rectangle at each of the control points
in two orientations — vertical and horizontal — and so to find an optimal
placement. If the next rectangle is finally placed at the control point A, it is
replaced with two new control points B and C with the following coordinates:

xB = xA + w(R);
yB = yA;
xC = xA;
yC = yA + h(R);

where xA , yA, xB , yB , xC, and yC are the coordinates of control points
and w(R) and h(R) are the width and height of the next rectangle according
to the selected orientation.

When two blocks of different sizes are assembled, a new block that con-
tains both of them appears, and some space is left unoccupied (Figure 9).
Such space is called dead space. The result of the algorithm applied to data
from Figure 1 is shown on Figure 10.



38 Z. Apanovich, M. Bulyonkov, A. Bulyonkova et al.

Figure 9. Dead space

Figure 10. The result of the algorithm

Theoretically the complexity of the algorithm is O(n2), where n is the
number of boxes. In practice the algorithm works fairly fast even for large
samples, and can be used for interactive systems. The main flaw of this
algorithm is a considerable dead space.

In order to solve the problem, another algorithm was developed utilizing
the non-slicing floorplan model. A number of papers that describe data
structures for the non-slicing floorplan placement appeared recently. Here
are examples of such representations:

• sequence-pair,

• bounded slice line grid,

• O-tree,



Using floorplans for software visualization 39

• B∗-tree,

• graph of transitive closures (TCG),

• corner block list,

• twin binary trees, etc.

More details on these representations and the corresponding placement al-
gorithms can be found in [1].

The implemented approach is based on the combinatorial search in the
set of configurations (or encodings) which are defined as a representation of
non-slicing floorplans. Each representation is related to the rule of place-
ment for a given configuration. A configuration is said to be feasible, if
there exists a placement which corresponds to the configuration. Thus each
configuration specifies a solution space. A placement is rated according to
the space it covers. Since the exhaustive search would take too much time,
heuristic methods, like simulated annealing or genetic algorithms, are used.
The following four requirements help us to perform the search in the solution
space efficiently [13]:

1. The solution space that is encoded by the given representation is finite.

2. Each solution is satisfiable, i.e. there is a placement that corresponds
to the given code.

3. The placement can be done in a polynomial time.

4. The code, which is evaluated to be the best for the given solution
space, corresponds to one of optimal solutions.

A representation that satisfies all the four requirements is called P-admissible.
The reason of such a variety of representations is the fact that none of

them satisfies all requirements to floorplans perfectly. Taking into account
the restrictions of our particular task, and especially the interactive charac-
ter of visualization, the LaySeq representation of floorplans [17] was chosen.

The main reason for the choice is that a floorplan for a given config-
uration can be generated in a linear time. Yet another advantage of the
representation is a comparatively small number O(n!) of generated configu-
rations.

Although LaySeq does not satisfy the requirement of P-admissibility,
since the best solution does not guarantee an optimal placement, experi-
ments show that the results obtained with this placement are quite satis-
factory from the practical point of view. Thus the main components of the
realized placement algorithm are the following:

• the LaySeq representation that describes an acceptable set of configu-
rations and allows us to select all possible configurations corresponding
to the given representation;



40 Z. Apanovich, M. Bulyonkov, A. Bulyonkova et al.

Figure 11. LaySeq list

Figure 12. Example of an LB-compact packing

• the rating function for the configuration quality (the space of the place-
ment in the simplest case);

• the algorithm of generation of a floorplan for a given configuration;

• the procedure of generation of new configurations;

• the function that signals to stop when the best solution is found.

The genetic algorithm has been chosen to iterate over the set of config-
urations. Each solution in the process of the genetic algorithm is described
by LaySeq data structure, which is a list of length n representing n blocks
in the order determined at the previous phase of the procedure Figure 11.

The scheme of constructing a layout from the given sequence LaySeq is
as follows:

Step 0. Creation of upper block list that contains the blocks already placed
in the order of the longest side, if the side is not completely closed by
blocks placed above. Initially the list is empty.

Step 1. Placement of blocks which forms the basis of a new block. While
the specified number of blocks is not placed,

1) delete the next block from LaySeq;
2) place it to the right of the last placed block, so that the placement

is LB-compact;2

3) Include the block into the upper block list in the position accord-
ing to the block sizes.

2A placement is called L-compact (B-compact) iff no block can be shifted left (down)
when all other blocks are fixed. A placement is LB-compact if it is both L-compact and
B-compact. An example of LB-compact placement is shown on Figure 12



Using floorplans for software visualization 41

Step 2. Place the first blocks and then make its horizontal size the width
of the whole floorplan that will be maintained by the rest of the place-
ment.

Step 3. While not all blocks are placed,

1) remove the next block from LaySeq;
2) place the current block on top of one of the already placed blocks

to minimize the increase of the total height of the floorplan. That
guarantees B-compactness of the new placement. Update the
list of upper blocks and the list of neighbors for each block. The
placement in the leftmost position over the selected block provides
L-compactness of the placement.

Step 4. Compute the total vertical size of the floorplan.

The genetic algorithm is controlled by the following parameters:

• the number of individual solutions in a population;

• the maximal number of generations;

• the maximal number of generations without evolution (stagnation rate);

• mutation rate of an individual solution; this parameter defines the
ability of a selected individuum to mute;

• mutation rate of genes; this parameter defines mutations that will be
applied to a selected individuum;

• level of reproductivity; this parameter defines the number of descen-
dants that will be generated by this population.

The algorithm consists of the following steps:

Population initialization. The step of initialization is performed only
once, while all the rest are iterated until the solutions found are not
improved any longer or the limit on the maximum of generation is
reached.

A number of individual solutions is generated for creation of the initial
population. The number should be large enough to cover most of
solution space, but not excessively large for a reasonable computational
time.

Selection. At each iteration the best individual solutions are selected. The
number of selected solutions depends on the level of reproductivity.
For example, if the level of reproductivity is 50%, then 50% of indi-
vidual solutions is selected.



42 Z. Apanovich, M. Bulyonkov, A. Bulyonkova et al.

Crossover. When the selection is made, the individual solution are paired:
the best with the second, the third with the fourth, etc. Each pair
generates two offsprings, and the worst of parents are replaced with
the best of descendants. It is done using a cost function computed
during the placement of elements of this particular solution. The pop-
ulation has a constant number of members. During the descendants
generation, the bounds of a subsequence of the sequence LaySeq are
chosen randomly. Then the elements of the sequences Layseq1 and
Layseq2 are transposed in the bounds of this subsequence. This trans-
position can produce duplicate descendants in these sequences, which
does not correspond to a correct solution. For example, if we trans-
pose the second and third elements in the sequences Layseq1=[1,2,3,4]
and Layseq2=[2,3,4,1], then new descendants become the sequences
[1,3,4,4] and [2,2,3,1]. Therefore, in spite of descendants, the genera-
tion correctness is checked. A modification is performed if needed.

Mutation. Random mutations are performed to keep a genetic variety and
to avoid fast fall into a local minimum. First, by comparing the pa-
rameter mutation rate of individual solution with a random value, a
decision on applicability of mutation to this particular individuum is
made. Next, by comparing the parameter mutation rate of genes with
a random value, a decision about a particular mutation is made. As
mutations of individuals, the following modifications of the sequence
LaySeq are used: movement of the first element of LaySeq to the end,
rotation on 90o of one of the elements; change of BaseSizeNumber.
The best solutions obtained by mutation are also kept.

For data described above this algorithm gives the following result (Figure
13).

4. Conclusion

In this work, we consider a graph editor BEDit which is currently used in
a reengineering system. We discuss the use of hierarchies in a reengineering
process. Finally, we consider two algorithms of graph placement that use a
geometrical inclusion of objects.

The heuristic algorithm here described has the following properties:

1. The complexity of placement for the configuration LaySeq is O(n).

2. The number of all possible configurations is O(n!).

3. The representation describes a floorplan independently from the block
sizes. This allows us to use this representation for further optimiza-
tions if the size of the block may vary.



Using floorplans for software visualization 43

Figure 13. The final result of the algorithm

4. This visualization is much better with respect to the occupied space,
as compared to another one based on Sugiyama algorithm.

5. Since visualization of nesting does not exploit edges, it gives us more
freedom to use edges for other relationships with less crossing.

References

[1] Apanovich Z. Tools for working with large graphs: construction and optimiza-
tion of floorplans // System Informatics. — Novosibirsk: SB RAS Publisher,
2006. — Iss. 10: Methods and Models of Modern Programming. — P. 7–71.

[2] Auber D. Tulip, a huge graphs visualization software // Proc. of the 9th

Internat. Sympos. Graph Drawing. — Lect. Notes Comput. Sci. — 2002. —
Vol. 2265. — P. 434–435.

[3] Baker B.S., Coffman E.G., Rivest R.L. Orthogonal packings in two dimensions
// SIAM J. on Computing. — 1980. — Vol. 9(4). — P. 846–855.

[4] Bulyonkova A. Approximate algorithm for large graphs coloring // Problems
of Theoretical and System Programming. — Novosibirsk: Novosibirsk State
University, 1982. — P. 81–86.

[5] Bulyonkov M., Baburin D., Emelianov P., Filatkina N. Visualization facilities
in program reengineering // Programming and Computer Software. — 2001.
— N 27(2). — P. 21–33 (Simultaneous translation from Programmirovanie).

[6] Bulyonkov M., Filatkina N. Exploring data flow in legacy systems // Proc. of
the Second Asian Workshop on Programming Languages and Systems (APLAS
2001). — Daejeon: KAIST, 2001. — P. 61–75.



44 Z. Apanovich, M. Bulyonkov, A. Bulyonkova et al.

[7] Eades P., Kelly D. Heuristic for reducing crossing in 2-layered networks //
Ars Combinatoria. — 1986. — Vol. 21. — P. 89–98.

[8] Evstiougov-Babaev A. Call graph and control flow graph visualization for
developers of embedded applications // Papers of Software Visualization:
International Seminar. — Lect. Notes Comput. Sci. — 2002. — Vol. 2269. —
P. 337–346.

[9] Filatkina N. Cross-program data flow visualization // Joint NCC & IIS
Bulletin. Ser.: Comput. Sci. — 2002. — Iss. 18. — P. 81–102.

[10] Fruchterman T., Reingold E. Graph drawing by force-directed placement //
Software — Practice & Experience. — 1991. — Vol. 21(11). — P. 1129–1164.

[11] Huang M., Eades P. A fully animated interactive system for clustering and
navigating huge graphs // Proc. of the 6th Internat. Sympos. Graph Drawing.
— Lect. Notes Comput. Sci. — 1998. — Vol. 1547. — P. 374–383.

[12] Koschke R. Software visualization for reverse engineering // Papers of Soft-
ware Visualization: International Seminar. — Lect. Notes Comput. Sci. —
2002. — Vol. 2269. — P. 138–150.

[13] Murata H., Fujiyoshi K., Nakatake S., Kajitani Y. VLSI module placement
based on rectangle-packing by the sequence pair // IEEE Trans. on Computer-
Aided Design. — 1996. — Vol. 15. — P. 1518–1524.

[14] Mutzel P., Eades P. Graphs in software visualization // Papers of Software
Visualization: International Seminar. — Lect. Notes Comput. Sci. — 2002. —
Vol. 2269. — P. 285–294.

[15] Otten R.H.J.M. Automatic floorplan design // Proc. of the 19th ACM/IEEE
Conf. on Design Automation. — Piscataway: IEEE Press, 1982. — P. 261–267.

[16] Purchaise H. Which aesthetic has greatest effect on human understanding? //
Proc. of the 5th Internat. Sympos. Graph Drawing. — Lect. Notes Comput.
Sci. — 1997. — Vol. 1353. — P. 248–261.

[17] Sathiamoorthy S. LaySeq: A new representation for non-slicing floorplans //
Proc. of the 6th IEEE VLSI Design and Test Workshop. — Piscataway: IEEE
Press, 2002. — P. 317–327.

[18] Sugiyama K., Tagawa S., Toda M. Methods for visual understanding of hier-
archical systems // IEEE Trans. on Systems, Man, and Cybernetics. — 1981.
— Vol. SMC-11(2). — P. 109–125.

[19] Automatic Reengineering of Programs / Ed. by A. Terekhov, A. Terekhov Jr.
— Saint-Petersburg: Saint-Petersburg State University, 2000.


